The isomorphism problem for tensor algebras of multivariable dynamical systems

Chris Ramsey, MacEwan University, Edmonton, Alberta Joint work with Elias Katsoulis (East Carolina University)

CMS Summer Meeting - Operator Algebras and Applications - 2021

A (multivariable) **C**^{*}-dynamical system (\mathcal{A}, α) consists of a unital C^{*}-algebra \mathcal{A} and a *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n)$ of unital *-endomorphisms $\alpha_i : \mathcal{A} \to \mathcal{A}$

A row isometric representation of (\mathcal{A}, α) consists of a non-degenerate *-representation π of \mathcal{A} on a Hilbert space \mathcal{H} and a row isometry $V = (V_1, \ldots, V_n)$ acting on $\mathcal{H}^{(n)}$ such that

$$\pi(a)V_i = V_i\pi(\alpha_i(a)), \quad a \in \mathcal{A}$$

The **tensor algebra** $\mathcal{T}^+(\mathcal{A}, \alpha)$ is the universal operator algebra for these representations, so $\mathcal{T}^+(\mathcal{A}, \alpha) = \overline{\text{Alg}(\mathcal{A}, V_1, \dots, V_n)}$.

Structure and examples

Every element $a \in \mathcal{T}^+(\mathcal{A}, \alpha)$ admits a formal Fourier series description that converges in the Cesaro means

$$a = \lim_{m o \infty} \sum_{k=0}^m \sum_{w \in \mathbb{F}_n^+, |w|=k} \left(1 - rac{k}{m+1}
ight) a_w V_w, \quad a_w \in \mathcal{A}$$

where $w = w_1 \cdots w_k$ and $V_w = V_{w_1} \cdots V_{w_k}$.

The so-called constant term $E_0(a) = a_0$ is important as E_0 is an expectation of $T^+(\mathcal{A}, \alpha)$ onto \mathcal{A} .

Examples:

- $\mathcal{T}^+(\mathbb{C}, \mathsf{id}) = A(\mathbb{D})$
- + $\mathcal{T}^+(\mathbb{C},(\mathsf{id},\ldots,\mathsf{id}))=\mathcal{A}_d,$ the noncommutative disk algebra

•
$$\mathcal{T}^+(\mathcal{C}(X), \mathcal{C}_{\varphi}) = \mathcal{C}(X) \times_{\mathcal{C}_{\varphi}} \mathbb{Z}^+$$

Problem: When are two tensor algebras isomorphic topologically, isometrically or completely isometrically?

Equivalences of C*-dynamical systems:

 (\mathcal{A}, α) and (\mathcal{B}, β) are said to be **unitarily equivalent after a conjugation** if there exists a *-isomorphism $\gamma : \mathcal{A} \to \mathcal{B}$ and a unitary matrix U with entries in \mathcal{A} such that

 $\operatorname{diag}(\alpha_1(c),\ldots,\alpha_n(c))=U\operatorname{diag}(\gamma^{-1}\circ\beta_1\circ\gamma(c),\ldots,\gamma^{-1}\circ\beta_m\circ\gamma(c))U^*,$

If n = m and U is a permutation matrix this is called **conjugation** and in the case where n = m = 1 this is called **outer conjugation**.

Arveson (1967), ..., Davidson & Katsoulis (2008)

Two single variable commutative C*-dynamical systems $(C(X), \alpha)$ and $(C(Y), \beta)$ are conjugate if and only if their tensor algebras are isomorphic (topologically, isometrically or completely isometrically).

Davidson & Kakariadis (2014) studied outer conjugacy and showed that it is equivalent to isometrically isomorphic tensor algebras in the injective map case and other situations.

Davidson & Katsoulis (2011) studied the multivariable commutative case and showed that

u. equiv. after conj. \Rightarrow c.i.i tensor algebras and

top. isomorphic tensor algebras \Rightarrow piecewise conjugate dynamical systems (open cover of conjugate pieces).

Kakariadis & Katsoulis (2014) studied the general multivariable case with *-automorphisms and showed that u. equiv. after conj. if and only if isometrically isomorphic tensor algebras.

Theorem: (Katsoulis & R. (2020)

Two C*-dynamical systems are unitarily equivalent after a conjugation if and only if their tensor algebras are completely isometrically isomorphic.

Theorem: (Katsoulis & R. (2020)

Two C*-dynamical systems are unitarily equivalent after a conjugation if and only if their tensor algebras are completely isometrically isomorphic.

By universality the forward direction is straightforward: suppose (\mathcal{A}, α) and (\mathcal{B}, β) have a *-isomorphism $\gamma : \mathcal{A} \to \mathcal{B}$ and unitary U in $M_{n,m}(\mathcal{A})$ then

$$\gamma^{-1}, VU = \left(\sum_{i=1}^n V_i U_{i1}, \dots, \sum_{i=1}^n V_i U_{im}\right)$$

is an isometric representation of (\mathcal{B},β) . This induces a completely contractive homomorphism of $T^+(\mathcal{B},\beta)$ onto $\mathcal{T}^+(\mathcal{A},\alpha)$. The other direction is similar.

Simple simplifications

For the converse suppose $\mathcal{T}^+(\mathcal{A}, \alpha)$ and $\mathcal{T}^+(\mathcal{B}, \beta)$ are completely isometrically isomorphic.

Then $\mathcal{A} = \mathcal{T}^+(\mathcal{A}, \alpha) \cap \mathcal{T}^+(\mathcal{A}, \alpha)^*$ is *-isomorphic to $\mathcal{B} = \mathcal{T}^+(\mathcal{B}, \beta) \cap \mathcal{T}^+(\mathcal{B}, \beta)^*.$

Simple simplifications

For the converse suppose $\mathcal{T}^+(\mathcal{A}, \alpha)$ and $\mathcal{T}^+(\mathcal{B}, \beta)$ are completely isometrically isomorphic.

Then $\mathcal{A} = \mathcal{T}^+(\mathcal{A}, \alpha) \cap \mathcal{T}^+(\mathcal{A}, \alpha)^*$ is *-isomorphic to $\mathcal{B} = \mathcal{T}^+(\mathcal{B}, \beta) \cap \mathcal{T}^+(\mathcal{B}, \beta)^*.$

So without loss of generality we simplify the situation to

$$\mathcal{T}^+(\mathcal{A}, \alpha) = \mathcal{T}^+(\mathcal{A}, \beta)$$

or

$$\overline{\mathsf{Alg}(\mathcal{A}, V_1, \dots, V_n)} = \overline{\mathsf{Alg}(\mathcal{A}, W_1, \dots, W_m)}$$

for row isometries (V_1, \ldots, V_n) and (W_1, \ldots, W_m) satsifying

$$aV_i = V_i \alpha_i(a)$$
 and $aW_j = W_j \beta_j(a)$

Möbius transformations

Case study: suppose $A(\mathbb{D}) = \overline{\operatorname{Alg}(I,z)} = \overline{\operatorname{Alg}(I,f(z))} \subset C(\overline{\mathbb{D}}).$

There exists a Möbius transformation $\varphi_b(z) = \frac{b-z}{1-z\overline{b}}$ where b = f(0) and $u \in \mathbb{T}$ such that

$$f(z) = \varphi_b(uz)$$
 or $z = u\varphi_b(f(z))$

since $\varphi_b \circ \varphi_b = \text{id}$.

Möbius transformations

Case study: suppose $A(\mathbb{D}) = \overline{\operatorname{Alg}(I,z)} = \overline{\operatorname{Alg}(I,f(z))} \subset C(\overline{\mathbb{D}}).$

There exists a Möbius transformation $\varphi_b(z) = \frac{b-z}{1-z\overline{b}}$ where b = f(0) and $u \in \mathbb{T}$ such that

$$f(z) = \varphi_b(uz)$$
 or $z = u\varphi_b(f(z))$

since $\varphi_b \circ \varphi_b = id$.

Theorem: (Katsoulis & R. (2020))

Suppose $\mathcal{T}^+(\mathcal{A}, \alpha)$ has generating row isometry V. If $b = (b_1, \ldots, b_n)$ is a strict row contraction in \mathcal{A} such that $ab_i = b_i\alpha_i(a), a \in \mathcal{A}$ then there is a completely isometric automorphism ρ_b of the tensor algebra such that

$$\rho_b|_{\mathcal{A}} = \mathrm{id}, \quad \rho_b(V) = (I - bb^*)^{1/2}(I - Vb^*)^{-1}(b - V)(I_n - b^*b)^{-1/2},$$

$$\rho_b \circ \rho_b = id$$
, and $E_0(\rho_b(v_i)) = b_i, 1 \le i \le n$.

Thm: If
$$\overline{Alg}(\mathcal{A}, V_1, \dots, V_n) = \overline{Alg}(\mathcal{A}, W_1, \dots, W_m)$$
 then
$$b = (E_0^{\mathcal{W}}(V_1), \dots, E_0^{\mathcal{W}}(V_n))$$

is a strict row contraction in $\ensuremath{\mathcal{A}}.$ Moreover,

$$E_0^W(
ho_b(V_i)) = 0, \ 1 \le i \le n.$$

Thm: If
$$\overline{Alg}(\mathcal{A}, V_1, \dots, V_n) = \overline{Alg}(\mathcal{A}, W_1, \dots, W_m)$$
 then
$$b = (E_0^{\mathcal{W}}(V_1), \dots, E_0^{\mathcal{W}}(V_n))$$

is a strict row contraction in $\ensuremath{\mathcal{A}}$. Moreover,

$$E_0^W(
ho_b(V_i)) = 0, \ 1 \le i \le n.$$

Thm: If $\overline{Alg}(\mathcal{A}, V_1, \dots, V_n) = \overline{Alg}(\mathcal{A}, W_1, \dots, W_m)$ such that $E_0^W(V_i) = 0$ then the Fourier series expansion is

$$V_i = W_1 a_{1i} + \cdots + W_m a_{mi}.$$

Furthermore, $U = [a_{ji}]^*$ is a unitary in $M_{n,m}(\mathcal{A})$ such that $\operatorname{diag}(\alpha_1(a), \ldots, \alpha_n(a)) = U \operatorname{diag}(\beta_1(a), \ldots, \beta_m(a)) U^*$.

Conclusion: If $\overline{\text{Alg}(\mathcal{A}, V_1, \dots, V_n)} = \overline{\text{Alg}(\mathcal{A}, W_1, \dots, W_m)}$ with $b = (E_0^W(V_1), \dots, E_0^W(V_n))$ then there exists a unitary $U \in M_{n,m}(\mathcal{A})$ such that

$$W = \rho_b(V)U$$

with diag $(\alpha_1(a), \ldots, \alpha_n(a)) = U diag(\beta_1(a), \ldots, \beta_m(a)) U^*$.

Theorem: (Katsoulis & R. (2020)

Two C*-dynamical systems are unitarily equivalent after a conjugation if and only if their tensor algebras are completely isometrically isomorphic.