The isomorphism problem for tensor algebras of multivariable dynamical systems

Chris Ramsey, MacEwan University, Edmonton, Alberta Joint work with Elias Katsoulis (East Carolina University)

CMS Summer Meeting - Operator Algebras and Applications - 2021

C^{*}-dynamical systems and tensor algebras

A (multivariable) C ${ }^{*}$-dynamical system (\mathcal{A}, α) consists of a unital C^{*}-algebra \mathcal{A} and a n-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of unital $*$-endomorphisms $\alpha_{i}: \mathcal{A} \rightarrow \mathcal{A}$

A row isometric representation of (\mathcal{A}, α) consists of a non-degenerate *-representation π of \mathcal{A} on a Hilbert space \mathcal{H} and a row isometry $V=\left(V_{1}, \ldots, V_{n}\right)$ acting on $\mathcal{H}^{(n)}$ such that

$$
\pi(a) V_{i}=V_{i} \pi\left(\alpha_{i}(a)\right), \quad a \in \mathcal{A}
$$

The tensor algebra $\mathcal{T}^{+}(\mathcal{A}, \alpha)$ is the universal operator algebra for these representations, so $\mathcal{T}^{+}(\mathcal{A}, \alpha)=\overline{\operatorname{Alg}\left(\mathcal{A}, V_{1}, \ldots, V_{n}\right)}$.

Structure and examples

Every element $a \in \mathcal{T}^{+}(\mathcal{A}, \alpha)$ admits a formal Fourier series description that converges in the Cesaro means

$$
a=\lim _{m \rightarrow \infty} \sum_{k=0}^{m} \sum_{w \in \mathbb{F}_{n}^{+},|w|=k}\left(1-\frac{k}{m+1}\right) a_{w} V_{w}, \quad a_{w} \in \mathcal{A}
$$

where $w=w_{1} \cdots w_{k}$ and $V_{w}=V_{w_{1}} \cdots V_{w_{k}}$.

The so-called constant term $E_{0}(a)=a_{0}$ is important as E_{0} is an expectation of $T^{+}(\mathcal{A}, \alpha)$ onto \mathcal{A}.

Examples:

- $\mathcal{T}^{+}(\mathbb{C}, \mathrm{id})=A(\mathbb{D})$
- $\mathcal{T}^{+}(\mathbb{C},(i d, \ldots$, id $))=\mathcal{A}_{d}$, the noncommutative disk algebra
- $\mathcal{T}^{+}\left(C(X), C_{\varphi}\right)=C(X) \times C_{\varphi} \mathbb{Z}^{+}$

Isomorphism problem

Problem: When are two tensor algebras isomorphic topologically, isometrically or completely isometrically?

Equivalences of C^{*}-dynamical systems:
(\mathcal{A}, α) and (\mathcal{B}, β) are said to be unitarily equivalent after a conjugation if there exists a $*$-isomorphism $\gamma: \mathcal{A} \rightarrow \mathcal{B}$ and a unitary matrix U with entries in \mathcal{A} such that
$\operatorname{diag}\left(\alpha_{1}(c), \ldots, \alpha_{n}(c)\right)=U \operatorname{diag}\left(\gamma^{-1} \circ \beta_{1} \circ \gamma(c), \ldots, \gamma^{-1} \circ \beta_{m} \circ \gamma(c)\right) U^{*}$,
If $n=m$ and U is a permutation matrix this is called conjugation and in the case where $n=m=1$ this is called outer conjugation.

History: Single variable systems

Arveson (1967), ..., Davidson \& Katsoulis (2008)
Two single variable commutative C^{*}-dynamical systems $(C(X), \alpha)$ and $(C(Y), \beta)$ are conjugate if and only if their tensor algebras are isomorphic (topologically, isometrically or completely isometrically).

Davidson \& Kakariadis (2014) studied outer conjugacy and showed that it is equivalent to isometrically isomorphic tensor algebras in the injective map case and other situations.

History: Multivariable systems

Davidson \& Katsoulis (2011) studied the multivariable commutative case and showed that
u. equiv. after conj. \Rightarrow c.i.i tensor algebras
and
top. isomorphic tensor algebras \Rightarrow piecewise conjugate dynamical systems (open cover of conjugate pieces).

Kakariadis \& Katsoulis (2014) studied the general multivariable case with $*$-automorphisms and showed that u. equiv. after conj. if and only if isometrically isomorphic tensor algebras.

Main result

Theorem: (Katsoulis \& R. (2020)
Two C*-dynamical systems are unitarily equivalent after a conjugation if and only if their tensor algebras are completely isometrically isomorphic.

Main result

Theorem: (Katsoulis \& R. (2020)
Two C^{*}-dynamical systems are unitarily equivalent after a conjugation if and only if their tensor algebras are completely isometrically isomorphic.

By universality the forward direction is straightforward: suppose (\mathcal{A}, α) and (\mathcal{B}, β) have a $*$-isomorphism $\gamma: \mathcal{A} \rightarrow \mathcal{B}$ and unitary U in $M_{n, m}(\mathcal{A})$ then

$$
\gamma^{-1}, V U=\left(\sum_{i=1}^{n} V_{i} U_{i 1}, \ldots, \sum_{i=1}^{n} V_{i} U_{i m}\right)
$$

is an isometric representation of (\mathcal{B}, β). This induces a completely contractive homomorphism of $T^{+}(\mathcal{B}, \beta)$ onto $\mathcal{T}^{+}(\mathcal{A}, \alpha)$. The other direction is similar.

Simple simplifications

For the converse suppose $\mathcal{T}^{+}(\mathcal{A}, \alpha)$ and $\mathcal{T}^{+}(\mathcal{B}, \beta)$ are completely isometrically isomorphic.

Then $\mathcal{A}=\mathcal{T}^{+}(\mathcal{A}, \alpha) \cap \mathcal{T}^{+}(\mathcal{A}, \alpha)^{*}$ is *-isomorphic to $\mathcal{B}=\mathcal{T}^{+}(\mathcal{B}, \beta) \cap \mathcal{T}^{+}(\mathcal{B}, \beta)^{*}$.

Simple simplifications

For the converse suppose $\mathcal{T}^{+}(\mathcal{A}, \alpha)$ and $\mathcal{T}^{+}(\mathcal{B}, \beta)$ are completely isometrically isomorphic.

Then $\mathcal{A}=\mathcal{T}^{+}(\mathcal{A}, \alpha) \cap \mathcal{T}^{+}(\mathcal{A}, \alpha)^{*}$ is *-isomorphic to $\mathcal{B}=\mathcal{T}^{+}(\mathcal{B}, \beta) \cap \mathcal{T}^{+}(\mathcal{B}, \beta)^{*}$.

So without loss of generality we simplify the situation to

$$
\mathcal{T}^{+}(\mathcal{A}, \alpha)=\mathcal{T}^{+}(\mathcal{A}, \beta)
$$

or

$$
\overline{\operatorname{Alg}\left(\mathcal{A}, V_{1}, \ldots, V_{n}\right)}=\overline{\operatorname{Alg}\left(\mathcal{A}, W_{1}, \ldots, W_{m}\right)}
$$

for row isometries $\left(V_{1}, \ldots, V_{n}\right)$ and $\left(W_{1}, \ldots, W_{m}\right)$ satsifying

$$
a V_{i}=V_{i} \alpha_{i}(a) \quad \text { and } \quad a W_{j}=W_{j} \beta_{j}(a)
$$

Möbius transformations

Case study: suppose $A(\mathbb{D})=\overline{\operatorname{Alg}(I, z)}=\overline{\mathrm{Alg}(I, f(z))} \subset C(\overline{\mathbb{D}})$.
There exists a Möbius transformation $\varphi_{b}(z)=\frac{b-z}{1-z \bar{b}}$ where $b=f(0)$ and $u \in \mathbb{T}$ such that

$$
f(z)=\varphi_{b}(u z) \quad \text { or } \quad z=u \varphi_{b}(f(z))
$$

since $\varphi_{b} \circ \varphi_{b}=$ id.

Möbius transformations

Case study: suppose $A(\mathbb{D})=\overline{\operatorname{Alg}(I, z)}=\overline{\operatorname{Alg}(I, f(z))} \subset C(\overline{\mathbb{D}})$.
There exists a Möbius transformation $\varphi_{b}(z)=\frac{b-z}{1-z \bar{b}}$ where $b=f(0)$ and $u \in \mathbb{T}$ such that

$$
f(z)=\varphi_{b}(u z) \quad \text { or } \quad z=u \varphi_{b}(f(z))
$$

since $\varphi_{b} \circ \varphi_{b}=$ id.

Theorem: (Katsoulis \& R. (2020))
Suppose $\mathcal{T}^{+}(\mathcal{A}, \alpha)$ has generating row isometry V. If $b=\left(b_{1}, \ldots, b_{n}\right)$ is a strict row contraction in \mathcal{A} such that $a b_{i}=b_{i} \alpha_{i}(a), a \in \mathcal{A}$ then there is a completely isometric automorphism ρ_{b} of the tensor algebra such that

$$
\begin{aligned}
& \left.\rho_{b}\right|_{\mathcal{A}}=\mathrm{id}, \quad \rho_{b}(V)=\left(I-b b^{*}\right)^{1 / 2}\left(I-V b^{*}\right)^{-1}(b-V)\left(I_{n}-b^{*} b\right)^{-1 / 2}, \\
& \rho_{b} \circ \rho_{b}=i d, \text { and } E_{0}\left(\rho_{b}\left(v_{i}\right)\right)=b_{i}, 1 \leq i \leq n .
\end{aligned}
$$

Unitarily equivalent

Thm: If $\overline{\operatorname{Alg}\left(\mathcal{A}, V_{1}, \ldots, V_{n}\right)}=\overline{\operatorname{Alg}\left(\mathcal{A}, W_{1}, \ldots, W_{m}\right)}$ then

$$
b=\left(E_{0}^{W}\left(V_{1}\right), \ldots, E_{0}^{W}\left(V_{n}\right)\right)
$$

is a strict row contraction in \mathcal{A}. Moreover,

$$
E_{0}^{W}\left(\rho_{b}\left(V_{i}\right)\right)=0,1 \leq i \leq n .
$$

Unitarily equivalent

Thm: If $\overline{\operatorname{Alg}\left(\mathcal{A}, V_{1}, \ldots, V_{n}\right)}=\overline{\operatorname{Alg}\left(\mathcal{A}, W_{1}, \ldots, W_{m}\right)}$ then

$$
b=\left(E_{0}^{W}\left(V_{1}\right), \ldots, E_{0}^{W}\left(V_{n}\right)\right)
$$

is a strict row contraction in \mathcal{A}. Moreover,

$$
E_{0}^{W}\left(\rho_{b}\left(V_{i}\right)\right)=0,1 \leq i \leq n .
$$

Thm: If $\overline{\operatorname{Alg}\left(\mathcal{A}, V_{1}, \ldots, V_{n}\right)}=\overline{\operatorname{Alg}\left(\mathcal{A}, W_{1}, \ldots, W_{m}\right)}$ such that $E_{0}^{W}\left(V_{i}\right)=0$ then the Fourier series expansion is

$$
V_{i}=W_{1} a_{1 i}+\cdots+W_{m} a_{m i}
$$

Furthermore, $U=\left[a_{j i}\right]^{*}$ is a unitary in $M_{n, m}(\mathcal{A})$ such that $\operatorname{diag}\left(\alpha_{1}(a), \ldots, \alpha_{n}(a)\right)=U \operatorname{diag}\left(\beta_{1}(a), \ldots, \beta_{m}(a)\right) U^{*}$.

Conclusion: If $\overline{\operatorname{Alg}\left(\mathcal{A}, V_{1}, \ldots, V_{n}\right)}=\overline{\operatorname{Alg}\left(\mathcal{A}, W_{1}, \ldots, W_{m}\right)}$ with $b=\left(E_{0}^{W}\left(V_{1}\right), \ldots, E_{0}^{W}\left(V_{n}\right)\right)$ then there exists a unitary $U \in M_{n, m}(\mathcal{A})$ such that

$$
W=\rho_{b}(V) U
$$

with $\operatorname{diag}\left(\alpha_{1}(a), \ldots, \alpha_{n}(a)\right)=U \operatorname{diag}\left(\beta_{1}(a), \ldots, \beta_{m}(a)\right) U^{*}$.

Theorem: (Katsoulis \& R. (2020)
Two C^{*}-dynamical systems are unitarily equivalent after a conjugation if and only if their tensor algebras are completely isometrically isomorphic.

