C*-algebras coming from a commuting k-tuple of local homeomorphisms acting on a compact metric space

Judith Packer (U. Colorado, Boulder) with C. Farsi (U. Colorado, Boulder), L. Huang (U. Nevada, Reno), and A. Kumjian (U. Nevada, Reno)

> CMS Summer Meeting, June 2021 Session on Operator Algebras and Applications Monday, June 7, 2021

> > ▲口▶ ▲圖▶ ▲理▶ ▲理▶ 三里……

Outline of Talk:

- 1. Constructing the groupoid from *k* commuting local homeomorphisms
- 2. The Cocycle Condition on $[C(X, \mathbb{R})]^k$ and continuous 1-cocycles on the groupoid
- 3. Commuting Ruelle operators, their duals, and solving the positive eigenvalue condition
- 4. KMS states coming from the Radon-Nikodym problem and 1-cocycle-driven dynamics

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

.

Commuting local homeomorphisms on compact metric space

Set-up: Let X be a compact metric space, and let $\{\sigma_i\}_{i=1}^k$ be a k-tuple of commuting surjective local homeomorphisms on X. This gives rise to an action of the semigroup \mathbb{N}^k on X by endomorphisms:

$$\sigma^{\mathsf{n}}(x) = \sigma_1^{n_1} \sigma_2^{n_2} \dots \sigma_k^{n_k}(x), \text{ for } \mathsf{n} = (n_1, n_2, \dots, n_k) \in \mathbb{N}^k, x \in X.$$

The transformation groupoid $\mathcal{G}(X, \sigma)$, sometimes called the "semi-direct product" groupoid associated to the action of \mathbb{N}^k on X, is defined by

$$\mathcal{G}(X,\sigma) = \{((x,\mathsf{m}-\mathsf{n},y)\in X imes \mathbb{Z}^k imes X: \ \sigma^\mathsf{m}(x) = \sigma^\mathsf{n}(y)\},$$

where the unit space of $\mathcal{G}(X, \sigma)$ is identified with X via $x \to (x, 0, x)$, and then r((x, n, y)) = x and s((x, n, y)) = y are the range and source maps, respectively.

The associated groupoid $\mathcal{G}(X, \sigma)$ and its C^* -algebra

Recall $\mathcal{G}(X, \sigma)$ has as a basis for its topology sets of the form $U \times \{m - n\} \times V$, where U and V are open in X and $\sigma^{m}(U) = \sigma^{n}(V)$. Then $\mathcal{G}(X, \sigma)$ is an étale locally compact Hausdorff amenable groupoid, generalizing "Renault-Deaconu" groupoids ([D], [ER], [KR]).

Following the method of J. Renault ([R]) and denoting by $\mathcal{G}(X,\sigma)^{(2)}$ the set of composable pairs, there is a convolution structure on $C_{\mathcal{C}}(\mathcal{G}(X,\sigma))$ as well as an adjoint operation. The groupoid C^* -algebra $C^*(\mathcal{G}(X,\sigma))$ is then constructed by completing $C_{\mathcal{C}}(\mathcal{G}(X,\sigma))$ in the appropriate norm.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ヨ のへで

The associated groupoid $\mathcal{G}(X, \sigma)$ and its *C**-algebra

Recall $\mathcal{G}(X, \sigma)$ has as a basis for its topology sets of the form $U \times \{m - n\} \times V$, where U and V are open in X and $\sigma^{m}(U) = \sigma^{n}(V)$. Then $\mathcal{G}(X, \sigma)$ is an étale locally compact Hausdorff amenable groupoid, generalizing "Renault-Deaconu" groupoids ([D], [ER], [KR]).

Following the method of J. Renault ([R]) and denoting by $\mathcal{G}(X,\sigma)^{(2)}$ the set of composable pairs, there is a convolution structure on $C_C(\mathcal{G}(X,\sigma))$ as well as an adjoint operation. The groupoid C^* -algebra $C^*(\mathcal{G}(X,\sigma))$ is then constructed by completing $C_C(\mathcal{G}(X,\sigma))$ in the appropriate norm.

The groupoid $\mathcal{G}(X, \sigma)$ is amenable, so that there is a dense embedding of $C_{\mathcal{C}}(\mathcal{G}(X, \sigma))$ into

 $C^*_r(\mathcal{G}(X,\sigma)) \cong C^*(\mathcal{G}(X,\sigma)).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Cocycle Condition

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ヨ のへで

Definition 1: Let (X, σ) denote the compact metric space X together with a k-tuple of commuting surjective local homeomorphisms $\{\sigma_i\}_{i=1}^k$ acting on X. Let $\{\varphi_i\}_{i=1}^k \subset C(X, \mathbb{R})$.

The Cocycle Condition

Definition 1: Let (X, σ) denote the compact metric space X together with a k-tuple of commuting surjective local homeomorphisms $\{\sigma_i\}_{i=1}^k$ acting on X. Let $\{\varphi_i\}_{i=1}^k \subset C(X, \mathbb{R})$.

We say that the triple (X, σ, φ) satisfies the Cocycle Condition if:

$$\varphi_i + \varphi_j \circ \sigma_i = \varphi_j + \varphi_i \circ \sigma_j, \ 1 \leq i, j \leq k.$$

Example 1: If the $\{\varphi_i = r_i\}_{i=1}^k$ are all real constant functions, the cocycle condition is trivially satisfied.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

Theorem on 1-cocycles on $\mathcal{G}(X, \sigma)$ taking on values in \mathbb{R}

Theorem 1 ([FHKP]): Let (X, σ, φ) denote a triple consisting of the compact metric space X, a k-tuple $\{\sigma_i\}_{i=1}^k$ of commuting local homeomorphisms on X, and a k-tuple of continuous real-valued functions $\{\varphi_i\}_{i=1}^k$ on X such that (X, σ, φ) satisfies the Cocycle Condition. Then defining $c_{\varphi} : \mathbb{N}^k \to C(X, \mathbb{R})$ by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem on 1-cocycles on $\mathcal{G}(X, \sigma)$ taking on values in \mathbb{R}

Theorem 1 ([FHKP]): Let (X, σ, φ) denote a triple consisting of the compact metric space X, a k-tuple $\{\sigma_i\}_{i=1}^k$ of commuting local homeomorphisms on X, and a k-tuple of continuous real-valued functions $\{\varphi_i\}_{i=1}^k$ on X such that (X, σ, φ) satisfies the Cocycle Condition. Then defining $c_{\varphi} : \mathbb{N}^k \to C(X, \mathbb{R})$ by

$$c_{\varphi}(\mathsf{n}) = \sum_{i=0}^{n_1-1} \varphi_1 \circ \sigma_1^i + \sum_{i=0}^{n_2-1} \varphi_2 \circ \sigma_1^{n_1} \circ \sigma_2^i + \ldots + \sum_{i=0}^{n_k-1} \varphi_k \circ \sigma_1^{n_1} \circ \ldots \circ \sigma_{k-1}^{n_{k-1}} \circ \sigma_k^i,$$

 c_{φ} is a 1-cocycle for the action of \mathbb{N}^k on $C(X, \mathbb{R})$ viewed as a \mathbb{N}^k -module. Moreover c_{φ} gives rise to a continuous groupoid 1-cocycle $c_{X,\sigma,\phi}$ on $\mathcal{G}(X,\sigma)$ taking on values in \mathbb{R} defined by

 $c_{X,\sigma,\phi}(x, \mathbf{m} - \mathbf{n}, y) = c_{\varphi}(\mathbf{m})(x) - c_{\varphi}(\mathbf{n})(y).$

This map: $Z^1(\mathbb{N}^k, C(X, \mathbb{R})) \to \mathcal{Z}^1_{conts}(\mathcal{G}(X, \sigma), \mathbb{R})$ is a bijection.

Ruelle operator \mathcal{L} associated to a Ruelle dynamical multi-system

Definition 2: ([E], [ER], [W]) Let X be a compact metric space, let $T: X \to X$ be a surjective local homeomorphism, and let $\psi: X \to \mathbb{R}$ be a continuous real-valued function. The Ruelle operator $\mathcal{L}_{(X,T,\psi)}$ is defined on $C(X,\mathbb{R})$ by

$$\mathcal{L}_{(X,T,\psi)}(f)(x) = \sum_{y\in T^{-1}(x)} e^{\psi(y)}f(y).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ruelle operator \mathcal{L} associated to a Ruelle dynamical multi-system

Definition 2: ([E], [ER], [W]) Let X be a compact metric space, let $T: X \to X$ be a surjective local homeomorphism, and let $\psi: X \to \mathbb{R}$ be a continuous real-valued function. The Ruelle operator $\mathcal{L}_{(X,T,\psi)}$ is defined on $C(X,\mathbb{R})$ by

$$\mathcal{L}_{(X,T,\psi)}(f)(x) = \sum_{y \in T^{-1}(x)} e^{\psi(y)} f(y).$$

Lemma 1: (Generalization of [ER, Prop 2.2]) Let X be a compact metric space, let $\{\sigma_i\}_{i=1}^k$ be a commuting family of local homeomorphism defined on X, and let $\{\varphi_i\}_{i=1}^k \subset C(X, \mathbb{R})$ be a k-tuple of continuous functions on X that satisfy the cocycle condition for the $\{\sigma_i\}_{i=1}^k$, let $c_{\varphi} : \mathbb{N}^k \to C(X, \mathbb{R})$ be the associated 1-cocycle. Then the map from \mathbb{N}^k to End $(C(X, \mathbb{R}))$ given by

$$\mathsf{n} o \mathcal{L}_{(X,\sigma^{\mathsf{n}},c_{\varphi}(\mathsf{n}))}$$

is a semigroup homomorphism.

The Ruelle dual operator \mathcal{L}^* acting on M(X)

Suppose (X, T, ψ) represents a compact metric space X, a surjective local homeomorphism $T: X \to X$ and $\psi \in C(X, \mathbb{R})$. Recall that the Ruelle operator $\mathcal{L}_{(X,T,\psi)}$ is an endomorphism of $C(X, \mathbb{R})$ to itself. Thus the dual of the Ruelle operator $\mathcal{L}^*_{(X,T,\psi)}$ maps $C(X, \mathbb{R})^*$ to $C(X, \mathbb{R})^*$. Since $C(X, \mathbb{R})^*$ can be viewed as finite signed Borel measures on X, $\mathcal{L}^*_{(X,T,\psi)}$ maps signed Borel measures on X to signed Borel measures on X as follows:

▲口▶ ▲圖▶ ▲理▶ ▲理▶ 三里……

The Ruelle dual operator \mathcal{L}^* acting on M(X)

Suppose (X, T, ψ) represents a compact metric space X, a surjective local homeomorphism $T : X \to X$ and $\psi \in C(X, \mathbb{R})$. Recall that the Ruelle operator $\mathcal{L}_{(X,T,\psi)}$ is an endomorphism of $C(X, \mathbb{R})$ to itself. Thus the dual of the Ruelle operator $\mathcal{L}^*_{(X,T,\psi)}$ maps $C(X, \mathbb{R})^*$ to $C(X, \mathbb{R})^*$. Since $C(X, \mathbb{R})^*$ can be viewed as finite signed Borel measures on X, $\mathcal{L}^*_{(X,T,\psi)}$ maps signed Borel measures on X to signed Borel measures on X as follows:

 $\int_X f(x) d(\mathcal{L}^*_{(X,T,\psi)}(\mu))(x) = \int_X \mathcal{L}_{(X,T,\psi)}(f)(x) d\mu(x), \ f \in C(X,\mathbb{R}).$

Moreover by construction, $\mathcal{L}^*_{(X,T,\psi)}$ maps positive finite Borel measures on X to positive finite Borel measures on X.

Conditions for solving the positive eigenvalue problem for \mathcal{L}^*

Definition 3: Let (X, T, ψ) be as in the previous slide. Then (X, T, ψ) is said to admit a unique solution to the positive eigenvalue problem if there is a unique positive number $\lambda > 0$ and a unique probability measure μ on X such that

$$\mathcal{L}^*_{(X,T,\psi)}(\mu) = \lambda \mu,$$

i.e.

$$\int_X \mathcal{L}_{(X,T,\psi)}(f)(x)d\mu(x) = \lambda \int_X f(x)d\mu(x), \ \forall f \in C(X,\mathbb{R}).$$

Remark: It is a result of P. Walters [W] that if X has a compatible metric such that T is positively expansive, T is exact, and ψ is Hölder continuous, then (X, T, ψ) satisfies the unique positive eigenvalue condition.

The positive eigenvalue property for commuting Ruelle families

Definition 4: Let (X, σ, φ) be a triple corresponding to a k-tuple of commuting surjective local homeomorphisms $\{\sigma_i\}_{i=1}^k$ and functions $\{\varphi_i\}_{i=1}^k \subset C(X, \mathbb{R})$ and suppose that (X, σ, φ) satisfies the Cocycle Condition. Then (X, σ, φ) is said to admit a unique solution for the positive eigenvalue problem if there is a unique k-tuple of positive numbers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ and a unique probability measure μ on X such that

$$\mathcal{L}^*_{(X,\sigma_i, arphi_i)}(\mu) \;=\; \lambda_i \mu, \; 1 \leq i \leq k.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The positive eigenvalue property for commuting Ruelle families

Definition 4: Let (X, σ, φ) be a triple corresponding to a k-tuple of commuting surjective local homeomorphisms $\{\sigma_i\}_{i=1}^k$ and functions $\{\varphi_i\}_{i=1}^k \subset C(X, \mathbb{R})$ and suppose that (X, σ, φ) satisfies the Cocycle Condition. Then (X, σ, φ) is said to admit a unique solution for the positive eigenvalue problem if there is a unique k-tuple of positive numbers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ and a unique probability measure μ on X such that

$$\mathcal{L}^*_{(X,\sigma_i,\varphi_i)}(\mu) = \lambda_i \mu, \ 1 \leq i \leq k.$$

Theorem 2 (FHKP) A triple (X, σ, φ) satisfying the Cocycle Condition admits a unique solution to the positive eigenvalues problem if there exists some $n \in \mathbb{N}^k \setminus \{0\}$ such that $(X, \sigma^n, c_{\varphi}(n))$ satisfies the unique positive eigenvalue condition of Definition 3. Here $c_{\varphi} : \mathbb{N}^k \to C(X, \mathbb{R})$ is the one-cocycle associated to (X, σ, φ) by Theorem 1.

Consequences of Theorems 1 and 2

Theorems 1 and 2 taken together show that given a Ruelle triple (X, σ, φ) , in order for it to admit a unique solution for the positive eigenvalue problem, it is enough to have $n \in \mathbb{N}^k \setminus \{0\}$ such that σ^n is positively expanding and exact, and such that $c_{\varphi}(n)$ is Hölder continuous all with respect to a compatible metric d.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ヨ のへで

Consequences of Theorems 1 and 2

Theorems 1 and 2 taken together show that given a Ruelle triple (X, σ, φ) , in order for it to admit a unique solution for the positive eigenvalue problem, it is enough to have $n \in \mathbb{N}^k \setminus \{0\}$ such that σ^n is positively expanding and exact, and such that $c_{\varphi}(n)$ is Hölder continuous all with respect to a compatible metric d.

Example 2: Let $X = \mathbb{T}^2$ be the 2-torus. Fix a positive integer $d \ge 2$. Define the following two commuting local homeomorphisms of \mathbb{T}^2 :

 $\sigma_1(z_1, z_2) = (z_1^d, z_2^d), \quad \sigma_2(z_1, z_2) = (z_1 z_2^{-1}, z_1 z_2), z_1, z_2 \in \mathbb{T}.$ These local homeomorphisms are both expanding and exact. It follows that choosing $r_1, r_2 \in \mathbb{R}$ and setting $\varphi_1 = r_1, \varphi_2 = r_2$, the triple (X, σ, φ) has a unique solution to the positive eigenvalue problem.

KMS states on $C^*(\mathcal{G}(X, \sigma))$ coming from 1-cocycles

Let α be an action of \mathbb{R} on a C^* -algebra A. It extends to an analytic action of \mathbb{C} on a dense *-subalgebra \mathcal{A} of A. Then we can associate KMS states to (A, α) . The elements of \mathcal{A} are called the entire elements associated to α , and a state ω is called a KMS state at inverse temperature $\beta \in \mathbb{R}$ if

$\omega(a\alpha_{i\beta}(b)) = \omega(ba), \forall a, b \in \mathcal{A}.$

In the case where we are given any continuous 1-cocycle ρ on $\mathcal{G}(X, \sigma)$ taking values in \mathbb{R} , by [R] we can define $\alpha_{\rho} : \mathbb{R} \to \operatorname{Aut}(C^*(\mathcal{G}(X, \sigma)))$ by

$$lpha_
ho(t)(f)(x,\mathsf{k},y) \;=\; e^{it
ho(x,\mathsf{k},y)}f(x,\mathsf{k},y),\; f\;\in\mathcal{G}(X,\sigma), t\in\mathbb{R},$$

a formula valid for $f \in C_C(\mathcal{G}(X, \sigma))$ that extends to elements of $C^*(\mathcal{G}(X, \sigma))$. Moreover the elements of $C_C(\mathcal{G}(X, \sigma))$ are entire elements for α_{ρ} .

The Radon-Nikodym problem for $\mathcal{G}(X, \sigma)$, 1-cocycles, and KMS states

Let (X, σ) be as before, and let μ be a Borel probability measure defined on the compact metric space X. Define the pull-back measures $s^*\mu$ and $r^*\mu$ on $\mathcal{G}(X,\sigma)$. Suppose that μ is *quasi-invariant* for $\mathcal{G}(X, \sigma)$, so that the measures $s^*\mu$ and $r^*\mu$ are equivalent to one another. The Radon-Nikodym derivative for μ is the measurable real-valued function $D = \frac{\delta r^* \mu}{\delta r^* \mu}$ defined on $\mathcal{G}(X, \sigma)$, which is a multiplicative 1-cocycle with values in \mathbb{R}^+ . Let ρ be a 1-cocycle for $\mathcal{G}(X, \sigma)$ with values in \mathbb{R} , and let $\beta \in \mathbb{R}$. We say that the measure μ on X satisfies the (ρ, β) -KMS condition if it is quasi-invariant for $\mathcal{G}(X, \sigma)$, and if its corresponding Radon-Nikodym derivative $D = e^{-\beta \rho}$.

Question: does there exist a *k*-tuple $\{\varphi_i\}_{i=1}^k \subset C(X, \mathbb{R})$ satisfying the Cocycle Condition and a probability measure on X and $\beta \in \mathbb{R}$ such that μ satisfies the $(c_{(X,\sigma,\varphi)},\beta)$ -KMS condition?

Main Theorem

Theorem 3: (FHKP) Let (X, σ, φ) be a triple admitting a unique solution for the positive eigenvalue problem for the dual of the Ruelle operators $\{\mathcal{L}^*_{(X,\sigma_i,\omega_i)}\}_{i=1}^k$, so that there exists unique $\alpha = (\alpha_1, \ldots, \alpha_k) \in (\mathbb{R}^+)^k$ and and a unique Borel probability measure μ with $\mathcal{L}^*_{(X,\sigma;\omega)}(\mu) = \alpha_i \mu, \ 1 \leq i \leq k$. Suppose $\alpha_i = 1, 1 \leq i \leq k$. Then $\mu := \mu^{(X,\sigma,\varphi)}$ is a quasi-invariant measure for $\mathcal{G}(X, \sigma)$, with Radon-Nikodym derivative $e^{-c_{(X,\sigma,\varphi)}}$, so that $\mu^{(X,\sigma,\varphi)}$ gives rise to a *KMS*₁ state for the gauge dynamics $\alpha_t^{(X,\sigma,\varphi)}(f) = e^{itc_{(X,\sigma,\varphi)}}f, f \in C_C(\mathcal{G}(X,\sigma)),$ with corresponding *KMS*-state ω given by

$$\omega(f) = \int_X f(x,0,x) d\mu_{(X,\sigma,\varphi)}, \ f \in C_C(\mathcal{G}(X,\sigma)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

Corollary of main theorem

Corollary 1: (FHKP) Let (X, σ, φ) be triple admitting a unique solution for the positive eigenvalue problem for the Ruelle dual operators $\{\mathcal{L}^*_{(X,\sigma_i,\varphi_i)}\}_{i=1}^k$, so that there exists a unique k-tuple $\alpha = (\alpha_1, \ldots, \alpha_k) \in (\mathbb{R}^+)^k$ and and a unique Borel probability measure $\mu := \mu^{(X,\sigma,\phi)}$ such that $\mathcal{L}^*_{(X,\sigma_i,\varphi_i)}(\mu) = \alpha_i\mu$, $1 \le i \le k$. Fix $\beta \in \mathbb{R} \setminus \{0\}$. Then setting

$$\varsigma_i(x) = \frac{\ln(\alpha_i) - \varphi_i(x)}{\beta}, \ 1 \le i \le k, \text{ and } \varsigma = (\varsigma_1, \varsigma_2, \dots, \varsigma_k),$$

 $\mu = \mu^{(X,\sigma,\varphi)}$ is a eigenmeasure for the Ruelle operators $\{\mathcal{L}^*_{(X,\sigma_i,\beta_{\varsigma_i})}\}_{i=1}^k$ with constant eigenvalue 1, so that μ corresponds to a KMS_β -state for the generalized gauge dynamics on $C^*(\mathcal{G}(X,\sigma))$ obtained from (X,σ,ς) .

Another example

Example 3: We compute Ruelle eigenvalues and eigenmeasures for the 2-Ruelle dynamical system (X, σ, φ) , with $X = \prod_{j \in \mathbb{N}} \{0, 1\}$, and $\sigma = \{\sigma_j\}_{j=1,2}$ defined by, for $x = \{x_n\}_{n \in \mathbb{N}}$

$$\sigma_1(x) := (x_{n+1})_{n \in \mathbb{N}}, \quad \sigma_2(x) := (x_n + 1)_{n \in \mathbb{N}}.$$

Here addition is done modulo 2 component–wise. For $a, b, c \in \mathbb{R}$ define $\varphi = \{\varphi_j\}_{j=1,2}$ by the following equation, where again addition is considered mod 2.

$$\varphi_1(x) = \begin{cases} a & \text{if } x_0 + x_1 = 0 \\ b & \text{if } x_0 + x_1 = 1 \end{cases}, \quad \varphi_2(x) = c.$$

Example 3, continued

One computes that φ_i satisfy the cocycle condition and that the eigenvalues α_1, α_2 of the associated Ruelle operators are given by $\alpha_1 = e^a + e^b$, and $\alpha_2 = e^c$, and as for the eigenmeasure, $\mu(Z[0]) = \mu(Z[1]) = \frac{1}{2}$.

Using induction, one can show that for $n \ge 1$:

$$\mu(Z[x_0x_1...x_n]) = \frac{1}{2}\prod_{j=0}^{n-1} \left[e^{\psi(x_j+x_{j+1})}/(e^a+e^b)\right],$$

where $\psi : \{0,1\} \rightarrow \{a,b\}$ is defined by $\psi(0) = a$, and $\psi(1) = b$.

As in Corollary 1, we can modify the $\{\varphi_i\}_{i=1}^2$ to obtain a pair of functions $\{\varsigma_i\}_{i=1}^2$ such that μ corresponds to a KMS_β -state for the generalized gauge dynamics on $\mathcal{G}(X, \sigma)$ associated to the $\{\beta\varsigma_i\}_{i=1}^2$.

JAC.

References:

- J. Christensen, "Symmetries of the KMS simplex", Comm. Math. Phys., 364 (2018), 357–383; [C].
- V. Deaconu, "Groupoids associated with endomorphisms", Trans. Amer. Math. Soc., 347 (1995), 1779–1786; [D].
- R. Exel, "KMS states for generalized gauge actions on Cuntz-Krieger algebras", Bull. Braz. Math. Soc. (N.S.) 35 (2004), 1–12; [E]
- R. Exel and J. Renault, "Semigroups of local homeomorphisms and interaction groups", Ergodic Theory Dynam. Systems 21 (2007), 1737–1771; [ER].
- C. Farsi, E. Gillaspy, N. Larsen and J. Packer, "Generalized gauge zctions on k-graph C*-Algebras", Indiana U. Math. J., 70 (2021), 669–709; [FGLP].
- ► C. Farsi, L. Huang, A. Kumjian and J. Packer, "Cocycles on groupoids associated to N^k actions", arXiv:2010.03036v2 [FHKP].

References, continued:

- A. Kumjian and J. Renault, "KMS States on C*-Algebras associated to expansive maps", Proc. Amer. Math. Soc. 134 (2006), 2067–2078; [KR].
- S. Neshveyev, "KMS States on the C*-algebras of non-principal groupoids", J. Operator Theory, 70 (2013), 513–530; [N].
- ► J. Renault, "A Groupoid Approach to C*-algebras", Lecture Notes in Mathematics, 793, Springer, Berlin (1980); [Re1].
- J. Renault, "The Radon-Nikodym problem for approximately proper equivalence relations", Ergod. Th. Dynam. Sys., 25 (2005), 1643–1672; [Re2].
- D. Ruelle, "A measure associated with Axiom A attractors", Amer. J. Math., (1976) 98, 619–654; [Ru].
- P. Walters, "Convergence of the Ruelle Operator for a function satisfying Bowen's condition", Trans. Amer. Math. Soc., 353 (2001), 327–347; [W].