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Outline of Talk:

1. Constructing the groupoid from k commuting local
homeomorphisms

2. The Cocycle Condition on [C (X ,R)]k and continuous
1-cocycles on the groupoid

3. Commuting Ruelle operators, their duals, and solving
the positive eigenvalue condition

4. KMS states coming from the Radon-Nikodym problem
and 1-cocycle-driven dynamics

.



Commuting local homeomorphisms on compact metric space

Set-up: Let X be a compact metric space, and let {σi}ki=1 be a
k-tuple of commuting surjective local homeomorphisms on X . This
gives rise to an action of the semigroup Nk on X by
endomorphisms:

σn(x) = σn1
1 σ

n2
2 . . . σnkk (x), for n = (n1, n2, . . . , nk) ∈ Nk , x ∈ X .

The transformation groupoid G(X , σ), sometimes called the
“semi-direct product" groupoid associated to the action of Nk on
X , is defined by

G(X , σ) = {((x ,m− n, y) ∈ X × Zk × X : σm(x) = σn(y)},

where the unit space of G(X , σ) is identified with X via
x → (x , 0, x), and then r((x , n, y)) = x and s((x , n, y)) = y are the
range and source maps, respectively.



The associated groupoid G(X , σ) and its C ∗-algebra

Recall G(X , σ) has as a basis for its topology sets of the form
U × {m− n} × V , where U and V are open in X and
σm(U) = σn(V ). Then G(X , σ) is an étale locally compact
Hausdorff amenable groupoid, generalizing “Renault-Deaconu"
groupoids ([D], [ER], [KR]).

Following the method of J. Renault ([R]) and denoting by
G(X , σ)(2) the set of composable pairs, there is a convolution
structure on CC (G(X , σ)) as well as an adjoint operation. The
groupoid C ∗-algebra C ∗(G(X , σ)) is then constructed by
completing CC (G(X , σ)) in the appropriate norm.

The groupoid G(X , σ) is amenable, so that there is a dense
embedding of CC (G(X , σ)) into

C ∗r (G(X , σ)) ∼= C ∗(G(X , σ)).
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The Cocycle Condition

Definition 1: Let (X , σ) denote the compact metric space X
together with a k-tuple of commuting surjective local
homeomorphisms {σi}ki=1 acting on X . Let {ϕi}ki=1 ⊂ C (X ,R).

We say that the triple (X , σ, ϕ) satisfies the Cocycle Condition if:

ϕi + ϕj ◦ σi = ϕj + ϕi ◦ σj , 1 ≤ i , j ≤ k.

Example 1: If the {ϕi = ri}ki=1 are all real constant functions, the
cocycle condition is trivially satisfied.
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Theorem on 1-cocycles on G(X , σ) taking on values in R

Theorem 1 ([FHKP]): Let (X , σ, ϕ) denote a triple consisting of the
compact metric space X , a k-tuple {σi}ki=1 of commuting local
homeomorphisms on X , and a k-tuple of continuous real–valued
functions {ϕi}ki=1 on X such that (X , σ, ϕ) satisfies the Cocycle
Condition. Then defining cϕ : Nk → C (X ,R) by

cϕ(n) =
n1−1∑
i=0

ϕ1◦σi1+
n2−1∑
i=0

ϕ2◦σn1
1 ◦σ

i
2+. . .+

nk−1∑
i=0

ϕk◦σn1
1 ◦. . .◦σ

nk−1
k−1 ◦σ

i
k ,

cϕ is a 1-cocycle for the action of Nk on C (X ,R) viewed as a
Nk -module. Moreover cϕ gives rise to a continuous groupoid
1-cocycle cX ,σ,φ on G(X , σ) taking on values in R defined by

cX ,σ,φ(x ,m− n, y) = cϕ(m)(x)− cϕ(n)(y).

This map: Z 1(Nk ,C (X ,R))→ Z1
conts(G(X , σ),R) is a bijection.
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Ruelle operator L associated to a Ruelle dynamical multi-system

Definition 2: ([E], [ER], [W]) Let X be a compact metric space, let
T : X → X be a surjective local homeomorphism, and let
ψ : X → R be a continuous real-valued function. The Ruelle
operator L(X ,T ,ψ) is defined on C (X ,R) by

L(X ,T ,ψ)(f )(x) =
∑

y∈T−1(x)

eψ(y)f (y).

Lemma 1: (Generalization of [ER, Prop 2.2]) Let X be a compact
metric space, let {σi}ki=1 be a commuting family of local
homeomorphism defined on X , and let {ϕi}ki=1 ⊂ C (X ,R) be a
k-tuple of continuous functions on X that satisfy the cocycle
condition for the {σi}ki=1, let cϕ : Nk → C (X ,R) be the associated
1-cocycle. Then the map from Nk to End(C (X ,R)) given by

n→ L(X ,σn,cϕ(n))

is a semigroup homomorphism.
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The Ruelle dual operator L∗ acting on M(X )

Suppose (X ,T , ψ) represents a compact metric space X , a
surjective local homeomorphism T : X → X and ψ ∈ C (X ,R).
Recall that the Ruelle operator L(X ,T ,ψ) is an endomorphism of
C (X ,R) to itself. Thus the dual of the Ruelle operator L∗(X ,T ,ψ)
maps C (X ,R)∗ to C (X ,R)∗. Since C (X ,R)∗ can be viewed as
finite signed Borel measures on X , L∗(X ,T ,ψ) maps signed Borel
measures on X to signed Borel measures on X as follows:

∫
X

f (x) d(L∗(X ,T ,ψ)(µ))(x) =
∫
X
L(X ,T ,ψ)(f )(x)dµ(x), f ∈ C (X ,R).

Moreover by construction, L∗(X ,T ,ψ) maps positive finite Borel
measures on X to positive finite Borel measures on X .
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Conditions for solving the positive eigenvalue problem for L∗

Definition 3: Let (X ,T , ψ) be as in the previous slide. Then
(X ,T , ψ) is said to admit a unique solution to the positive
eigenvalue problem if there is a unique positive number λ > 0 and a
unique probability measure µ on X such that

L∗(X ,T ,ψ)(µ) = λµ,

i.e.∫
X
L(X ,T ,ψ)(f )(x)dµ(x) = λ

∫
X
f (x)dµ(x), ∀f ∈ C (X ,R).

Remark: It is a result of P. Walters [W] that if X has a compatible
metric such that T is positively expansive, T is exact, and ψ is
Hölder continuous, then (X ,T , ψ) satisfies the unique positive
eigenvalue condition.



The positive eigenvalue property for commuting Ruelle families

Definition 4: Let (X , σ, ϕ) be a triple corresponding to a k-tuple of
commuting surjective local homeomorphisms {σi}ki=1 and functions
{ϕi}ki=1 ⊂ C (X ,R) and suppose that (X , σ, ϕ) satisfies the
Cocycle Condition. Then (X , σ, ϕ) is said to admit a unique
solution for the positive eigenvalue problem if there is a unique
k-tuple of positive numbers λ = (λ1, λ2, . . . , λk) and a unique
probability measure µ on X such that

L∗(X ,σi ,ϕi )
(µ) = λiµ, 1 ≤ i ≤ k .

Theorem 2 (FHKP) A triple (X , σ, ϕ) satisfying the Cocycle
Condition admits a unique solution to the positive eigenvalues
problem if there exists some n ∈ Nk\{0} such that (X , σn, cϕ(n))
satisfies the unique positive eigenvalue condition of Definition 3.
Here cϕ : Nk → C (X ,R) is the one-cocycle associated to (X , σ, ϕ)
by Theorem 1.
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Consequences of Theorems 1 and 2

Theorems 1 and 2 taken together show that given a Ruelle triple
(X , σ, ϕ), in order for it to admit a unique solution for the positive
eigenvalue problem, it is enough to have n ∈ Nk\{0} such that σn

is positively expanding and exact, and such that cϕ(n) is Hölder
continuous all with respect to a compatible metric d .

Example 2: Let X = T2 be the 2-torus. Fix a positive integer
d ≥ 2. Define the following two commuting local homeomorphisms
of T2 :
σ1(z1, z2) = (zd1 , z

d
2 ), σ2(z1, z2) = (z1z

−1
2 , z1z2), z1, z2 ∈ T.

These local homeomorphisms are both expanding and exact. It
follows that choosing r1, r2 ∈ R and setting ϕ1 = r1, ϕ2 = r2, the
triple (X , σ, ϕ) has a unique solution to the positive eigenvalue
problem.
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KMS states on C ∗(G(X , σ)) coming from 1-cocycles

Let α be an action of R on a C ∗-algebra A. It extends to an
analytic action of C on a dense ∗-subalgebra A of A. Then we can
associate KMS states to (A, α). The elements of A are called the
entire elements associated to α, and a state ω is called a KMS
state at inverse temperature β ∈ R if

ω(aαiβ(b)) = ω(ba), ∀a, b ∈ A.

In the case where we are given any continuous 1-cocycle ρ on
G(X , σ) taking values in R, by [R] we can define
αρ : R→ Aut(C ∗(G(X , σ))) by

αρ(t)(f )(x , k, y) = e itρ(x ,k,y)f (x , k, y), f ∈ G(X , σ), t ∈ R,

a formula valid for f ∈ CC (G(X , σ)) that extends to elements of
C ∗(G(X , σ)). Moreover the elements of CC (G(X , σ)) are entire
elements for αρ.



The Radon-Nikodym problem for G(X , σ), 1-cocycles, and KMS states

Let (X , σ) be as before, and let µ be a Borel probability measure
defined on the compact metric space X . Define the pull–back
measures s∗µ and r∗µ on G(X , σ). Suppose that µ is
quasi-invariant for G(X , σ), so that the measures s∗µ and r∗µ are
equivalent to one another. The Radon-Nikodym derivative for µ is

the measurable real-valued function D =
δr∗µ

δs∗µ
defined on G(X , σ),

which is a multiplicative 1-cocycle with values in R+. Let ρ be a
1-cocycle for G(X , σ) with values in R, and let β ∈ R. We say that
the measure µ on X satisfies the (ρ, β)-KMS condition if it is
quasi-invariant for G(X , σ), and if its corresponding
Radon-Nikodym derivative D = e−βρ.

Question: does there exist a k-tuple {ϕi}ki=1 ⊂ C (X ,R) satisfying
the Cocycle Condition and a probability measure on X and β ∈ R
such that µ satisfies the (c(X ,σ,ϕ), β)-KMS condition?



Main Theorem

Theorem 3: (FHKP) Let (X , σ, ϕ) be a triple admitting a unique
solution for the positive eigenvalue problem for the dual of the
Ruelle operators {L∗(X ,σi ,ϕi )

}ki=1, so that there exists unique
α = (α1, . . . , αk) ∈ (R+)k and and a unique Borel probability
measure µ with L∗(X ,σi ,ϕi )

(µ) = αiµ, 1 ≤ i ≤ k. Suppose

αi = 1, 1 ≤ i ≤ k . Then µ := µ(X ,σ,ϕ) is a quasi-invariant measure
for G(X , σ), with Radon-Nikodym derivative e−c(X ,σ,ϕ) , so that
µ(X ,σ,ϕ) gives rise to a KMS1 state for the gauge dynamics
α
(X ,σ,ϕ)
t (f ) = e itc(X ,σ,ϕ)f , f ∈ CC (G(X , σ)), with corresponding

KMS-state ω given by

ω(f ) =

∫
X
f (x , 0, x)dµ(X ,σ,ϕ), f ∈ CC (G(X , σ)).



Corollary of main theorem

Corollary 1: (FHKP) Let (X , σ, ϕ) be triple admitting a unique
solution for the positive eigenvalue problem for the Ruelle dual
operators {L∗(X ,σi ,ϕi )

}ki=1, so that there exists a unique k-tuple
α = (α1, . . . , αk) ∈ (R+)k and and a unique Borel probability
measure µ := µ(X ,σ,φ) such that L∗(X ,σi ,ϕi )

(µ) = αiµ, 1 ≤ i ≤ k .

Fix β ∈ R\{0}. Then setting

ςi (x) =
ln (αi )− ϕi (x)

β
, 1 ≤ i ≤ k , and ς = (ς1, ς2, . . . , ςk),

µ = µ(X ,σ,ϕ) is a eigenmeasure for the Ruelle operators
{L∗(X ,σi ,βςi )}

k
i=1 with constant eigenvalue 1, so that µ corresponds

to a KMSβ-state for the generalized gauge dynamics on
C ∗(G(X , σ)) obtained from (X , σ, ς).



Another example

Example 3: We compute Ruelle eigenvalues and eigenmeasures for
the 2-Ruelle dynamical system (X , σ, ϕ), with X =

∏
j∈N{0, 1},

and σ = {σj}j=1,2 defined by, for x = {xn}n∈N

σ1(x) := (xn+1)n∈N, σ2(x) := (xn + 1)n∈N.

Here addition is done modulo 2 component–wise. For a, b, c ∈ R
define ϕ = {ϕj}j=1,2 by the following equation, where again
addition is considered mod 2.

ϕ1(x) =

{
a if x0 + x1 = 0
b if x0 + x1 = 1

, ϕ2(x) = c .



Example 3, continued

One computes that ϕi satisfy the cocycle condition and that the
eigenvalues α1, α2 of the associated Ruelle operators are given by
α1 = ea + eb, and α2 = ec , and as for the eigenmeasure,
µ(Z [0]) = µ(Z [1]) = 1

2 .

Using induction, one can show that for n ≥ 1 :

µ(Z [x0x1 . . . xn]) =
1
2

n−1∏
j=0

[
eψ(xj+xj+1)/(ea + eb)

]
,

where ψ : {0, 1} → {a, b} is defined by ψ(0) = a, and ψ(1) = b.

As in Corollary 1, we can modify the {ϕi}2i=1 to obtain a pair of
functions {ςi}2i=1 such that µ corresponds to a KMSβ-state for the
generalized gauge dynamics on G(X , σ) associated to the {βςi}2i=1.
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