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Background and Motivation

Theorem (Sz. Nagy 1953)

For a contraction T ∈ B(H) (that is TT ∗ ≤ I), there exists an isometry
V ∈ B(K) on K ⊃ H such that Tn = PHV

n|H for all n ≥ 1.

Theorem (Brehmer 1961)

For commuting contractions T1, · · · , Tn ∈ B(H), if for each
F ⊂ {1, · · · , n}, we have ∑

U⊂F
(−1)|U |TUT

∗
U ≥ 0.

Then Ti can be dilated to commuting isometries Vi.

Note: Vi can be chosen to be doubly commuting (that is,
Nica-covariant).

Boyu Li (University of Victoria) Dilation on LCM systems June 8th, 2021 2 / 15



Background and Motivation

Theorem (Frazho-Bunce-Popescu 1980’s)

For non-commuting contractions T1, · · ·Tn, if
∑n

i=1 TiT
∗
i ≤ I, then Ti

dilate to isometries Vi with orthogonal ranges.

Moreover, if
∑n

i=1 TiT
∗
i = I, the minimal dilations Vi also satisfy∑n

i=1 ViV
∗
i = I.

Theorem (L. 2019)

Let P be a right LCM semigroup. Then a contractive representation
T : P → B(H) has an isometric Nica-covariant dilation if and only if
for any F ⊂ P , ∑

U⊂F
(−1)|U |TUT

∗
U ≥ 0.
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Right LCM Semigroup Dynamical Systems

Recall a semigroup P is called right LCM if for any p, q ∈ P ,

pP ∩ qP =

{
rP, if pP ∩ qP 6= ∅;
∅, otherwise.

An isometric representation V of P is called Nica-covariant if for any
p, q ∈ P ,

VpV
∗
p VqV

∗
q =

{
VrV

∗
r , if pP ∩ qP = rP ;

0, otherwise.

The universal C*-algebra for isometric Nica-covariant representations is
called the semigroup C*-algebra of P .
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Right LCM Semigroup Dynamical Systems

A semigroup dynamical system is a triple (A, P, α) where A is a unital
C*-algebra, P is a semigroup, and α is a P -action on A by injective
∗-endomorphisms. One may notice that α only encodes the
multiplicative structure on P but not the right LCM structure.

Definition

Let P be a right LCM semigroup. A semigroup dynamical system
(A, P, α) is called a right LCM semigroup dynamical system if each
αp(A) is an ideal in A and for any p, q ∈ P ,

αp(1)αq(1) =

{
αr(1), if pP ∩ qP = rP ;

0, if pP ∩ qP = ∅.
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Right LCM Semigroup Dynamical Systems

Example

The semigroup C*-algebra for a right LCM semigroup P has a natural
right LCM semigroup dynamical system. Let DP = span{VpV ∗p }. Let
αp(x) = VpxV

∗
p . Then (DP , P, α) is a right LCM semigroup dynamical

system.

By the Nica-covariance condition, DP = C(ΩP ) is a commutative
C*-algebra. If K ⊂ ΩP is a compact subset such that K and Kc are
invariant under α, then we get a right LCM semigroup dynamical
system (C(K), α, P ).

One such K gives the boundary quotient (C(∂ΩP ), P, α). The boundary
quotient is generated by isometric representations V such that for all
foundation set F ⊂ P ,

∏
i∈F (I − ViV ∗i ) = 0.
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Right LCM Semigroup Dynamical Systems

Fix a right LCM semigroup dynamical system (A, P, α)

Definition

An isometric covariant representation is a pair (π, V ) where:

1 π is a unital ∗-homomorphism of A;

2 V is an isometric representation of P ;

3 For all p ∈ P and a ∈ A, Vpπ(a)V ∗p = π(αp(a)).

Note: from the right LCM condition, V is Nica-covariant.
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Right LCM Semigroup Dynamical Systems

Definition

A contractive covariant representation is a pair (φ, T ) where:

1 φ is a ∗-preserving linear map on A;

2 T is a contractive representation of P ;

3 For all p ∈ P and a ∈ A, Tpφ(a)T ∗p = φ(αp(a)).

Question: when does a contractive covariant representation (φ, T )
dilate to an isometric covariant representation (π, V )?
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Right LCM Semigroup Dynamical Systems

Example

On (DP , P, α), a contractive representation T of P also defines a
∗-preserving linear map φ on DP by φ(VpV

∗
p ) = TpT

∗
p . The pair (φ, T )

defines a contractive covariant representation.

The pair (φ, T ) dilates to an isometric covariant pair if and only if for
any F ⊂ P ,

φ

(∏
i∈F

(I − ViV ∗i )

)
=
∑
U⊂F

(−1)|U |TUT
∗
U ≥ 0.
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Main Result

Theorem (Laca-L.)

A contractive covariant representation (φ, T ) dilates to an isometric
covariant representation (π, V ) if and only if φ is unital completely
positive. Moreover, the dilation (π, V ) can be chosen to be minimal and
this minimal dilation is unique.
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Examples and Applications

We first obtain a dilation result for the boundary quotient.

Theorem

Suppose T is a contractive representation of a right LCM semigroup P
such that for any F ⊂ P ,∑

U⊂F
(−1)|U |TUT

∗
U ≥ 0,

and for any foundation set F ,∑
U⊂F

(−1)|U |TUT
∗
U = 0.

Then T can be dilated to an isometric representation V of the boundary
quotient.
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Examples and Applications

Corollary

If contractions T1, · · · , Tn satisfy
∑n

i=1 TiT
∗
i = I, then they can be

dilated to isometries V1, · · · , Vn that
∑n

i=1 ViV
∗
i = I.

Corollary

If T1, · · · , Tn are commuting co-isometries, then they dilate to
commuting unitaries.
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Examples and Applications

Let (A, P, β) be an automorphic semigroup dynamical system. We can
build a right LCM semigroup dynamical system (DP ⊗A, P, α̃) by

α̃p(f ⊗ a) = αp(f)⊗ βp(a).

A ∗-preserving linear map φ on A and a contractive representation T
of P can define a contractive covariant representation (φ̃, T ) by

φ̃(VpV
∗
p ⊗ a) = T (p)φ(β−1p (a))T (p)∗.

Proposition

The map φ̃ is unital completely positive if and only if for each finite
F ⊂ P , the map φF (a) :=

∑
U⊂F (−1)|U |T (sU )φ(β−1sU

(a))T (sU )∗ is
completely positive.
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Examples and Applications

Let A be a C*-algebra. Consider the direct limit Ã = C(X)⊗A.

A

A

A

A

A

A

A

· · ·

We have a right LCM semigroup dynamical systems (Ã,F+
2 , α) where

αe1(a) = a⊕ 0 and αe2(a) = 0⊕ a.

Proposition

If φ : A → B(H) is unital completely positive and if there exist
contractions T1, · · · , Tn such that φ(a) =

∑n
i=1 Tiφ(a)T ∗i . Then we can

dilate φ to a unital ∗-representation π of A and Ti to isometries Vi
with orthogonal ranges, such that π(a) =

∑n
i=1 Viπ(a)V ∗i
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Thank you
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