Phase Transition in Dirac Ensembles

Masoud Khalkhali

University of Western Ontario

Joint works with S. Azarfar, N. Pagliarolli, H. Hessam

Metric from Dirac operators

- Connes' distance formula: Let (M, g) be a spin Riemannian manifold with Dirac operator D Then

$$
d(p, q)=\operatorname{Sup}\{|f(p)-f(q)| ;\|[D, f]\| \leq 1\} .
$$

Compare with the classical dual formula

$$
d(p, q)=\operatorname{lnf} \int_{p}^{q}\left(g_{\mu \nu} d x^{\mu} d x^{\nu}\right)^{1 / 2}
$$

Metric from Dirac operators

- Connes' distance formula: Let (M, g) be a spin Riemannian manifold with Dirac operator D Then

$$
d(p, q)=\operatorname{Sup}\{|f(p)-f(q)| ;\|[D, f]\| \leq 1\} .
$$

Compare with the classical dual formula

$$
d(p, q)=\operatorname{lnf} \int_{p}^{q}\left(g_{\mu \nu} d x^{\mu} d x^{\nu}\right)^{1 / 2}
$$

- Connes' notion of noncommutative Riemannian manifold, or spectral manifolds (A, \mathcal{H}, D).

Discrete Dirac operators of Barrett-Glaser

- A discrete Dirac operator: $D: M_{N}(\mathbb{C}) \rightarrow M_{N}(\mathbb{C})$

$$
D(X)=\{H, X\}, \quad H \in \mathcal{H}_{N}
$$

Discrete Dirac operators of Barrett-Glaser

- A discrete Dirac operator: $D: M_{N}(\mathbb{C}) \rightarrow M_{N}(\mathbb{C})$

$$
D(X)=\{H, X\}, \quad H \in \mathcal{H}_{N}
$$

- Barrett-Glaser (toy model for quantum gravity): replace integration over metrics to integration over Dirac operators:

$$
Z=\int_{\text {metrics }} e^{-S(g)} D(g) \Rightarrow \int_{\text {Diracs }} e^{-\mathcal{S}(D)} d D
$$

Discrete Dirac operators of Barrett-Glaser

- A discrete Dirac operator: $D: M_{N}(\mathbb{C}) \rightarrow M_{N}(\mathbb{C})$

$$
D(X)=\{H, X\}, \quad H \in \mathcal{H}_{N}
$$

- Barrett-Glaser (toy model for quantum gravity): replace integration over metrics to integration over Dirac operators:

$$
Z=\int_{\text {metrics }} e^{-S(g)} D(g) \Rightarrow \int_{\text {Diracs }} e^{-\mathcal{S}(D)} d D
$$

- Consider a quartic action

$$
S(D)=g \operatorname{Tr}\left(D^{2}\right)+\operatorname{Tr}\left(D^{4}\right)
$$

Multitrace and multimatrix unitary invariant ensembles

- Computation shows:

$$
S(D)=2 N\left(g \operatorname{Tr} H^{2}+\operatorname{Tr} H^{4}\right)+2 g(\operatorname{Tr} H)^{2}+8 \operatorname{Tr} H \operatorname{Tr} H^{3}+6\left(\operatorname{Tr} H^{2}\right)^{2}
$$

Barrett-Glaser studied these models via MCMC. What about their analytic treatment? This was my starting point.

Multitrace and multimatrix unitary invariant ensembles

- Computation shows:
$S(D)=2 N\left(g \operatorname{Tr} H^{2}+\operatorname{Tr} H^{4}\right)+2 g(\operatorname{Tr} H)^{2}+8 \operatorname{Tr} H \operatorname{Tr} H^{3}+6\left(\operatorname{Tr} H^{2}\right)^{2}$
Barrett-Glaser studied these models via MCMC. What about their analytic treatment? This was my starting point.
- A unitary invariant function $F(H)$ on \mathcal{H}_{N} is of the form

$$
F(H)=P\left(\operatorname{Tr}(H), \operatorname{Tr}\left(H^{2}\right), \ldots \operatorname{Tr}\left(H^{N}\right)\right)
$$

for a polynomial P in N-variables.

- Our models are all multitrace and mostly multimatrix, but unfortunately most results in RMT are for functions $F(H)=\operatorname{Tr}(V(H))$.

Genus expansion, summing over discrete surfaces/fat graphs ('t Hooft)

- Fix a polynomial $V(x)=\sum \frac{t_{k}}{k} x^{k}$. Consider the matrix integral

$$
Z_{N}=\int_{\mathcal{H}_{N}} e^{-N \operatorname{Tr}(V(H))} d H
$$

- Topological expansion of $F_{N}=\log Z_{N}$

$$
F_{N}=\sum_{g \geq 0}(N)^{2-2 g} F_{g}, \quad F_{g}=\sum_{[\mathcal{M}] \in \mathbb{M}_{b}^{g}} \text { weight }(\mathcal{M})
$$

where $\mathbb{M}_{\emptyset}^{\mathscr{\emptyset}}=$ set of isomorphism classes of the Feynman weighted connected closed maps.

Figure: A polygonalization of a genus 2 surface

Genus expansion leads to a quick proof of the Wigner law, links with geometry of moduli spaces of curves, topological recursion (Eynard-Orantin), 2d gravity, recursion formula for volumes of moduli spaces of Riemann surfaces (Mirzakhani recursion).

Eynard-Orantin topological recursion (Tutte recursion)

Figure: Source: Wikipedia, by B. Eynard

- $\omega_{g, n}$ is a meromorphic symmetric n-form on Σ, recursion is on $-\xi(\Sigma)=2 g-2+n$.
- Example: Mirzakhani recursion for Weil-Petersson volumes of moduli spaces, $\omega_{0,1}=\frac{4}{\pi} z \sin (\pi z) d z$ and $\omega_{0,2}\left(z_{1}, z_{2}\right)=\frac{d z_{1} d z_{2}}{\left(z_{1}-z_{2}\right)^{2}}$

Resolvent technique

- Green function (Stieljes transform)

$$
G(z)=\frac{1}{N}\left\langle\operatorname{Tr} \frac{1}{z-H}\right\rangle=\int \rho_{N}(\lambda) \frac{d \lambda}{z-\lambda}
$$

Is a holomorphic function on $\mathbb{C} \backslash \operatorname{supp}\left(\rho_{N}\right)$.

- Can recover the eigenvalue probability density $\rho(x)$ from $G(x)$:

$$
-2 \pi i \rho_{N}(x)=\lim _{\varepsilon \rightarrow 0^{+}}[G(x+i \varepsilon)-G(x-i \varepsilon)]
$$

- For single trace models with potential $V(x)$, It satisfies a differential equation

$$
G^{2}(x)-V^{\prime}(x) G(x)+\frac{1}{N} G^{\prime}(x)+P(x)=0 .
$$

- Can drop N for large N limit

$$
G(x)=\frac{1}{2}\left(V^{\prime}(x)-\sqrt{V^{\prime}(x)^{2}-4 P(x)}\right)
$$

(Since $G(x) \sim \frac{1}{x}$ for large x, negative sign is chosen).

- For $V(x)=\frac{1}{2} x^{2}$ this gives the semicircle law. For small enough variations support of $\rho(x)$ is an interval, but in genral will be a union of intervals (multi cut regime).

The saddle point equation

- Our models are unitary invariant but not single trace, so a slightly different approach is needed.

$$
\begin{gathered}
Z=\int_{\mathcal{H}_{N}} e^{F(H)} d H \\
Z=C_{N} \int_{\mathbb{R}^{N}} e^{-N \sum_{i=1}^{N} V\left(\lambda_{i}\right)-\sum_{i, j=1}^{N} U\left(\lambda_{i}, \lambda_{j}\right)} \prod_{1 \leq i<j \leq N}\left(\lambda_{i}-\lambda_{j}\right)^{2} d \lambda_{1} \ldots \lambda_{N} \\
V(s)=2 g s^{2}+2 s^{4} \\
U(s, t)=2 g s t+8 s t^{3}+6 s^{2} t^{2}
\end{gathered}
$$

Euler-Lagrange equations

- The measure $\mu=\rho(x) d x$ is referred to as the equilibrium measure and it is the Borel probability measure that minimizes the energy functional $I(\mu)=$

$$
\int V(s) d \mu(s)+\iint U(s, t) d \mu(s) d \mu(t)-\iint \log |s-t| d \mu(s) d \mu(t)
$$

Euler-Lagrange equations

- The measure $\mu=\rho(x) d x$ is referred to as the equilibrium measure and it is the Borel probability measure that minimizes the energy functional $I(\mu)=$

$$
\int V(s) d \mu(s)+\iint U(s, t) d \mu(s) d \mu(t)-\iint \log |s-t| d \mu(s) d \mu(t)
$$

- Euler-Lagrange equations (fully justified by results of Percy Deift) shows:

$$
\text { P.V. } \int_{\text {supp } \rho} \frac{\rho(s)}{s-x} d s=2 g x+4 x^{3}+g m_{1}+4 m_{3}+6 m_{2} x .
$$

Figure: The equilibrium measure from the single cut analysis.

A precise critical value is found by setting $\rho(x)=0$ at $x=0$:

$$
g_{c}=-\frac{5 \sqrt{2}}{2} \approx-3.5,
$$

Figure: The equilibrium measure from the double cut analysis, $g<g_{c}$

References

- (M.K. and N. Pagliarolli) arXiv:2006.02891: Phase transitions in random noncommutative geometries.
- (S. Azarfar and M.K.): arXiv:1906.09362: Random finite noncommutative geometries and topological recursion.
- (M.K. and N. Pagliarolli): Spectral statistics of Dirac emsembles.
- (H. Hessam, M.K. and N. Pagliarolli): Bootstrapping random noncommutative geometries.

