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Metric from Dirac operators

I Connes’ distance formula: Let (M, g) be a spin Riemannian
manifold with Dirac operator D Then

d(p, q) = Sup{|f (p)− f (q)|; ||[D, f ]|| ≤ 1}.

Compare with the classical dual formula

d(p, q) = Inf

∫ q

p

(gµν dxµdxν)1/2

I Connes’ notion of noncommutative Riemannian manifold, or spectral
manifolds (A,H,D).



Metric from Dirac operators

I Connes’ distance formula: Let (M, g) be a spin Riemannian
manifold with Dirac operator D Then

d(p, q) = Sup{|f (p)− f (q)|; ||[D, f ]|| ≤ 1}.

Compare with the classical dual formula

d(p, q) = Inf

∫ q

p

(gµν dxµdxν)1/2

I Connes’ notion of noncommutative Riemannian manifold, or spectral
manifolds (A,H,D).



Discrete Dirac operators of Barrett-Glaser

I A discrete Dirac operator: D : MN(C)→ MN(C)

D(X ) = {H,X} , H ∈ HN

I Barrett-Glaser (toy model for quantum gravity): replace integration
over metrics to integration over Dirac operators:

Z =

∫
metrics

e−S(g)D(g)⇒
∫
Diracs

e−S(D)dD

I Consider a quartic action

S(D) = gTr(D2) + Tr(D
4

)



Discrete Dirac operators of Barrett-Glaser

I A discrete Dirac operator: D : MN(C)→ MN(C)

D(X ) = {H,X} , H ∈ HN

I Barrett-Glaser (toy model for quantum gravity): replace integration
over metrics to integration over Dirac operators:

Z =

∫
metrics

e−S(g)D(g)⇒
∫
Diracs

e−S(D)dD

I Consider a quartic action

S(D) = gTr(D2) + Tr(D
4

)



Discrete Dirac operators of Barrett-Glaser

I A discrete Dirac operator: D : MN(C)→ MN(C)

D(X ) = {H,X} , H ∈ HN

I Barrett-Glaser (toy model for quantum gravity): replace integration
over metrics to integration over Dirac operators:

Z =

∫
metrics

e−S(g)D(g)⇒
∫
Diracs

e−S(D)dD

I Consider a quartic action

S(D) = gTr(D2) + Tr(D
4

)



Multitrace and multimatrix unitary invariant ensembles

I Computation shows:

S(D) = 2N(g TrH2 + TrH4) + 2g(TrH)2 + 8 TrH TrH3 + 6(TrH2)2

Barrett-Glaser studied these models via MCMC. What about their
analytic treatment? This was my starting point.

I A unitary invariant function F (H) on HN is of the form

F (H) = P(Tr(H),Tr(H2), . . .Tr(HN))

for a polynomial P in N-variables.

I Our models are all multitrace and mostly multimatrix, but
unfortunately most results in RMT are for functions
F (H) = Tr(V (H)).
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Genus expansion, summing over discrete surfaces/fat
graphs (’t Hooft)

I Fix a polynomial V (x) =
∑ tk

k x
k . Consider the matrix integral

ZN =

∫
HN

e−NTr(V (H))dH,

I Topological expansion of FN = logZN

FN =
∑
g≥0

(N)2−2gFg , Fg =
∑

[M]∈Mg
∅

weight(M)

where Mg
∅ = set of isomorphism classes of the Feynman weighted

connected closed maps.



Figure: A polygonalization of a genus 2 surface

Genus expansion leads to a quick proof of the Wigner law, links with
geometry of moduli spaces of curves, topological recursion
(Eynard-Orantin), 2d gravity, recursion formula for volumes of moduli
spaces of Riemann surfaces (Mirzakhani recursion).



Eynard-Orantin topological recursion (Tutte recursion)

Figure: Source: Wikipedia, by B. Eynard

I ωg ,n is a meromorphic symmetric n-form on Σ, recursion is on
−ξ(Σ) = 2g − 2 + n.

I Example: Mirzakhani recursion for Weil-Petersson volumes of moduli
spaces, ω0,1 = 4

π z sin(πz)dz and ω0,2(z1, z2) = dz1dz2
(z1−z2)2



Resolvent technique

I Green function (Stieljes transform)

G (z) =
1

N
〈Tr

1

z − H
〉 =

∫
ρN(λ)

dλ

z − λ

Is a holomorphic function on C \ supp(ρN).

I Can recover the eigenvalue probability density ρ(x) from G (x):

−2πiρN(x) = lim
ε→0+

[G (x + iε)− G (x − iε)]



I For single trace models with potential V (x), It satisfies a differential
equation

G 2(x)− V ′(x)G (x) +
1

N
G ′(x) + P(x) = 0.

I Can drop N for large N limit

G (x) =
1

2
(V ′(x)−

√
V ′(x)2 − 4P(x))

(Since G (x) ∼ 1
x for large x , negative sign is chosen).

I For V (x) = 1
2x

2 this gives the semicircle law. For small enough
variations support of ρ(x) is an interval, but in genral will be a union
of intervals (multi cut regime).



The saddle point equation

I Our models are unitary invariant but not single trace, so a slightly
different approach is needed.

Z =

∫
HN

eF (H)dH,

Z = CN

∫
RN

e−N
∑N

i=1 V (λi )−
∑N

i,j=1 U(λi ,λj )
∏

1≤i<j≤N

(λi − λj)2dλ1...λN ,

V (s) = 2gs2 + 2s4,

U(s, t) = 2gst + 8st3 + 6s2t2,



Euler-Lagrange equations

I The measure µ = ρ(x)dx is referred to as the equilibrium measure
and it is the Borel probability measure that minimizes the energy
functional I (µ) =∫

V (s)dµ(s)+

∫ ∫
U(s, t)dµ(s)dµ(t)−

∫ ∫
log|s−t|dµ(s)dµ(t).

I Euler-Lagrange equations (fully justified by results of Percy Deift)
shows:

P.V.

∫
suppρ

ρ(s)

s − x
ds = 2gx + 4x3 + gm1 + 4m3 + 6m2x .
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Figure: The equilibrium measure from the single cut analysis.

A precise critical value is found by setting ρ(x) = 0 at x = 0 :

gc = −5
√

2

2
≈ −3.5,



Figure: The equilibrium measure from the double cut analysis, g < gc
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