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Metric from Dirac operators

» Connes’ distance formula: Let (M, g) be a spin Riemannian
manifold with Dirac operator D Then

d(p, q) = Sup{[f(p) — f(a)l: [I[D, f]|| <1}.

Compare with the classical dual formula

q
d(p,q) = Inf/ (v dx*dx”)1/?
p
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» Connes' notion of noncommutative Riemannian manifold, or spectral
manifolds (A, H, D).
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» Consider a quartic action

S(D) = gTr(D?) + Tr(D")



Multitrace and multimatrix unitary invariant ensembles

» Computation shows:
S(D) = 2N(g Tr H? +Tr H*) +-2g(Tr H)?>+8 Tr H Tr H*> +6(Tr H?)?

Barrett-Glaser studied these models via MCMC. What about their
analytic treatment? This was my starting point.
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Barrett-Glaser studied these models via MCMC. What about their
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> A unitary invariant function F(H) on Hy is of the form
F(H) = P(Tr(H), Tr(H?),... Tr(HV))
for a polynomial P in N-variables.
» Our models are all multitrace and mostly multimatrix, but

unfortunately most results in RMT are for functions
F(H) = Tr(V(H)).



Genus expansion, summing over discrete surfaces/fat
graphs ('t Hooft)

» Fix a polynomial V(x) =Y %x*. Consider the matrix integral

ZN:/ e~ NTHV(H) gy
Hy

» Topological expansion of Fy = log Zy

Fy = Z (N)2—2g,:g’ Fg = Z weight(M)

g0 (MleMf

where Mg = set of isomorphism classes of the Feynman weighted
connected closed maps.



Figure: A polygonalization of a genus 2 surface

Genus expansion leads to a quick proof of the Wigner law, links with
geometry of moduli spaces of curves, topological recursion
(Eynard-Orantin), 2d gravity, recursion formula for volumes of moduli
spaces of Riemann surfaces (Mirzakhani recursion).



Eynard-Orantin topological recursion (Tutte recursion)
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Figure: Source: Wikipedia, by B. Eynard

> Wg n iS @ meromorphic symmetric n-form on X, recursion is on
—&(X)=2g-2+n.

» Example: Mirzakhani recursion for Weil-Petersson volumes of moduli
spaces, wo1 = =zsin(rz)dz and wo »(z1, 22) = %



Resolvent technique

» Green function (Stieljes transform)

1 1 d\
6(2) = (T =) = [ w52
Is a holomorphic function on C \ supp(pn).

» Can recover the eigenvalue probability density p(x) from G(x):

—2mipn(x) = EIi)na+ [G(x + ie) — G(x — i€)]



For single trace models with potential V/(x), It satisfies a differential
equation

Gz(x) - V'(x)G(x) + %G’(x) + P(x)=0.

Can drop N for large N limit
1
G(x) = 5(V'(x) = VV'(x)? = 4P(x))
(Since G(x) ~ 1 for large x, negative sign is chosen).
For V(x) = %X2 this gives the semicircle law. For small enough

variations support of p(x) is an interval, but in genral will be a union
of intervals (multi cut regime).



The saddle point equation

» Our models are unitary invariant but not single trace, so a slightly
different approach is needed.

Z= / eFMdH,
Hy

Z = CN/ e~ NI VD=1 UN) IT =X\ dAa .
RN 1<i<j<N

V(s) = 2gs* + 2s*,
U(s, t) = 2gst + 8st> + 652t



Euler-Lagrange equations

» The measure pu = p(x)dx is referred to as the equilibrium measure
and it is the Borel probability measure that minimizes the energy
functional /(u) =

Jvsiauts)+ [ [ vt 0dus)dute)- [ [ 1ogls—eldu(s)dn(e)



Euler-Lagrange equations

» The measure pu = p(x)dx is referred to as the equilibrium measure
and it is the Borel probability measure that minimizes the energy
functional /(u) =

Jvsiauts)+ [ [ vt 0dus)dute)- [ [ 1ogls—eldu(s)dn(e)

» Euler-Lagrange equations (fully justified by results of Percy Deift)
shows:

P.V./ Mds =2gx + 4x3 + gmi + 4ms + 6mox.
suppp S — X
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Figure: The equilibrium measure from the single cut analysis.

A precise critical value is found by setting p(x) =0at x =0

5v?2
g = —% ~ —3.5,



0.51
041
031

¥(A)

0:2

0.1

= T

-1.5 =T —(I).S 0 0.5 1 1.5
A

et —e5— g6 —¢7]

Figure: The equilibrium measure from the double cut analysis, g < gc
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