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Proximality and strong proximality
Let G be a discrete group. A G -flow is a compact Hausdorff G -space X
with an action G y X .

Definition

1. A G -flow X is proximal if Gµ ∩ X 6= ∅ for all finitely supported
µ ∈ Prob(X ).

2. A G -flow X is strongly proximal if Gµ ∩ X 6= ∅ for all µ ∈ Prob(X ).

Note: we have identified X with ∂ Prob(X ).

A G -flow X is minimal if Gx = X for all x ∈ X .

Theorem (Furstenberg 1973, Glasner 1976)

There is a unique universal minimal proximal flow ∂pG and a unique
universal minimal strongly proximal flow ∂spG . For every minimal proximal
flow X there is a surjective G -map ∂pG → X . Similarly for ∂spG .

Statements about specific flows translate to statements about universal
flows. E.g. G has a free proximal flow iff ∂pG is free.
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Strong proximality

Theorem (Furstenberg 1973)

The group G is non-amenable iff ∂spG is non-trivial.

Theorem (K-Kalantar 2017)

The reduced C*-algebra C∗λG is simple iff ∂spG is free.
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Proximality

Definition (Glasner 1976)

The group G is strongly amenable if ∂pG is trivial.

Major open problem: Characterize strongly amenable groups. Note that
strongly amenable implies amenable (as name suggests).

Theorem (Frisch-Tamuz-Vahidi Ferdowsi 2019)

The group G is strongly amenable if and only if it has no non-trivial ICC
quotient.

Note: Proof is probabilistic and quite difficult.

Theorem (Glasner-Tsankov-Weiss-Zucker 2019)

The von Neumann algebra LG is a factor iff ∂pG is free.

Key point: If ∂pG is non-trivial then it is free. This is not true for ∂spG .
(Reminiscent of the fact that LG has a unique trace iff LG is a factor, but
C∗λG can have a unique trace without being simple.)
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Proximality

Theorem (KK 2017)

The C*-algebra C (∂spG ) is G -injective.

Theorem (KRS 2020)

The C*-algebra C (∂pG ) is G -injective.

By results of Hamana and Gleason, C (∂spG ) and C (∂pG ) are
AW*-algebras, hence generated by Boolean algebra of projections.

“Topological Furstenberg correspondence”

The flows ∂pG and ∂spG correspond to translation invariant Boolean
subalgebras of subsets of G .

Goal: Identify these Boolean algebras, thereby giving “concrete”
descriptions of ∂pG and ∂spG .
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Higher order syndeticity

Definition
A subset A ⊆ G is completely syndetic if for every n there is finite F ⊆ G
such that FAn = G n.

Note: syndetic is the case n = 1.

Definition
A subset A ⊆ G is strongly completely syndetic if for every ε > 0 there is
finite F ⊆ G such that for every finite multiset K ⊆ G ,

sup
f∈F

|fK ∩ A|
|K |

≥ 1− ε.

Note: Says there is finite F ⊆ G such that FAn ≈ G n for every n.

Theorem (KRS 2020)

The universal minimal (strongly) proximal flow is isomorphic to the
spectrum of any invariant Boolean algebra of (strongly) completely
syndetic subsets of G .

These subsets have very interesting structure!
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Characterizations

Proposition

Let X be a (strongly) proximal flow. For open U ⊆ X and x ∈ X , the
return set Ux = {g ∈ G : gx ∈ U} is (strongly) completely syndetic.

Proposition

A subset A ⊆ G is completely syndetic if and only if for every n and every
mean m on G n that is invariant under left translation by G , m(An) > 0.

Proposition

A subset A ⊆ G is completely syndetic if and only if A ⊆ βG contains a
closed right ideal of βG .
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Examples

Example

A subset A ⊆ Z is syndetic if and only if it has “bounded gaps,” meaning
there is k ∈ N such that for all a ∈ Z,

{a, a + 1, . . . , a + k} ∩ A 6= ∅.

Example

A subset A ⊆ Z is completely syndetic if and only if for every n, An has
“bounded diagonal gaps,” meaning there is k ∈ N such that for any
(a1, . . . , an) ∈ Zn,

{(a1, . . . , an), (a1 + 1, . . . , an + 1), . . . , (a1 + k, . . . , an + k)} ∩ An 6= ∅.

Fact: The group Z does not contain disjoint completely syndetic subsets.
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Consequences

Theorem (KRS 2020)

The group G is not strongly amenable if and only if there is a proper
normal subgroup H ≤ G such that for every finite subset F ⊆ G \H, there
is a completely syndetic subset A ⊆ G satisfying FA ∩ A = ∅.

Theorem (KRS 2020)

The group G is not amenable if and only if there is a subset A ⊆ G such
that both A and Ac are completely syndetic.

Note: Does not seem easy to derive from existing criteria (e.g. Følner
condition, paradoxicality condition).
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Example

Example

Consider the free group F2 = 〈a, b〉. For w ∈ F2, let

Bw = {g ∈ G : g = wg ′ in reduced form}.

Can show by hand that Ba and Bb are strongly completely syndetic.
Alternatively, Ba = Ua∞ where U is the set of infinite reduced words
beginning with a in the hyperbolic boundary ∂F2. Either way, F2 is
non-amenable.



“Application”

Definition
A subset A ⊆ G is a dense orbit set if Ax is dense in X for every minimal
flow X and every x ∈ X .

Problem (Glasner-Tsankov-Weiss-Zucker)

Characterize dense orbit sets.

Theorem (KRS 2020)

A subset A ⊆ G is a dense orbit set iff there is no subset B ⊆ Ac with the
property that for every pair of finite subsets F1 ⊆ B and F2 ⊆ Bc , the
following set is syndetic:

(∩f1∈F1 f
−1
1 B) ∩ (∩f2∈F2 f

−1
2 Bc)

Note: Proof inspired by the “topological Furstenberg correspondence.”
Heaviliy utilizes semigroup structure of βG .
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Thanks!


