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Proximality and strong proximality

Let G be a discrete group. A G-flow is a compact Hausdorff G-space X
with an action G ~ X.

1. A G-flow X is proximal if Gy X # () for all finitely supported
w € Prob(X).

2. A G-flow X is strongly proximal if GyuN X # () for all u € Prob(X).
Note: we have identified X with 9 Prob(X).
A G-flow X is minimal if Gx = X for all x € X.

There is a unique universal minimal proximal flow 0,G and a unique
universal minimal strongly proximal flow 05, G. For every minimal proximal
flow X there is a surjective G-map J,G — X. Similarly for 05, G.

Statements about specific flows translate to statements about universal
flows. E.g. G has a free proximal flow iff 0,G is free.
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Proximality

The group G is strongly amenable if 0, G is trivial.

Major open problem: Characterize strongly amenable groups. Note that
strongly amenable implies amenable (as name suggests).

The group G is strongly amenable if and only if it has no non-trivial ICC
quotient.

Note: Proof is probabilistic and quite difficult.

The von Neumann algebra LG is a factor iff 9,G is free.

Key point: If 0,G is non-trivial then it is free. This is not true for 0, G.

(Reminiscent of the fact that LG has a unique trace iff LG is a factor, but
C; G can have a unique trace without being simple.)
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Proximality

The C*-algebra C(0s,G) is G-injective.

The C*-algebra C(0,G) is G-injective.

By results of Hamana and Gleason, C(9s,G) and C(9,G) are
AW*_algebras, hence generated by Boolean algebra of projections.

The flows 0,G and 05,G correspond to translation invariant Boolean
subalgebras of subsets of G.

Goal: Identify these Boolean algebras, thereby giving “concrete”
descriptions of 9,G and 0s,G.
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such that FA" = G".
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A subset A C G is strongly completely syndetic if for every € > 0 there is
finite F C G such that for every finite multiset K C G,

KN A
sup

—— >1—e¢.
feF K[ T

Note: Says there is finite F C G such that FA" =~ G" for every n.

The universal minimal (strongly) proximal flow is isomorphic to the
spectrum of any invariant Boolean algebra of (strongly) completely
syndetic subsets of G.

These subsets have very interesting structure!
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Examples

A subset A C Z is syndetic if and only if it has “bounded gaps,” meaning
there is k € N such that for all a € Z,

{a,a+1,...,a+k}NA#D.

A subset A C Z is completely syndetic if and only if for every n, A" has
“bounded diagonal gaps,” meaning there is k € N such that for any
(a1,...,an) €Z",

{(a1,---5an),(a1+1,...;a,+1),.... (a1 + k,...,a, + k) } N A" £ (.

Fact: The group Z does not contain disjoint completely syndetic subsets.



Example (the integers 1)

200 ©® O @ O @ O @ O ® O e O @ O @ O @
190 o o o o o o o0 o0 O 0O 0 0 0 0 OO0 O
180 @ 0 @ 0 @ O @ e O @ O @ O ®@ 0O @
170 o o o o o o ©O 0O 0 0 00 O0O0OO OO OO0
16 0o @ 0o @ 0 @ © ® O ® O @ O ® O ® O @
150 o o o o o O 0O 0O0OOO OO OO O O
140 e o @ © ® O @0 ®0 @0 ®O0 e O e
130 0 o o © 00000O0OOOOOGOGO O
120 e o @0 e 0e@e0e0e©0e0 8O0 e
110 o o 0O 0O 0O 0O OOO OGO OO OO OOOO O 0 0
100 e @ O ® O ® O ® O © O © O ®© O ® O @
9 o ©00O0O0OOOOOOOOOOOO0O0 0
8 © 0@ 0®©0®©0e0e0e0 80 e o0 e
7 00000000O0OOOOOOOOOO0 O
6 0O ® 0 @0 ®0®0e®O0eO0eO0 e0 8O0 e
5 00000O0O0OOOOOOOOOOOOO0 O
4 0 @0 @000 ©0 @0 e0 600 e 0 e
3 00000000O0O0OOOOOOOGOO O
2 0000 0@©0@©0e0e0e0 e0 o0 e
1 000000000O0OOOOOOOOO O
123 45 6 7 8 91011121314151617181920

FIGURE 1. The subgroup 2Z C Z is syndetic but not 2-
syndetic since there are arbitrarily long diagonal segments
in Z x Z that do not intersect 2Z x 27Z.
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FIGURE 2. The subset Z \ 3Z C Z is 2-syndetic but
not 3-syndetic since for k € N, every element in the set
{(1,2,3),(2,3,4), (4,5,6), ..., (1+,2+k,3+k)} has an
entry that is a multiple of 3, implying that the set does
not intersect A%.
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FIGURE 3. The complement of the set of powers of 2 in
Z is completely syndetic, and in particular is 2-syndetic.
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Consequences

The group G is not strongly amenable if and only if there is a proper
normal subgroup H < G such that for every finite subset F C G \ H, there
is a completely syndetic subset A C G satisfying FAN A = ().

The group G is not amenable if and only if there is a subset A C G such
that both A and A€ are completely syndetic.

Note: Does not seem easy to derive from existing criteria (e.g. Fglner
condition, paradoxicality condition).



Example

Consider the free group Fy = (a, b). For w € Fy, let
B, ={g € G: g = wg’ in reduced form}.

Can show by hand that B, and B, are strongly completely syndetic.
Alternatively, B, = U,~ where U is the set of infinite reduced words
beginning with a in the hyperbolic boundary 0F,. Either way, IF; is

non-amenable.
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A subset A C G is a dense orbit set if Ax is dense in X for every minimal
flow X and every x € X .

Characterize dense orbit sets.

A subset A C G is a dense orbit set iff there is no subset B C A€ with the
property that for every pair of finite subsets F; C B and F, C B¢, the
following set is syndetic:

(Nherfi 'B) N (Ngerf *BC)

Note: Proof inspired by the “topological Furstenberg correspondence.”
Heaviliy utilizes semigroup structure of 3G.



Thanks!



