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Problem.
Find complete unitary invariants for an d-tuple of operators. J

This is overly ambitious in general.
For commuting normal operator d-tuples: joint spectrum, spectral
measure, multiplicity.

The following invariant is due to Arveson (1970) for d = 1.

Definition.
If T=(T1,..., Tq) € B(H)9, the matrix range of T is

W(T) = |JWa(T)

n>1

where for n > 1,

Wi(T)={p(T):¢:B(H) = M,is u.E.p.}.
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A prototype for the type of result we want is

Theorem (Arveson, 1970).

Suppose that K and L are irreducible compact operators. Then

KL < W(K)=W(L).

Definition.

A d-tuple T € B(H)? is minimal if whenever M C H is a proper
reducing subspace for T, then W(T|n) # W(T).

Theorem (DDSS, 2017).

Let K, L € B(H)? be two minimal non-singular d-tuples of
compact operators. Then

K~ L <= W(K)=W(L).
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Operator system: a unital s.a. subspace S of a C*-algebra.
If T € B(H)4, let St =span{l, T1,..., T, T5,..., T;}.
If j: S — B(H) is u.c.p., then C*(jS) is a C*-cover of S.
Theorem (Hamana, 1979).

There is a unique minimal C*-cover, the C*-envelope C}(S).

Definition.

An operator system S C B(H) is fully compressed if for any proper
subspace G C H, the map § 3 s — s|¢ is not completely
isometric.

Theorem (Passer-Shalit, 2019).
If K € KK(H)? is a compact d-tuple, TFAE

@ K is minimal and non-singular
@ Sk is fully compressed
@ K is multiplicity free and C*(K) = CZ(Sk)-

™ = = =
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Definition (Arveson, 1969).

S op. system, A= C*(S), m € Irrep(A) is boundary representation
if T|s has a unique u.c.p. extension to C*(A). (i.e. ™ has u.e.p.)

The set 0S of all boundary reps is the Choquet boundary of S.
7 € 0S must factor through CZ(S).

Theorem (Arveson, 2008; D-Kennedy, 2015).
S op. system. Then 0S completely norms S. So

C (@D )S)) = C(S).

oS
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Definition (Arveson, 2011).

S op. system, A= C*(S), 7 € lrrep(A) is strongly peaking if
35 € Mn(S), [|7(S)I| > supseirmep(a), oozr [10(S)]

Strongly peaking reps are isolated points in A, and belong to 0S.
Strongly peaking reps are GCR, w(A) D K(Hy).
Non-GCR reps are not fully compressed.

Theorem 1.
Let S be a separable op. system, A= C*(S). TFAE
Q S is fully compressed.
Q ida~ P 7 QCIS, m £ 7, lank(H) # O
F;EQ
@ S is minimal, A= C}(S), and ida ~ € 7, where
TE=
= C Irrep(A), 7|arx(h) # 0.
Q ida~ P, A strongly peaking reps without multiplicity.
TeN
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A C*-algebra A is GCR if every 7 € Irrep(A) is GCR.
A C*-algebra A is NGCR if no m € Irrep(A) is GCR.
AlJ<Ast. Jis GCR and A/J is NGCR.

A C*-algebra A is type | if for every ™ € Rep(A), w(A)" is type |.

Theorem (Glimm, 1961).

Ais GCR < A is type I.
A is NGCR <= A has faithful type Il and type Il reps.
<= d inequivalent families in Irrep(A), each sums to faithful rep.
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An ideal J < A is essential if JN [ # {0} for all {0} # /| < A.

Theorem 2.

Let S C B(H) separable op. system, A= C*(S). TFAE
Q S is fully compressed.
Q@ A=C}(S)andida~ @ m, = C Irrep(A),

TE=

each [rj] is isolated in A.
@ S is minimal, A= C}(S), and AN K(H) is essential.
Q@ S is minimal, A= C}(S), the GCR ideal J is essential.

A does not have to be GCR.
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Applications

Corollary.
An operator system has a fully compressed representation <=
the isolated points of C}(S) is dense.

Corollary.

An operator system has a fully compressed representation if C}(S)
is countable.

Careful! The topology is usually not Hausdorff.
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An operator or op. system is block diagonal if 3 sequence of finite
rank projections P, < P, increasing to / in the commutant.

Corollary.

If two operator systems are minimal, block diagonal and order
isomorphic, then the order isomorphism arises from a unitary
equivalence.

Corollary.

If two d-tuples S and T are minimal, block diagonal and
W(S) =W(T), then S ~ T.
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The end. Thanks.




