STRONGLY PEAKING REPRESENTATIONS AND COMPRESSIONS OF OPERATOR SYSTEMS

Kenneth R. Davidson

University of Waterloo

CMS June, 2021

joint work with Ben Passer.

Problem.

Find complete unitary invariants for an d-tuple of operators.

This is overly ambitious in general. For commuting normal operator *d*-tuples: joint spectrum, spectral measure, multiplicity.

The following invariant is due to Arveson (1970) for d = 1.

Definition.

If $T = (T_1, ..., T_d) \in \mathcal{B}(H)^d$, the matrix range of T is $\mathcal{W}(T) = \bigcup_{n \ge 1} \mathcal{W}_n(T)$

where for $n \ge 1$,

 $\mathcal{W}_n(T) = \{\varphi(T) : \varphi : \mathcal{B}(H) \to \mathcal{M}_n \text{ is u.c.p.}\}.$

A prototype for the type of result we want is

Theorem (Arveson, 1970).

Suppose that K and L are irreducible compact operators. Then

 $K \simeq L \iff \mathcal{W}(K) = \mathcal{W}(L).$

Definition.

A d-tuple $T \in \mathcal{B}(H)^d$ is minimal if whenever $M \subset H$ is a proper reducing subspace for T, then $\mathcal{W}(T|_M) \neq \mathcal{W}(T)$.

Theorem (DDSS, 2017).

Let $K, L \in \mathcal{B}(H)^d$ be two minimal non-singular *d*-tuples of compact operators. Then

$$K \simeq L \iff \mathcal{W}(K) = \mathcal{W}(L).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Operator system: a unital s.a. subspace S of a C*-algebra. If $T \in \mathcal{B}(H)^d$, let $S_T = \text{span}\{I, T_1, \ldots, T_d, T_1^*, \ldots, T_d^*\}$. If $j : S \to \mathcal{B}(H)$ is u.c.p., then $C^*(jS)$ is a C*-cover of S.

Theorem (Hamana, 1979).

There is a unique minimal C*-cover, the C*-envelope $C_e^*(S)$.

Definition.

An operator system $S \subset B(H)$ is fully compressed if for any proper subspace $G \subset H$, the map $S \ni s \to s|_G$ is not completely isometric.

Theorem (Passer-Shalit, 2019).

If $K \in \mathcal{K}(H)^d$ is a compact *d*-tuple, TFAE

- K is minimal and non-singular
- **2** S_K is fully compressed
- K is multiplicity free and $C^*(K) = C^*_e(\mathcal{S}_K)$.

Definition (Arveson, 1969).

S op. system, $A = C^*(S)$, $\pi \in Irrep(A)$ is boundary representation if $\pi|_S$ has a unique u.c.p. extension to $C^*(A)$. (i.e. π has u.e.p.)

The set ∂S of all boundary reps is the Choquet boundary of S. $\pi \in \partial S$ must factor through $C_e^*(S)$.

Theorem (Arveson, 2008; D-Kennedy, 2015). S op. system. Then ∂S completely norms S. So

$$C^*((\bigoplus_{\partial S} \pi)(S)) = C^*_e(S).$$

Definition (Arveson, 2011).

S op. system, $A = C^*(S)$, $\pi \in \text{Irrep}(A)$ is strongly peaking if $\exists S \in M_n(S)$, $\|\pi(S)\| > \sup_{\sigma \in \text{Irrep}(A), \sigma \not\simeq \pi} \|\sigma(S)\|$.

Strongly peaking reps are isolated points in \hat{A} , and belong to ∂S . Strongly peaking reps are GCR, $\pi(A) \supset \mathcal{K}(H_{\pi})$. Non-GCR reps are not fully compressed.

Theorem 1.

Let S be a separable op. system, $A = C^*(S)$. TFAE

• \mathcal{S} is fully compressed.

$$\text{ id}_{\mathcal{A}} \simeq \bigoplus_{\pi_i \in \Omega} \pi, \ \Omega \subset \partial \mathcal{S}, \ \pi_i \not\simeq \pi_j, \ \pi|_{\mathcal{A} \cap \mathcal{K}(\mathcal{H})} \neq 0.$$

• S is minimal, $A = C_e^*(S)$, and $id_A \simeq \bigoplus_{\pi \in \Xi} \pi$, where

$$\Xi \subset \mathsf{Irrep}(A), \ \pi|_{A \cap \mathcal{K}(H)}
eq 0.$$

• $\operatorname{id}_{\mathcal{A}} \simeq \bigoplus_{\pi \in \Lambda} \pi$, Λ strongly peaking reps without multiplicity.

A C*-algebra A is GCR if every $\pi \in \text{Irrep}(A)$ is GCR. A C*-algebra A is NGCR if no $\pi \in \text{Irrep}(A)$ is GCR. $\exists ! J \lhd A \text{ s.t. } J \text{ is GCR and } A/J \text{ is NGCR.}$

A C*-algebra A is type I if for every $\pi \in \text{Rep}(A)$, $\pi(A)''$ is type I.

Theorem (Glimm, 1961).

A is GCR \iff A is type I. A is NGCR \iff A has faithful type II and type III reps. $\iff \exists$ inequivalent families in Irrep(A), each sums to faithful rep.

An ideal $J \triangleleft A$ is essential if $J \cap I \neq \{0\}$ for all $\{0\} \neq I \triangleleft A$.

Theorem 2.

Let $\mathcal{S} \subset \mathcal{B}(H)$ separable op. system, $A = C^*(\mathcal{S})$. TFAE

• \mathcal{S} is fully compressed.

- S is minimal, $A = C_e^*(S)$, and $A \cap K(H)$ is essential.
- S is minimal, $A = C_e^*(S)$, the GCR ideal J is essential.

A does not have to be GCR.

Applications

Corollary.

An operator system has a fully compressed representation \iff the isolated points of $\widehat{C_e^*(S)}$ is dense.

Corollary.

An operator system has a fully compressed representation if $C_e^*(S)$ is countable.

Careful! The topology is usually not Hausdorff.

An operator or op. system is block diagonal if \exists sequence of finite rank projections $P_n \leq P_{n+1}$ increasing to I in the commutant.

Corollary.

If two operator systems are minimal, block diagonal and order isomorphic, then the order isomorphism arises from a unitary equivalence.

Corollary.

If two d-tuples S and T are minimal, block diagonal and W(S) = W(T), then $S \simeq T$.

The end. Thanks.

Э

< ∃⇒