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Residual finite-dimensionality

Definition

A C~-algebra 2 is residually finite-dimensional (RFD) if there is an isometric
s-homomorphism 7 : A — [T, M, .

Theorem
The following statements are equivalent.
o A is RFD.

o The finite-dimensional irreducible x-representations are dense in the spectrum of

2A.

o Fwery x-representation of 2 can be approrimated pointwise in the SOT by
finite-dimensional *-representations. (Exel-Loring 1992)
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Example

Let A be a finite-dimensional operator algebra. Then, Cj, ., (A) is RFD (C.-Ramsey
2018), but it can happen that C},;,(A) has simply no finite-dimensional
*-representations.
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The non self-adjoint world

Definition

A (not necessarily self-adjoint) operator algebra A is residually finite-dimensional
(RFD) if there is a completely isometric homomorphism 7 : A — [T, M, .

If Ais RFD and 7 : A — B(H) is a completely contractive representation, can 7 be
approximated by finite-dimensional representations? Approximated in what sense?

Is C*(A) also RFD?

Example

Let A be a finite-dimensional operator algebra. Then, Cj, ., (A) is RFD (C.-Ramsey
2018), but it can happen that C},;,(A) has simply no finite-dimensional
*-representations.

The choice of representation of A matters!
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The minimal representation: the C*-envelope
A C B(#) unital operator algebra

non-commutative Choquet boundary of A: collection of boundary representations for
A (i.e irreducible *-representations of C*(A) with a certain unique extension
property with respect to .A)

C:(.A) == C*(.A)/ (ﬁﬂec},(A) keI‘TI‘)

This is the smallest C*-algebra that a copy of A can generate (Arveson, Hamana,
Mubhly—Solel, Dritschel-McCullough, Davidson—Kennedy).

The boundary representations for A form a dense subset of the spectrum of C;(A).

Consequence: if lots of boundary representations for A are finite-dimensional, then
C;(A) should be RFD.
Main question

Let A be a unital operator algebra such that C}(.A) is RFD. Does there exist a
finite-dimensional boundary representation for .A?
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A unital operator algebra such that C;(.A) is RFD

Inside of the spectrum C/;a), the following two sets are dense:

B = {[n] : m is a boundary representation for A}
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F = {[n] : 7 is finite-dimensional}.
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Isolated points in the spectrum

A unital operator algebra such that C;(.A) is RFD

Inside of the spectrum @), the following two sets are dense:
B = {[r] : m is a boundary representation for A}

and
F = {[n] : 7 is finite-dimensional}.

Do they overlap?

—

Our approach is to try to identify isolated points in C%(.A), which would then lie in
BN F.
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m: Ci(A) — B(H) irreducible *-representation
m is a strongly peaking representation if there is T' € M, (C}(A)) such that
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Non-commutative peaking behaviour

m: Ci(A) — B(H) irreducible *-representation
m is a strongly peaking representation if there is T' € M, (C}(A)) such that

I ™(T)]| > Sup lo ™ (T)]].

Theorem (C.—Thompson 2021)

Assume that C5(A) is RED. Then, strongly peaking representations are necessarily
finite-dimensional boundary representations for A.
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Non-commutative peaking behaviour
7w : Ci(A) — B(H) irreducible #-representation
m is a strongly peaking representation if there is T' € M, (C}(A)) such that

I ™(T)]| > Sup lo ™ (T)]].

Theorem (C.—Thompson 2021)
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7w : Ci(A) — B(H) irreducible #-representation
m is a strongly peaking representation if there is T' € M, (C}(A)) such that

I ™(T)]| > Sup lo ™ (T)]].

Theorem (C.—Thompson 2021)

Assume that C5(A) is RED. Then, strongly peaking representations are necessarily
finite-dimensional boundary representations for A.

7 is a locally peaking representation for A if there is T € M, (A) such that
I (D) > [P o™ (1) o
for every o 2% 7 and every finite-dimensional subspace F'.

Theorem (C.—Thompson 2021) J

Locally peaking representations for A are boundary representations for A.
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Detecting locally peaking representations

Theorem (Glicksberg 1962)

Let X be a compact metric space, and let A C C(X) be a unital norm-closed

subalgebra which separates the points. Let E C X be a closed subset. The following
statements are equivalent.

o There is a function f € A such that f =1 on E and |f(z)| <1 for every
z € X\E.

o Viewed as an element in C(X)**, we have xg € A~+.
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Detecting locally peaking representations

Theorem (Glicksberg 1962)

Let X be a compact metric space, and let A C C(X) be a unital norm-closed
subalgebra which separates the points. Let E C X be a closed subset. The following
statements are equivalent.

o There is a function f € A such that f =1 on E and |f(z)| <1 for every
z € X\E.

o Viewed as an element in C(X)™*

, we have xp € AT+,

There is a non-commutative analogue of this theorem, where points correspond to
irreducible *-representations.

Theorem (Hay 2007, Read 2011, C.-Thompson 2021)

Let A C B(H) be a separable and norm-closed unital subalgebra. Let  be an
irreducible finite-dimensional x-representation of C5(A). If s, € AL, then 7 is a
locally peaking representation for A.
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Detecting locally peaking representations

Theorem (Glicksberg 1962)

Let X be a compact metric space, and let A C C(X) be a unital norm-closed
subalgebra which separates the points. Let E C X be a closed subset. The following
statements are equivalent.

o There is a function f € A such that f =1 on E and |f(z)| <1 for every
z € X\E.
o Viewed as an element in C(X)

%k

, we have xp € AT+,

There is a non-commutative analogue of this theorem, where points correspond to
irreducible *-representations.

Theorem (Hay 2007, Read 2011, C.-Thompson 2021)

Let A C B(H) be a separable and norm-closed unital subalgebra. Let  be an
irreducible finite-dimensional x-representation of C5(A). If s, € AL, then 7 is a
locally peaking representation for A.

The converse fails, even for strongly peaking representations for A.
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Recall: a unital C*-algebra is said to be liminal (or CCR) if all its irreducible
x-representations are finite-dimensional.

We say that a unital operator algebra A is C*-liminal if every boundary
representations for A on Cj(.A) is finite-dimensional.

Is C}(A) liminal in this case?

Theorem (C.—Thompson 2021)

Let A be a unital operator algebra. Consider the following statements.
Q The algebra A is C*-liminal.

@ FEvery matriz state of A is locally finite-dimensional.

@ The algebra C;(A) is RED.

Then, we have (1) = (2) = (3). Moreover, (3) % (2).
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The extremal case: C*-liminality

Recall: a unital C*-algebra is said to be liminal (or CCR) if all its irreducible
x-representations are finite-dimensional.

We say that a unital operator algebra A is C*-liminal if every boundary
representations for A on Cf(.A) is finite-dimensional.

Is C}(A) liminal in this case?

Theorem (C.—Thompson 2021)

Let A be a unital operator algebra. Consider the following statements.
Q The algebra A is C*-liminal.

@ FEvery matriz state of A is locally finite-dimensional.

@ The algebra C;(A) is RED.

Then, we have (1) = (2) = (3). Moreover, (3) % (2).

A standard example of a non-liminal RFD C*-algebra is C*(F2) (Choi 1980). For
A = Alg(I,u,v), all irreducible *-representations are boundary representations, so
that A is not C*-liminal.
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Thank you!




