Finite-dimensionality in the non-commutative Choquet boundary

Raphaël Clouâtre

University of Manitoba

CMS Summer meeting Operator algebras and applications June 8, 2021

Based on joint work with Ian Thompson.

・ロト ・回ト ・ヨト ・ヨト

æ

Definition

A C*-algebra \mathfrak{A} is residually finite-dimensional (RFD) if there is an isometric *-homomorphism $\pi : \mathfrak{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

Definition

A C*-algebra \mathfrak{A} is residually finite-dimensional (RFD) if there is an isometric *-homomorphism $\pi : \mathfrak{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

Theorem

The following statements are equivalent.

• A is RFD.

Definition

A C*-algebra \mathfrak{A} is residually finite-dimensional (RFD) if there is an isometric *-homomorphism $\pi : \mathfrak{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

Theorem

The following statements are equivalent.

- A is RFD.
- The finite-dimensional irreducible *-representations are dense in the spectrum of \mathfrak{A} .

(D) (A) (A) (A)

Definition

A C^{*}-algebra \mathfrak{A} is residually finite-dimensional (RFD) if there is an isometric *-homomorphism $\pi : \mathfrak{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

Theorem

The following statements are equivalent.

- A is RFD.
- The finite-dimensional irreducible *-representations are dense in the spectrum of \mathfrak{A} .
- Every *-representation of \mathfrak{A} can be approximated pointwise in the SOT by finite-dimensional *-representations. (Exel-Loring 1992)

(D) (A) (A) (A)

Definition

A (not necessarily self-adjoint) operator algebra \mathcal{A} is residually finite-dimensional (RFD) if there is a completely isometric homomorphism $\pi : \mathcal{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

Definition

A (not necessarily self-adjoint) operator algebra \mathcal{A} is residually finite-dimensional (RFD) if there is a completely isometric homomorphism $\pi : \mathcal{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

If \mathcal{A} is RFD and $\pi : \mathcal{A} \to B(\mathcal{H})$ is a completely contractive representation, can π be approximated by finite-dimensional representations?

Definition

A (not necessarily self-adjoint) operator algebra \mathcal{A} is residually finite-dimensional (RFD) if there is a completely isometric homomorphism $\pi : \mathcal{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

If \mathcal{A} is RFD and $\pi : \mathcal{A} \to B(\mathcal{H})$ is a completely contractive representation, can π be approximated by finite-dimensional representations? Approximated in what sense?

Definition

A (not necessarily self-adjoint) operator algebra \mathcal{A} is residually finite-dimensional (RFD) if there is a completely isometric homomorphism $\pi : \mathcal{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

If \mathcal{A} is RFD and $\pi : \mathcal{A} \to B(\mathcal{H})$ is a completely contractive representation, can π be approximated by finite-dimensional representations? Approximated in what sense?

Is $C^*(\mathcal{A})$ also RFD?

Definition

A (not necessarily self-adjoint) operator algebra \mathcal{A} is residually finite-dimensional (RFD) if there is a completely isometric homomorphism $\pi : \mathcal{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

If \mathcal{A} is RFD and $\pi : \mathcal{A} \to B(\mathcal{H})$ is a completely contractive representation, can π be approximated by finite-dimensional representations? Approximated in what sense?

Is $C^*(\mathcal{A})$ also RFD?

Example

Let ${\mathcal A}$ be a finite-dimensional operator algebra.

Definition

A (not necessarily self-adjoint) operator algebra \mathcal{A} is residually finite-dimensional (RFD) if there is a completely isometric homomorphism $\pi : \mathcal{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

If \mathcal{A} is RFD and $\pi : \mathcal{A} \to B(\mathcal{H})$ is a completely contractive representation, can π be approximated by finite-dimensional representations? Approximated in what sense?

Is $C^*(\mathcal{A})$ also RFD?

Example

Let \mathcal{A} be a finite-dimensional operator algebra. Then, $C^*_{\max}(\mathcal{A})$ is RFD (C.–Ramsey 2018), but it can happen that $C^*_{\min}(\mathcal{A})$ has simply no finite-dimensional *-representations.

Definition

A (not necessarily self-adjoint) operator algebra \mathcal{A} is residually finite-dimensional (RFD) if there is a completely isometric homomorphism $\pi : \mathcal{A} \to \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$.

If \mathcal{A} is RFD and $\pi : \mathcal{A} \to B(\mathcal{H})$ is a completely contractive representation, can π be approximated by finite-dimensional representations? Approximated in what sense?

Is $C^*(\mathcal{A})$ also RFD?

Example

Let \mathcal{A} be a finite-dimensional operator algebra. Then, $C^*_{max}(\mathcal{A})$ is RFD (C.–Ramsey 2018), but it can happen that $C^*_{min}(\mathcal{A})$ has simply no finite-dimensional *-representations.

The choice of representation of \mathcal{A} matters!

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

イロト イヨト イヨト イヨト

- 12

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

non-commutative Choquet boundary of $\mathcal A\colon$ collection of boundary representations for $\mathcal A$

・ロト ・日ト ・ヨト ・ヨト

æ

The minimal representation: the C^{*}-envelope

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

non-commutative Choquet boundary of \mathcal{A} : collection of boundary representations for \mathcal{A} (i.e irreducible *-representations of $C^*(\mathcal{A})$ with a certain unique extension property with respect to \mathcal{A})

The minimal representation: the C^{*}-envelope

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

non-commutative Choquet boundary of \mathcal{A} : collection of boundary representations for \mathcal{A} (i.e irreducible *-representations of $C^*(\mathcal{A})$ with a certain unique extension property with respect to \mathcal{A})

 $C_e^*(\mathcal{A}) = C^*(\mathcal{A}) / \left(\bigcap_{\pi \in Ch(\mathcal{A})} \ker \pi \right)$

The minimal representation: the C^{*}-envelope

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

non-commutative Choquet boundary of \mathcal{A} : collection of boundary representations for \mathcal{A} (i.e irreducible *-representations of $C^*(\mathcal{A})$ with a certain unique extension property with respect to \mathcal{A})

$$C_e^*(\mathcal{A}) = C^*(\mathcal{A}) / \left(\bigcap_{\pi \in Ch(\mathcal{A})} \ker \pi \right)$$

This is the smallest C^{*}-algebra that a copy of \mathcal{A} can generate (Arveson, Hamana, Muhly–Solel, Dritschel–McCullough, Davidson–Kennedy).

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

non-commutative Choquet boundary of \mathcal{A} : collection of boundary representations for \mathcal{A} (i.e irreducible *-representations of $C^*(\mathcal{A})$ with a certain unique extension property with respect to \mathcal{A})

$$C_e^*(\mathcal{A}) = C^*(\mathcal{A}) / \left(\bigcap_{\pi \in Ch(\mathcal{A})} \ker \pi \right)$$

This is the smallest C*-algebra that a copy of \mathcal{A} can generate (Arveson, Hamana, Muhly–Solel, Dritschel–McCullough, Davidson–Kennedy).

The boundary representations for \mathcal{A} form a dense subset of the spectrum of $C_e^*(\mathcal{A})$.

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

non-commutative Choquet boundary of \mathcal{A} : collection of boundary representations for \mathcal{A} (i.e irreducible *-representations of $C^*(\mathcal{A})$ with a certain unique extension property with respect to \mathcal{A})

$$C_e^*(\mathcal{A}) = C^*(\mathcal{A}) / \left(\bigcap_{\pi \in Ch(\mathcal{A})} \ker \pi \right)$$

This is the smallest C*-algebra that a copy of \mathcal{A} can generate (Arveson, Hamana, Muhly–Solel, Dritschel–McCullough, Davidson–Kennedy).

The boundary representations for \mathcal{A} form a dense subset of the spectrum of $C_e^*(\mathcal{A})$.

Consequence: if lots of boundary representations for \mathcal{A} are finite-dimensional, then $C_e^*(\mathcal{A})$ should be RFD.

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

non-commutative Choquet boundary of \mathcal{A} : collection of boundary representations for \mathcal{A} (i.e irreducible *-representations of $C^*(\mathcal{A})$ with a certain unique extension property with respect to \mathcal{A})

$$C_e^*(\mathcal{A}) = C^*(\mathcal{A}) / \left(\bigcap_{\pi \in Ch(\mathcal{A})} \ker \pi \right)$$

This is the smallest C^{*}-algebra that a copy of \mathcal{A} can generate (Arveson, Hamana, Muhly–Solel, Dritschel–McCullough, Davidson–Kennedy).

The boundary representations for \mathcal{A} form a dense subset of the spectrum of $C_e^*(\mathcal{A})$.

Consequence: if lots of boundary representations for \mathcal{A} are finite-dimensional, then $C_e^*(\mathcal{A})$ should be RFD.

Main question

Let \mathcal{A} be a unital operator algebra such that $C_e^*(\mathcal{A})$ is RFD. Does there exist a finite-dimensional boundary representation for \mathcal{A} ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $\mathcal A$ unital operator algebra such that $\mathrm{C}^*_e(\mathcal A)$ is RFD

・ロト ・日ト ・ヨト ・ヨト

æ

 \mathcal{A} unital operator algebra such that $C_e^*(\mathcal{A})$ is RFD

Inside of the spectrum $\widehat{C}_{e}^{*}(\widehat{\mathcal{A}})$, the following two sets are dense:

 $\mathcal{B} = \{ [\pi] : \pi \text{ is a boundary representation for } \mathcal{A} \}$

and

$$\mathcal{F} = \{ [\pi] : \pi \text{ is finite-dimensional} \}.$$

 \mathcal{A} unital operator algebra such that $C_e^*(\mathcal{A})$ is RFD

Inside of the spectrum $\widehat{C}_{e}^{*}(\widehat{\mathcal{A}})$, the following two sets are dense:

 $\mathcal{B} = \{ [\pi] : \pi \text{ is a boundary representation for } \mathcal{A} \}$

and

$$\mathcal{F} = \{ [\pi] : \pi \text{ is finite-dimensional} \}.$$

Do they overlap?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 \mathcal{A} unital operator algebra such that $C_e^*(\mathcal{A})$ is RFD

Inside of the spectrum $\widehat{C_e^*}(\widehat{\mathcal{A}})$, the following two sets are dense:

 $\mathcal{B} = \{ [\pi] : \pi \text{ is a boundary representation for } \mathcal{A} \}$

and

$$\mathcal{F} = \{ [\pi] : \pi \text{ is finite-dimensional} \}.$$

Do they overlap?

Our approach is to try to identify isolated points in $\overline{C}^*_e(\mathcal{A})$, which would then lie in $\mathcal{B} \cap \mathcal{F}$.

 $\pi: \mathcal{C}_e^*(\mathcal{A}) \to B(\mathcal{H})$ irreducible *-representation

< □ > < @ > < 注 > < 注 > ... 注

 $\pi: \mathcal{C}_e^*(\mathcal{A}) \to B(\mathcal{H})$ irreducible *-representation

 π is a strongly peaking representation if there is $T \in \mathbb{M}_n(\mathbb{C}^*_e(\mathcal{A}))$ such that

$$\|\pi^{(n)}(T)\| > \sup_{\sigma \not\cong \pi} \|\sigma^{(n)}(T)\|.$$

・ロト ・日ト ・ヨト ・ヨト

æ

 $\pi: \mathcal{C}_e^*(\mathcal{A}) \to B(\mathcal{H})$ irreducible *-representation

 π is a strongly peaking representation if there is $T \in \mathbb{M}_n(\mathbb{C}^*_e(\mathcal{A}))$ such that

$$\|\pi^{(n)}(T)\| > \sup_{\sigma \not\cong \pi} \|\sigma^{(n)}(T)\|.$$

Theorem (C.–Thompson 2021)

Assume that $C_e^*(\mathcal{A})$ is RFD. Then, strongly peaking representations are necessarily finite-dimensional boundary representations for \mathcal{A} .

(D) (A) (A) (A)

 $\pi: \mathcal{C}_e^*(\mathcal{A}) \to B(\mathcal{H})$ irreducible *-representation

 π is a strongly peaking representation if there is $T \in \mathbb{M}_n(\mathbb{C}^*_e(\mathcal{A}))$ such that

$$\|\pi^{(n)}(T)\| > \sup_{\sigma \not\cong \pi} \|\sigma^{(n)}(T)\|.$$

Theorem (C.–Thompson 2021)

Assume that $C_e^*(\mathcal{A})$ is RFD. Then, strongly peaking representations are necessarily finite-dimensional boundary representations for \mathcal{A} .

 π is a locally peaking representation for \mathcal{A} if there is $T \in \mathbb{M}_n(\mathcal{A})$ such that

$$\|\pi^{(n)}(T)\| > \|P_{F^{(n)}}\sigma^{(n)}(T)|_{F^{(n)}}\|$$

for every $\sigma \not\cong \pi$ and every finite-dimensional subspace F.

 $\pi: \mathcal{C}_e^*(\mathcal{A}) \to B(\mathcal{H})$ irreducible *-representation

 π is a strongly peaking representation if there is $T \in \mathbb{M}_n(\mathbb{C}^*_e(\mathcal{A}))$ such that

$$\|\pi^{(n)}(T)\| > \sup_{\sigma \not\cong \pi} \|\sigma^{(n)}(T)\|.$$

Theorem (C.–Thompson 2021)

Assume that $C_e^*(\mathcal{A})$ is RFD. Then, strongly peaking representations are necessarily finite-dimensional boundary representations for \mathcal{A} .

 π is a locally peaking representation for \mathcal{A} if there is $T \in \mathbb{M}_n(\mathcal{A})$ such that

$$\|\pi^{(n)}(T)\| > \|P_{F^{(n)}}\sigma^{(n)}(T)|_{F^{(n)}}\|$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

7/10

for every $\sigma \not\cong \pi$ and every finite-dimensional subspace F.

Theorem (C.–Thompson 2021)

Locally peaking representations for \mathcal{A} are boundary representations for \mathcal{A} .

Theorem (Glicksberg 1962)

Let X be a compact metric space, and let $A \subset C(X)$ be a unital norm-closed subalgebra which separates the points. Let $E \subset X$ be a closed subset. The following statements are equivalent.

- There is a function $f \in A$ such that f = 1 on E and |f(x)| < 1 for every $x \in X \setminus E$.
- Viewed as an element in $C(X)^{**}$, we have $\chi_E \in \mathcal{A}^{\perp \perp}$.

(D) (A) (A) (A) (A)

Theorem (Glicksberg 1962)

Let X be a compact metric space, and let $\mathcal{A} \subset C(X)$ be a unital norm-closed subalgebra which separates the points. Let $E \subset X$ be a closed subset. The following statements are equivalent.

- There is a function $f \in A$ such that f = 1 on E and |f(x)| < 1 for every $x \in X \setminus E$.
- Viewed as an element in $C(X)^{**}$, we have $\chi_E \in \mathcal{A}^{\perp \perp}$.

There is a non-commutative analogue of this theorem, where points correspond to irreducible *-representations.

(D) (A) (A) (A) (A)

Theorem (Glicksberg 1962)

Let X be a compact metric space, and let $A \subset C(X)$ be a unital norm-closed subalgebra which separates the points. Let $E \subset X$ be a closed subset. The following statements are equivalent.

- There is a function $f \in A$ such that f = 1 on E and |f(x)| < 1 for every $x \in X \setminus E$.
- Viewed as an element in $C(X)^{**}$, we have $\chi_E \in \mathcal{A}^{\perp \perp}$.

There is a non-commutative analogue of this theorem, where points correspond to irreducible *-representations.

Theorem (Hay 2007, Read 2011, C.-Thompson 2021)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a separable and norm-closed unital subalgebra. Let π be an irreducible finite-dimensional *-representation of $C_e^*(\mathcal{A})$. If $\mathfrak{s}_{\pi} \in \mathcal{A}^{\perp \perp}$, then π is a locally peaking representation for \mathcal{A} .

Theorem (Glicksberg 1962)

Let X be a compact metric space, and let $A \subset C(X)$ be a unital norm-closed subalgebra which separates the points. Let $E \subset X$ be a closed subset. The following statements are equivalent.

- There is a function $f \in A$ such that f = 1 on E and |f(x)| < 1 for every $x \in X \setminus E$.
- Viewed as an element in $C(X)^{**}$, we have $\chi_E \in \mathcal{A}^{\perp \perp}$.

There is a non-commutative analogue of this theorem, where points correspond to irreducible *-representations.

Theorem (Hay 2007, Read 2011, C.-Thompson 2021)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a separable and norm-closed unital subalgebra. Let π be an irreducible finite-dimensional *-representation of $C_e^*(\mathcal{A})$. If $\mathfrak{s}_{\pi} \in \mathcal{A}^{\perp \perp}$, then π is a locally peaking representation for \mathcal{A} .

The converse fails, even for strongly peaking representations for \mathcal{A} .

Recall: a unital C*-algebra is said to be liminal (or CCR) if all its irreducible *-representations are finite-dimensional.

・ロト ・日ト ・ヨト ・ヨト

æ

Recall: a unital C^{*}-algebra is said to be liminal (or CCR) if all its irreducible *-representations are finite-dimensional.

We say that a unital operator algebra \mathcal{A} is C^{*}-liminal if every boundary representations for \mathcal{A} on $C_e^*(\mathcal{A})$ is finite-dimensional.

Recall: a unital C^{*}-algebra is said to be liminal (or CCR) if all its irreducible *-representations are finite-dimensional.

We say that a unital operator algebra \mathcal{A} is C^{*}-liminal if every boundary representations for \mathcal{A} on $C_e^*(\mathcal{A})$ is finite-dimensional.

Is $C_e^*(\mathcal{A})$ limited in this case?

Recall: a unital C^{*}-algebra is said to be liminal (or CCR) if all its irreducible *-representations are finite-dimensional.

We say that a unital operator algebra \mathcal{A} is C^{*}-liminal if every boundary representations for \mathcal{A} on $C_e^*(\mathcal{A})$ is finite-dimensional.

Is $C_e^*(\mathcal{A})$ limit in this case?

Theorem (C.–Thompson 2021)

Let \mathcal{A} be a unital operator algebra. Consider the following statements.

- **9** The algebra \mathcal{A} is C^* -liminal.
- O Every matrix state of \mathcal{A} is locally finite-dimensional.
- If $The algebra C_e^*(\mathcal{A})$ is RFD.

Then, we have $(1) \Rightarrow (2) \Rightarrow (3)$. Moreover, $(3) \Rightarrow (2)$.

Recall: a unital C^{*}-algebra is said to be liminal (or CCR) if all its irreducible *-representations are finite-dimensional.

We say that a unital operator algebra \mathcal{A} is C^{*}-liminal if every boundary representations for \mathcal{A} on $C_e^*(\mathcal{A})$ is finite-dimensional.

Is $C_e^*(\mathcal{A})$ limit in this case?

Theorem (C.-Thompson 2021) Let A be a unital operator algebra. Consider the following statements. The algebra A is C*-liminal. Every matrix state of A is locally finite-dimensional. The algebra C^{*}_e(A) is RFD. Then, we have (1) ⇒ (2) ⇒ (3). Moreover, (3) ≠ (2).

A standard example of a non-liminal RFD C^{*}-algebra is C^{*}(\mathbb{F}_2) (Choi 1980). For $\mathcal{A} = \operatorname{Alg}(I, u, v)$, all irreducible *-representations are boundary representations, so that \mathcal{A} is not C^{*}-liminal.

Thank you!

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 田