Classification of embeddings, II

Aaron Tikuisis

University of Ottawa

Joint with José Carrión, Jamie Gabe, Chris Schafhauser, and Stuart White.

Theorem (CGSTW)

Let:

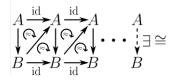
- *A* be a unital, sep., nuclear C*-algebra satisfying the UCT,
- *B* be a unital, sep., simple, nuclear, finite *Z*-stable C*-algebra,
- *D* be either *B* or $B_{\infty} := l^{\infty}(\mathbb{N}, B)/c_0(\mathbb{N}, B)$.

Then for any faithful morphism $\alpha : \underline{K}T_u(A) \to \underline{K}T_u(D), \exists$ a unital *-hom. $\phi : A \to D$ inducing α . Moreover, ϕ is unique up to approximate unitary equivalence.

Note. When $D = B_{\infty}$, this could be called "approximate classification" (or "approx. existence" and "approx. uniqueness").

- Intertwining.
- The trace-kernel extension.
- Classification into B^{∞} .
- Cuntz pairs.

Two-sided:



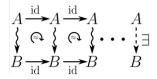
Theorem

If there are *-homomorphisms $\phi : A \to B$, $\psi : B \to A$ such that $\phi \circ \psi$ and $\psi \circ \phi$ are approximately inner, then $A \cong B$.

Consequence

Classifying embeddings \implies classifying algebras.

One-sided:



Theorem

If there is a sequence of approx. multiplicative *-linear maps $A \rightarrow B$ that are "approx. unitarily equivalent", then they induce a *-homomorphism $A \rightarrow B$.

Consequence

Classifying embeddings to $B_{\infty} \Longrightarrow$ classifying embeddings to B.

Let *B* be a unital C*-algebra with nonempty set of traces T(B).

Definition

$$\begin{split} B_{\infty} &:= l^{\infty}(\mathbb{N}, B)/c_0(\mathbb{N}, B), & \text{the "sequence algebra",} \\ J &:= \{(x_n) \in B_{\infty} : \lim_{n \to \infty} \sup_{\tau \in T(B)} \tau(b_n^* b_n) = 0\}, \text{ the "trace-kernel",} \\ 0 \to J_B \to B_{\infty} \to B^{\infty} \to 0, & \text{the "trace-kernel extension".} \end{split}$$

If *B* has unique trace and we use $\lim_{n\to\omega}$ (an ultrafilter) instead, then we get $B^{\omega} \cong [\pi_{\tau}(B)'']^{\omega}$, a von Neumann algebra.

If *B* is \mathbb{Z} -stable then B_{∞} is morally (or more technically, "separably") \mathbb{Z} -stable, and J_B is morally (separably) stable.

Theorem (Classification into B^{∞})

Let:

- *A* be a unital, sep., nuclear C*-algebra satisfying the UCT,
- *B* be a unital, sep., simple, nuclear, finite *Z*-stable C*-algebra with at least one trace.

Then for any continuous affine map $\alpha : T(B^{\infty}) \to T(A)$, there is a *-homomorphism $\phi : A \to B^{\infty}$ inducing α . Moreover, ϕ is unique up to unitary equivalence.

Ideas: local-to-global transfer ("CPoU"), and Connes' Theorem.

Upshot: classifying into B_{∞} now becomes a problem of classifying lifts.

Cuntz pairs

Going from classification into B^{∞} to classification into B_{∞} involves *KK*-theory. Why?

Definition

Let *A*, *C* be C*-algebras with *C* stable. An (*A*, *C*)-*Cuntz pair* is a pair of *-homomorphisms $\phi, \psi : A \to E$, where $E \triangleright C$ such that

 $\phi(a) \equiv \psi(a) \mod C, \quad a \in A.$

KK(A, C) consists of homotopy classes of Cuntz pairs $A \rightarrow C$.

If ϕ , ψ : $A \rightarrow B_{\infty}$ agree on traces, then by taking a unitary conjugation, they can be made to agree mod J_B —and thus form a Cuntz pair!

(Ignoring some technicalities around separability.)

Theorem (KK-uniqueness) (CGSTW)

Let:

- *A* be a unital, sep., nuclear C*-algebra satisfying the UCT,
- *B* be a unital, sep., simple, nuclear, finite *Z*-stable C*-algebra.
- $\phi, \psi : A \to B_{\infty}$ form an (A, J_B) -Cuntz pair.

Then ϕ , ψ are unitarily equivalent iff $[\phi, \psi] = 0$ in $KK(A, J_B)$.