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Classification of embeddings

Theorem (CGSTW)
Let:
@ A be a unital, sep., nuclear C*-algebra satisfying the UCT,

@ Bbe a unital, sep., simple, nuclear, finite Z-stable
C*-algebra,
@ D be either B or B, :=I*°(N, B) /co(N, B).
Then for any faithful morphism « : KT, (A) — KT,(D), 3 a
unital *-hom. ¢ : A — D inducing a. Moreover, ¢ is unique up
to approximate unitary equivalence.

Note. When D = B, this could be called “approximate
classification” (or “approx. existence” and “approx.
uniqueness”).
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@ Intertwining.
@ The trace-kernel extension.
@ Classification into B*°.

e Cuntz pairs.
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Intertwining

Two-sided:

If there are *-homomorphisms ¢ : A — B, ¢ : B — A such that
¢ o and 9 o ¢ are approximately inner, then A = B.

Consequence
Classifying embeddings = classifying algebras.
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Intertwining

One-sided:

If there is a sequence of approx. multiplicative *-linear maps
A — B that are “approx. unitarily equivalent”, then they induce
a *-homomorphism A — B.

Consequence
Classifying embeddings to B, = classifying embeddings to B.
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The trace-kernel extension

Let B be a unital C*-algebra with nonempty set of traces T(B).

Definition

B :=I°(N, B) /co(N, B), the “sequence algebra”,

J :={(xn) € B : lim sup 7(b;b,) =0}, the “trace-kernel”,
=00 -cT(B)

0—Jg — Bss —+ B> — 0, the “trace-kernel extension”.

If B has unique trace and we use lim,_,,, (an ultrafilter) instead,
then we get BY = [1-(B)"]“, a von Neumann algebra.

If B is Z-stable then B is morally (or more technically,
“separably”) Z-stable, and Jp is morally (separably) stable.
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Classification into B>

Theorem (Classification into B>)

Let:

@ A be a unital; sep., nuclear C*-algebra satisfying-the UCT,
@ Bbe a unital, sep., simple;nuelear; finite Z-stable

C*-algebra with at least one trace.

Then for any continuous affine map « : T(B>) — T(A), there is
a *-homomorphism ¢ : A — B> inducing .. Moreover, ¢ is
unique up to unitary equivalence.

Ideas: local-to-global transfer (“CPoU”), and Connes” Theorem.

Upshot: classifying into B, now becomes a problem of
classifying lifts.
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Cuntz pairs

Going from classification into B> to classification into B,
involves KK-theory. Why?

Definition
Let A, C be C*-algebras with C stable. An (A, C)-Cuntz pair is a
pair of *-homomorphisms ¢, : A — E, where E > C such that

¢(a) =¢Y@) modC, acA.

KK(A, C) consists of homotopy classes of Cuntz pairs A — C.

If ¢,7 : A — By agree on traces, then by taking a unitary
conjugation, they can be made to agree mod Jp—and thus form
a Cuntz pair!

(Ignoring some technicalities around separability.)
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Cuntz pairs

Theorem (KK-uniqueness) (CGSTW)

Let:
@ A be a unital, sep., nuclear C*-algebra satisfying the UCT,

@ Bbe a unital, sep., simple, nuclear, finite Z-stable
C*-algebra.

@ 0,1 : A — By forman (A, p)-Cuntz pair.
Then ¢, ¢ are unitarily equivalent iff [¢, ¢)] = 0 in KK(A, Jp).
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