Quasidiagonality and the classification of nuclear C*-algebras

Aaron Tikuisis a.tikuisis@abdn.ac.uk

University of Aberdeen

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras

- < ≣ → <

For the von Neumann algebraic construction:

Theorem (Murray–von Neumann) For any $p, q \in \mathbb{N} \setminus \{1\},$ $\bigcup M_{p^k}^{SOT} = \bigcup M_{q^k}^{SOT}$

For the C*-algebraic construction:

Proposition

If $p, q \in \mathbb{N} \setminus \{1\}$ are coprime then $M_{p^{\infty}} \ncong M_{q^{\alpha}}$

To see this one needs some seeds of ideas from K-theory.

・ロト ・ 同ト ・ ヨト ・ ヨト

For the von Neumann algebraic construction:

For the C*-algebraic construction:

Proposition

If $p, q \in \mathbb{N} \setminus \{1\}$ are coprime then $M_{p^{\infty}} \ncong M_{q}$

To see this one needs some seeds of ideas from K-theory.

ヘロト ヘワト ヘビト ヘビト

For the von Neumann algebraic construction:

Theorem (Murray–von Neumann) For any $p, q \in \mathbb{N} \setminus \{1\}$, $\overline{[]M_{\alpha^k}}^{\text{SOT}} = \overline{[]M_{\alpha^k}}^{\text{SOT}}.$

For the C*-algebraic construction:

Proposition If $p, q \in \mathbb{N} \setminus \{1\}$ are coprime then $M_{\rho^{\infty}} \cong M_{\sigma^{\infty}}.$

ヘロン ヘアン ヘビン ヘビン

3

For the von Neumann algebraic construction:

Theorem (Murray–von Neumann) For any $p, q \in \mathbb{N} \setminus \{1\}$, $\overline{[]} M_{\rho^k}^{\text{SOT}} = \overline{[]} M_{\rho^k}^{\text{SOT}}.$

If $p, q \in \mathbb{N} \setminus \{1\}$ are coprime then

For the C*-algebraic construction:

To see this one needs some seeds of ideas from K-theory.

 $M_{\rho^{\infty}} \cong M_{\sigma^{\infty}}.$

・ロト ・ 理 ト ・ ヨ ト ・

ъ

If $p, q \in \mathbb{N} \setminus \{1\}$ are coprime then $M_{p^{\infty}} \ncong M_{q^{\infty}}.$

Proposition

$$K_0(M_{p^{\infty}})\cong \mathbb{Z}\left[\frac{1}{p}
ight].$$

Question

What further information do we need to distinguish non-isomorphic C*-algebras?

イロト 不得 とくほ とくほ とう

3

If $p, q \in \mathbb{N} \setminus \{1\}$ are coprime then $M_{p^{\infty}} \ncong M_{q^{\infty}}.$

Proposition

$$K_0(M_{p^{\infty}})\cong \mathbb{Z}\left[\frac{1}{p}\right].$$

Question

What further information do we need to distinguish non-isomorphic C*-algebras?

イロト イポト イヨト イヨト

= 990

If $p, q \in \mathbb{N} \setminus \{1\}$ are coprime then $M_{p^{\infty}} \ncong M_{q^{\infty}}.$

Proposition

$$K_0(M_{\rho^{\infty}})\cong \mathbb{Z}\left[rac{1}{
ho}
ight].$$

Question

What further information do we need to distinguish non-isomorphic C*-algebras?

ヘロン 人間 とくほ とくほ とう

3

What further information do we need to distinguish C*-algebras?

The "further information" should be in the form of algebraic topology type invariants.

The *Elliott invariant* is ordered topological K-theory paired with traces:

$$\begin{split} \mathrm{Ell}(A) &:= (K_0(A), K_0(A)_+, [1_A]_{K_0(A)}, K_1(A), T(A), \\ &\langle \cdot, \cdot \rangle : K_0(A) \times T(A) \to \mathbb{R}). \end{split}$$

What further information do we need to distinguish C*-algebras?

The "further information" should be in the form of algebraic topology type invariants.

The *Elliott invariant* is ordered topological K-theory paired with traces:

$$\begin{split} \mathrm{Ell}(A) &:= (K_0(A), K_0(A)_+, [1_A]_{K_0(A)}, K_1(A), T(A), \\ &\langle \cdot, \cdot \rangle : K_0(A) \times T(A) \to \mathbb{R}). \end{split}$$

ヘロト 人間 ト くほ ト くほ トー

э.

What further information do we need to distinguish C*-algebras?

The "further information" should be in the form of algebraic topology type invariants.

The *Elliott invariant* is ordered topological K-theory paired with traces:

$$\begin{split} \mathrm{Ell}(A) := & (K_0(A), K_0(A)_+, [1_A]_{K_0(A)}, K_1(A), T(A), \\ & \langle \cdot, \cdot \rangle : K_0(A) \times T(A) \to \mathbb{R}). \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

What further information do we need to distinguish C*-algebras?

The "further information" should be in the form of algebraic topology type invariants.

The *Elliott invariant* is ordered topological K-theory paired with traces:

$$\begin{split} \mathrm{Ell}(\boldsymbol{A}) &:= (K_0(\boldsymbol{A}), K_0(\boldsymbol{A})_+, [\boldsymbol{1}_{\boldsymbol{A}}]_{K_0(\boldsymbol{A})}, K_1(\boldsymbol{A}), T(\boldsymbol{A}), \\ &\langle \cdot, \cdot \rangle : K_0(\boldsymbol{A}) \times T(\boldsymbol{A}) \to \mathbb{R}). \end{split}$$

The *Elliott invariant* is ordered topological K-theory paired with traces:

$$\begin{split} \mathrm{Ell}(A) &:= (K_0(A), K_0(A)_+, [\mathbf{1}_A]_{K_0(A)}, K_1(A), T(A), \\ &\langle \cdot, \cdot \rangle : K_0(A) \times T(A) \to \mathbb{R}). \end{split}$$

Elliott Conjecture

If *A*, *B* are simple, separable, nuclear, unital C*-algebras then $A \cong B$ if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras

ヘロン 人間 とくほ とくほ とう

3

The *Elliott invariant* is ordered topological K-theory paired with traces:

$$\begin{split} \mathrm{Ell}(\mathcal{A}) := & (\mathcal{K}_0(\mathcal{A}), \mathcal{K}_0(\mathcal{A})_+, [\mathbf{1}_{\mathcal{A}}]_{\mathcal{K}_0(\mathcal{A})}, \mathcal{K}_1(\mathcal{A}), \mathcal{T}(\mathcal{A}), \\ & \langle \cdot, \cdot \rangle : \mathcal{K}_0(\mathcal{A}) \times \mathcal{T}(\mathcal{A}) \to \mathbb{R}). \end{split}$$

Elliott Conjecture

If *A*, *B* are simple, separable, nuclear, unital C*-algebras then $A \cong B$ if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The *Elliott invariant* is ordered topological K-theory paired with traces:

$$\begin{split} \mathrm{Ell}(\mathcal{A}) := & (\mathcal{K}_0(\mathcal{A}), \mathcal{K}_0(\mathcal{A})_+, [\mathbf{1}_{\mathcal{A}}]_{\mathcal{K}_0(\mathcal{A})}, \mathcal{K}_1(\mathcal{A}), \mathcal{T}(\mathcal{A}), \\ & \langle \cdot, \cdot \rangle : \mathcal{K}_0(\mathcal{A}) \times \mathcal{T}(\mathcal{A}) \to \mathbb{R}). \end{split}$$

Elliott Conjecture

If A, B are simple, separable, nuclear, unital C*-algebras then $A\cong B$ if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let $\theta \in \mathbb{T} \cong \mathbb{R}/\mathbb{Z}$ be an irrational angle. Define A_{θ} to be the universal C*-algebra generated by two unitaries u, v such that $vu = e^{2\pi i \theta} uv$.

(An *irrational rotation algebra*.)

This is one of the most tractable (yet interesting) examples of a crossed product; namely,

$$A_{ heta} \cong C(\mathbb{T}) \rtimes_{lpha} \mathbb{Z},$$

where $\alpha : \mathbb{T} \to \mathbb{T}$ is rotation by θ .

(*u* maps to a generator of $C(\mathbb{T})$, while *v* maps to the canonical unitary of the crossed product.)

Let $\theta \in \mathbb{T} \cong \mathbb{R}/\mathbb{Z}$ be an irrational angle. Define A_{θ} to be the universal C*-algebra generated by two unitaries u, v such that $vu = e^{2\pi i\theta}uv$.

(An irrational rotation algebra.)

This is one of the most tractable (yet interesting) examples of a crossed product; namely,

$$A_{ heta} \cong C(\mathbb{T}) \rtimes_{lpha} \mathbb{Z},$$

where $\alpha : \mathbb{T} \to \mathbb{T}$ is rotation by θ .

(*u* maps to a generator of $C(\mathbb{T})$, while *v* maps to the canonical unitary of the crossed product.)

Let $\theta \in \mathbb{T} \cong \mathbb{R}/\mathbb{Z}$ be an irrational angle. Define A_{θ} to be the universal C*-algebra generated by two unitaries u, v such that $vu = e^{2\pi i \theta} uv$. (An *irrational rotation algebra*.)

This is one of the most tractable (yet interesting) examples of a crossed product; namely,

$$A_{ heta} \cong C(\mathbb{T}) \rtimes_{lpha} \mathbb{Z},$$

where $\alpha : \mathbb{T} \to \mathbb{T}$ is rotation by θ .

(*u* maps to a generator of $C(\mathbb{T})$, while *v* maps to the canonical unitary of the crossed product.)

Let $\theta \in \mathbb{T} \cong \mathbb{R}/\mathbb{Z}$ be an irrational angle. Define A_{θ} to be the universal C*-algebra generated by two unitaries u, v such that $vu = e^{2\pi i \theta} uv$.

(An irrational rotation algebra.)

This is one of the most tractable (yet interesting) examples of a crossed product; namely,

$$A_{\theta} \cong C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z},$$

where $\alpha : \mathbb{T} \to \mathbb{T}$ is rotation by θ .

(*u* maps to a generator of $C(\mathbb{T})$, while *v* maps to the canonical unitary of the crossed product.)

Let $\theta \in \mathbb{T} \cong \mathbb{R}/\mathbb{Z}$ be an irrational angle. Define A_{θ} to be the universal C*-algebra generated by two unitaries u, v such that $vu = e^{2\pi i \theta} uv$.

(An irrational rotation algebra.)

This is one of the most tractable (yet interesting) examples of a crossed product; namely,

$$A_{\theta} \cong C(\mathbb{T}) \rtimes_{\alpha} \mathbb{Z},$$

where $\alpha : \mathbb{T} \to \mathbb{T}$ is rotation by θ .

(*u* maps to a generator of $C(\mathbb{T})$, while *v* maps to the canonical unitary of the crossed product.)

 A_{θ} is simple, separable, nuclear, and unital.

Rieffel, Pimsner–Voiculescu determined K-theory of A_{θ} , concluded $A_{\theta} \cong A_{\theta'}$ if and only if $\theta = \pm \theta'$.

Elliott–Evans showed A_{θ} is AT, i.e., an inductive limit of C*-algebras of the form

$$C(\mathbb{T},F)$$

where F is a finite dimensional C*-algebra.

A_{θ} is simple, separable, nuclear, and unital.

Rieffel, Pimsner–Voiculescu determined K-theory of A_{θ} , concluded $A_{\theta} \cong A_{\theta'}$ if and only if $\theta = \pm \theta'$.

Elliott–Evans showed A_{θ} is AT, i.e., an inductive limit of C*-algebras of the form

$$C(\mathbb{T},F)$$

where F is a finite dimensional C*-algebra.

 A_{θ} is simple, separable, nuclear, and unital.

Rieffel, Pimsner–Voiculescu determined K-theory of A_{θ} , concluded $A_{\theta} \cong A_{\theta'}$ if and only if $\theta = \pm \theta'$.

Elliott–Evans showed A_{θ} is AT, i.e., an inductive limit of C*-algebras of the form

 $C(\mathbb{T},F)$

where F is a finite dimensional C*-algebra.

ヘロト ヘワト ヘビト ヘビト

 A_{θ} is simple, separable, nuclear, and unital.

Rieffel, Pimsner–Voiculescu determined K-theory of A_{θ} , concluded $A_{\theta} \cong A_{\theta'}$ if and only if $\theta = \pm \theta'$.

Elliott–Evans showed A_{θ} is AT, i.e., an inductive limit of C*-algebras of the form

$$C(\mathbb{T},F)$$

where F is a finite dimensional C*-algebra.

• $C(X) \rtimes_{\alpha} \mathbb{Z} \cong C(Y) \rtimes_{\beta} \mathbb{Z}$ if and only if the two algebras have the same Elliott invariant. (This invariant is computable from the dynamical data, using e.g., the Pimsner–Voiculescu exact sequence.)

• $C(X) \rtimes_{\alpha} \mathbb{Z}$ has a "nice model": it is isomorphic to an inductive limit of subhomogeneous C*-algebras.

• $C(X) \rtimes_{\alpha} \mathbb{Z} \cong C(Y) \rtimes_{\beta} \mathbb{Z}$ if and only if the two algebras have the same Elliott invariant. (This invariant is computable from the dynamical data, using e.g., the Pimsner–Voiculescu exact sequence.)

• $C(X) \rtimes_{\alpha} \mathbb{Z}$ has a "nice model": it is isomorphic to an inductive limit of subhomogeneous C*-algebras.

• $C(X) \rtimes_{\alpha} \mathbb{Z} \cong C(Y) \rtimes_{\beta} \mathbb{Z}$ if and only if the two algebras have the same Elliott invariant. (This invariant is computable from the dynamical data, using e.g., the Pimsner–Voiculescu exact sequence.)

• $C(X) \rtimes_{\alpha} \mathbb{Z}$ has a "nice model": it is isomorphic to an inductive limit of subhomogeneous C*-algebras.

• $C(X) \rtimes_{\alpha} \mathbb{Z} \cong C(Y) \rtimes_{\beta} \mathbb{Z}$ if and only if the two algebras have the same Elliott invariant. (This invariant is computable from the dynamical data, using e.g., the Pimsner–Voiculescu exact sequence.)

• $C(X) \rtimes_{\alpha} \mathbb{Z}$ has a "nice model": it is isomorphic to an inductive limit of subhomogeneous C*-algebras.

くロト (過) (目) (日)

• $C(X) \rtimes_{\alpha} \mathbb{Z} \cong C(Y) \rtimes_{\beta} \mathbb{Z}$ if and only if the two algebras have the same Elliott invariant. (This invariant is computable from the dynamical data, using e.g., the Pimsner–Voiculescu exact sequence.)

• $C(X) \rtimes_{\alpha} \mathbb{Z}$ has a "nice model": it is isomorphic to an inductive limit of subhomogeneous C*-algebras.

(本間) (本語) (本語)

• $C(X) \rtimes_{\alpha} \mathbb{Z}$ has a "nice model": it is isomorphic to an inductive limit of subhomogeneous C*-algebras.

This requires the following:

Theorem (Elliott)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by an inductive limit of subhomogeneous C*-algebras with topological dimension ≤ 2 .

• $C(X) \rtimes_{\alpha} \mathbb{Z}$ has a "nice model": it is isomorphic to an inductive limit of subhomogeneous C*-algebras.

This requires the following:

Theorem (Elliott)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by an inductive limit of subhomogeneous C*-algebras with topological dimension ≤ 2 .

• $C(X) \rtimes_{\alpha} \mathbb{Z}$ has a "nice model": it is isomorphic to an inductive limit of subhomogeneous C*-algebras.

This requires the following:

Theorem (Elliott)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by an inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

Giol–Kerr: There are even counterexamples of the form $C(X) \rtimes_{\alpha} \mathbb{Z}$.

Obstructions Once again:

Theorem (Elliott)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

Giol–Kerr: There are even counterexamples of the form $C(X) \rtimes_{\alpha} \mathbb{Z}$.

Obstructions Once again:

Theorem (Elliott)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

Giol–Kerr: There are even counterexamples of the form $C(X) \rtimes_{\alpha} \mathbb{Z}$.

Obstructions

Once again:

Theorem (Elliott)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

くロト (過) (目) (日)

Giol–Kerr: There are even counterexamples of the form $C(X) \rtimes_{\alpha} \mathbb{Z}$.

Obstructions

Once again:

Theorem (Elliott)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

ヘロト 人間 ト くほ ト くほ トー

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

If C is a class of simple stably finite C*-algebras classified by $Ell(\cdot)$, and C contains the algebra in the above theorem then:

• Every C*-algebra in C has finite nuclear dimension (a concept marrying Lebesgue covering dimension with Lance's completely positive approximation property). This is the restriction violated by the known counterexamples.

• Every C*-algebra in C is quasidiagonal. (Every trace on every C*-algebra in C is quasidiagonal.)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

If C is a class of simple stably finite C*-algebras classified by $Ell(\cdot)$, and C contains the algebra in the above theorem then:

• Every C*-algebra in C has finite nuclear dimension (a concept marrying Lebesgue covering dimension with Lance's completely positive approximation property). This is the restriction violated by the known counterexamples.

• Every C*-algebra in C is quasidiagonal. (Every trace on every C*-algebra in C is quasidiagonal.)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

If C is a class of simple stably finite C*-algebras classified by $Ell(\cdot)$, and C contains the algebra in the above theorem then:

• Every C*-algebra in C has finite nuclear dimension (a concept marrying Lebesgue covering dimension with Lance's completely positive approximation property). This is the restriction violated by the known counterexamples.

• Every C*-algebra in C is quasidiagonal. (Every trace on every C*-algebra in C is quasidiagonal.)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

If C is a class of simple stably finite C*-algebras classified by $Ell(\cdot)$, and C contains the algebra in the above theorem then:

• Every C*-algebra in C has finite nuclear dimension (a concept marrying Lebesgue covering dimension with Lance's completely positive approximation property). This is the restriction violated by the known counterexamples.

• Every C*-algebra in C is quasidiagonal. (Every trace on every C*-algebra in C is quasidiagonal.)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

If C is a class of simple stably finite C*-algebras classified by $Ell(\cdot)$, and C contains the algebra in the above theorem then:

• Every C*-algebra in C has finite nuclear dimension (a concept marrying Lebesgue covering dimension with Lance's completely positive approximation property). This is the restriction violated by the known counterexamples.

• Every C*-algebra in C is quasidiagonal. (Every trace on every C*-algebra in C is quasidiagonal.)

Every "reasonable value" of the Elliott invariant, with nonempty trace simplex, is realized by a simple inductive limit of subhomogeneous C*-algebras with topological dimension \leq 2.

If C is a class of simple stably finite C*-algebras classified by $Ell(\cdot)$, and C contains the algebra in the above theorem then:

• Every C*-algebra in C has finite nuclear dimension (a concept marrying Lebesgue covering dimension with Lance's completely positive approximation property). This is the restriction violated by the known counterexamples.

• Every C*-algebra in C is quasidiagonal. (Every trace on every C*-algebra in C is quasidiagonal.)

If C is classified by $Ell(\cdot)$ then:

• Every C*-algebra in \mathcal{C} has finite nuclear dimension (a concept marrying Lebesgue covering dimension with Lance's completely positive approximation property). This is the restriction violated by the examples of Villadsen, Rørdam, Toms, Giol–Kerr.

• Every C*-algebra in C is quasidiagonal. (Every trace on every C*-algebra in C is quasidiagonal.)

 \bullet Every C*-algebra in ${\mathcal C}$ satisfies the Universal Coefficient Theorem.

Question

Can the latter two restrictions be violated, by simple, separable, nuclear, unital C*-algebras?

Revised Elliott Conjecture

If *A*, *B* are simple, separable, nuclear, unital C*-algebras with finite nuclear dimension then

 $A \cong B$

if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

イロト イポト イヨト イヨト

æ

Revised Elliott Conjecture

If A, B are simple, separable, nuclear, unital C*-algebras with finite nuclear dimension then

$$A \cong B$$

if and only if

$$\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$$

 $\textbf{A} \to \ell_\infty(\mathbb{N},\mathcal{Q})$

which induces an injective *-homomorphism $A \to \mathcal{Q}_{\omega} := \ell_{\infty}(\mathbb{N}, \mathcal{Q})/\{(x_n)|\lim_{n\to\omega} ||x_n|| = 0\},$ where ω is a free ultrafilter

In case A is nuclear, A is quasidiagonal iff it embeds into \mathcal{Q}_{ω} . (Cf. Connes's embedding problem.)

$$\mathsf{A}
ightarrow \ell_\infty(\mathbb{N},\mathcal{Q})$$

which induces an injective *-homomorphism $A \rightarrow \mathcal{Q}_{\omega} := \ell_{\infty}(\mathbb{N}, \mathcal{Q})/\{(x_n)|\lim_{n \rightarrow \omega} ||x_n|| = 0\},$

where ω is a free ultrafilter.

In case A is nuclear, A is quasidiagonal iff it embeds into \mathcal{Q}_{ω} . (Cf. Connes's embedding problem.)

$$\mathsf{A}
ightarrow \ell_\infty(\mathbb{N},\mathcal{Q})$$

which induces an injective *-homomorphism $A \to Q_{\omega} := \ell_{\infty}(\mathbb{N}, Q) / \{(x_n) | \lim_{n \to \omega} ||x_n|| = 0\},$ where ω is a free ultrafilter.

In case A is nuclear, A is quasidiagonal iff it embeds into \mathcal{Q}_{ω} . (Cf. Connes's embedding problem.)

$$\mathsf{A}
ightarrow \ell_\infty(\mathbb{N},\mathcal{Q})$$

which induces an injective *-homomorphism

$$A \to \mathcal{Q}_{\omega} := \ell_{\infty}(\mathbb{N}, \mathcal{Q}) / \{(x_n) | \lim_{n \to \omega} ||x_n|| = 0\},$$

where ω is a free ultrafilter.

In case A is nuclear, A is quasidiagonal iff it embeds into \mathcal{Q}_{ω} . (Cf. Connes's embedding problem.)

・聞き ・ヨト ・ヨト

A trace $\tau \in T(A)$ is *quasidiagonal* if there exists a c.p.c. map $A \to \ell_{\infty}(\mathbb{N}, \mathcal{Q})$ which induces an *-homomorphism $\psi : A \to \mathcal{Q}_{\omega}$

such that

 $\tau = \tau_{\mathcal{Q}_{\omega}} \circ \psi.$

Proposition

(i) If A is quasidiagonal and unital then it has a quasidiagonal trace.

(ii) If *A* has a faithful quasidiagonal trace then it is quasidiagonal.

ヘロト ヘアト ヘビト ヘビト

A trace $\tau \in T(A)$ is *quasidiagonal* if there exists a c.p.c. map $A \to \ell_{\infty}(\mathbb{N}, \mathcal{Q})$ which induces an *-homomorphism $\psi : A \to \mathcal{Q}_{\omega}$ such that

 $\tau = \tau_{\mathcal{Q}_{\omega}} \circ \psi.$

Proposition

(i) If A is quasidiagonal and unital then it has a quasidiagonal trace.

(ii) If *A* has a faithful quasidiagonal trace then it is quasidiagonal.

ヘロン 人間 とくほ とくほ とう

э.

A trace $\tau \in T(A)$ is *quasidiagonal* if there exists a c.p.c. map $A \to \ell_{\infty}(\mathbb{N}, \mathcal{Q})$ which induces an *-homomorphism $\psi : A \to \mathcal{Q}_{\omega}$ such that

$$\tau = \tau_{\mathcal{Q}_{\omega}} \circ \psi.$$

Proposition

(i) If A is quasidiagonal and unital then it has a quasidiagonal trace.

(ii) If *A* has a faithful quasidiagonal trace then it is quasidiagonal.

ヘロト 人間 ト くほ ト くほ トー

A trace $\tau \in T(A)$ is *quasidiagonal* if there exists a c.p.c. map $A \to \ell_{\infty}(\mathbb{N}, \mathcal{Q})$ which induces an *-homomorphism $\psi : A \to \mathcal{Q}_{\omega}$

such that

$$\tau = \tau_{\mathcal{Q}_{\omega}} \circ \psi.$$

Proposition

(i) If *A* is quasidiagonal and unital then it has a quasidiagonal trace.

(ii) If *A* has a faithful quasidiagonal trace then it is quasidiagonal.

ヘロト 人間 ト くほ ト くほ トー

A trace $\tau \in T(A)$ is *quasidiagonal* if there exists a c.p.c. map $A \to \ell_{\infty}(\mathbb{N}, \mathcal{Q})$ which induces an *-homomorphism $\psi : A \to \mathcal{Q}_{\omega}$

such that

$$\tau = \tau_{\mathcal{Q}_{\omega}} \circ \psi.$$

Proposition

(i) If *A* is quasidiagonal and unital then it has a quasidiagonal trace.

(ii) If *A* has a faithful quasidiagonal trace then it is quasidiagonal.

ヘロト ヘアト ヘビト ヘビト

The converse ("Rosenberg's conjecture") would be a consequence of the revised Elliott conjecture, since if *G* is amenable then $C^*_r(G)$ embeds into a simple, separable, nuclear, unital C*-algebra of finite nuclear dimension, namely

$$\bigotimes_{g\in G} M_{2^{\infty}} \rtimes G.$$

・ 同 ト ・ 臣 ト ・ 臣

The converse ("Rosenberg's conjecture") would be a consequence of the revised Elliott conjecture, since if *G* is amenable then $C^*_r(G)$ embeds into a simple, separable, nuclear, unital C^* -algebra of finite nuclear dimension, namely

$$\bigotimes_{g\in G} M_{2^{\infty}} \rtimes G.$$

The converse ("Rosenberg's conjecture") would be a consequence of the revised Elliott conjecture, since if *G* is amenable then $C^*_r(G)$ embeds into a simple, separable, nuclear, unital C*-algebra of finite nuclear dimension, namely

・ 同 ト ・ 臣 ト ・ 臣 ト …

The converse ("Rosenberg's conjecture") would be a consequence of the revised Elliott conjecture, since if *G* is amenable then $C^*_r(G)$ embeds into a simple, separable, nuclear, unital C*-algebra of finite nuclear dimension, namely

$$\bigotimes_{g\in G} M_{2^{\infty}} \rtimes G.$$

Let *A*, *B* be simple, separable, nuclear, unital C*-algebras, such that:

(a) *A*, *B* have finite nuclear dimension, (b) every trace on *A* and on *B* is quasidiagonal, and (c) *A*, *B* satisfy the Universal Coefficient Theorem. If $EII(A) \cong EII(B)$ then $A \cong B$.

Theorem (T–White–Winter)

Let *A* be a separable nuclear C*-algebra which satisfies the Universal Coefficient Theorem. Then every faithful trace on *A* is quasidiagonal.

ヘロト ヘワト ヘビト ヘビト

Let *A*, *B* be simple, separable, nuclear, unital C*-algebras, such that:

(a) A, B have finite nuclear dimension,

(b) every trace on A and on B is quasidiagonal, and (c) A, B satisfy the Universal Coefficient Theorem. If $EII(A) \cong EII(B)$ then $A \cong B$.

Theorem (T–White–Winter)

Let *A* be a separable nuclear C*-algebra which satisfies the Universal Coefficient Theorem. Then every faithful trace on *A* is quasidiagonal.

ヘロア ヘビア ヘビア・

Let *A*, *B* be simple, separable, nuclear, unital C*-algebras, such that:

(a) A, B have finite nuclear dimension,

(b) every trace on A and on B is quasidiagonal, and

(c) A, B satisfy the Universal Coefficient Theorem. If Ell(A) \cong Ell(B) then $A \cong B$.

Theorem (T–White–Winter)

Let *A* be a separable nuclear C*-algebra which satisfies the Universal Coefficient Theorem. Then every faithful trace on *A* is quasidiagonal.

ヘロア ヘビア ヘビア・

Let *A*, *B* be simple, separable, nuclear, unital C*-algebras, such that:

(a) A, B have finite nuclear dimension,

(b) every trace on *A* and on *B* is quasidiagonal, and (c) *A*, *B* satisfy the Universal Coefficient Theorem. If $EII(A) \cong EII(B)$ then $A \cong B$.

Theorem (T–White–Winter)

Let *A* be a separable nuclear C*-algebra which satisfies the Universal Coefficient Theorem. Then every faithful trace on *A* is quasidiagonal.

ヘロン ヘアン ヘビン ヘビン

Let *A*, *B* be simple, separable, nuclear, unital C*-algebras, such that:

(a) A, B have finite nuclear dimension,

(b) every trace on *A* and on *B* is quasidiagonal, and (c) *A*, *B* satisfy the Universal Coefficient Theorem. If $Ell(A) \cong Ell(B)$ then $A \cong B$.

Theorem (T–White–Winter)

Let *A* be a separable nuclear C*-algebra which satisfies the Universal Coefficient Theorem. Then every faithful trace on *A* is quasidiagonal.

ヘロン ヘアン ヘビン ヘビン

Let *A*, *B* be simple, separable, nuclear, unital C*-algebras, such that:

(a) A, B have finite nuclear dimension,

(b) every trace on *A* and on *B* is quasidiagonal, and (c) *A*. *B* satisfy the Universal Coefficient Theorem.

If $Ell(A) \cong Ell(B)$ then $A \cong B$.

Theorem (T–White–Winter)

Let A be a separable nuclear C*-algebra which satisfies the Universal Coefficient Theorem. Then every faithful trace on A is quasidiagonal.