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Some of the earliest non-type | C*-algebras to be studied are
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For the von Neumann algebraic construction:

Theorem (Murray—von Neumann)

Forany p,g e N\ {1},
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For the von Neumann algebraic construction:

Theorem (Murray—von Neumann)

Forany p,g e N\ {1},
SOT SOT
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For the C*-algebraic construction:

Proposition

If p,g € N\ {1} are coprime then
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First example

For the von Neumann algebraic construction:

Theorem (Murray—von Neumann)

Forany p,q € N\ {1},
SOT SOT
UMy =UMy

For the C*-algebraic construction:

Proposition

If p,g € N\ {1} are coprime then

To see this one needs some seeds of ideas from K-theory.
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Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras



Classification

If p,g € N\ {1} are coprime then

1
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Classification

If p,g € N\ {1} are coprime then

1

What further information do we need to distinguish
non-isomorphic C*-algebras?
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The “further information” should be in the form of algebraic
topology type invariants.
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Classification

What further information do we need to distinguish
Cr-algebras?

The “further information” should be in the form of algebraic
topology type invariants.

The Elliott invariant is ordered topological K-theory paired with
traces:
Ell(A) :=(Ko(A), Ko(A)+, [1alk(a), K1(A), T(A),

(,-) : Ko(A) x T(A) — R).
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Classification

The Elliott invariant is ordered topological K-theory paired with
traces:
Ell(A) :=(Ko(A), Ko(A)+, [1alk,(a), K1(A), T(A),

(,) : Ko(A) x T(A) — R).

Elliott Conjecture

If A, B are simple, separable, nuclear, unital C*-algebras then
A=~B
if and only if
Ell(A) = ElI(B).
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Second example

Let § € T = R/Z be an irrational angle.
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universal C*-algebra generated by two unitaries u, v such that
271'/9
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universal C*-algebra generated by two unitaries u, v such that
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(An irrational rotation algebra.)
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Second example

Let # € T = R/Z be an irrational angle. Define Ay to be the
universal C*-algebra generated by two unitaries u, v such that
271'/9
vu=e¢e

(An irrational rotation algebra.)

This is one of the most tractable (yet interesting) examples of a
crossed product; namely,

A9 = C(T) A Z,
where o : T — T is rotation by 6.
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Second example

Let # € T = R/Z be an irrational angle. Define Ay to be the
universal C*-algebra generated by two unitaries u, v such that
_ 271'/9
vu=e¢e
(An irrational rotation algebra.)

This is one of the most tractable (yet interesting) examples of a
crossed product; namely,

A9 = C(T) A Z,
where o : T — T is rotation by 6.

(u maps to a generator of C(T), while v maps to the canonical
unitary of the crossed product.)
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A9 = C(T) Ao Z,
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Second example

A9 = C(T) Ao Z,

Ay is simple, separable, nuclear, and unital.

Rieffel, Pimsner—\Voiculescu determined K-theory of Ay,
concluded Ay = Ay if and only if § = +6'.
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Second example

A9 = C(T) Ao Z,

Ay is simple, separable, nuclear, and unital.

Rieffel, Pimsner—\Voiculescu determined K-theory of Ay,
concluded Ay = Ay if and only if § = +6'.

Elliott—Evans showed Ay is AT, i.e., an inductive limit of
Cr-algebras of the form
C(T, F)

where F is a finite dimensional C*-algebra.
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Second example

Leta: X — X and g : Y — Y be minimal homeomorphisms.
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The Elliott conjecture predicts:

o C(X) xq Z = C(Y) xp Z if and only if the two algebras have
the same Elliott invariant.
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Leta: X — X and g : Y — Y be minimal homeomorphisms.
The Elliott conjecture predicts:

o C(X) xq Z = C(Y) xp Z if and only if the two algebras have
the same Elliott invariant. (This invariant is computable from the
dynamical data, using e.g., the Pimsner—Voiculescu exact
sequence.)
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Leta: X — X and g : Y — Y be minimal homeomorphisms.
The Elliott conjecture predicts:

o C(X) xq Z = C(Y) xp Z if and only if the two algebras have
the same Elliott invariant. (This invariant is computable from the
dynamical data, using e.g., the Pimsner—Voiculescu exact
sequence.)

e C(X) x4 Z has a “nice model”: it is isomorphic to an inductive
limit of subhomogeneous C*-algebras.
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Second example

e C(X) x4 Z has a “nice model”: it is isomorphic to an inductive
limit of subhomogeneous C*-algebras.

This requires the following:

Theorem (Elliott)

Every “reasonable value” of the Elliott invariant, with nonempty
trace simplex, is realized by an inductive limit of
subhomogeneous C*-algebras with topological dimension < 2.
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Elliott conjecture: counterexamples

Villadsen, Rardam, Toms: There are counterexamples to the
Elliott conjecture.
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C(X) xq Z.
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Elliott conjecture: counterexamples

Villadsen, Rardam, Toms: There are counterexamples to the
Elliott conjecture.

Giol-Kerr: There are even counterexamples of the form
C(X) xq Z.

Obstructions
Once again:

Theorem (Elliott)

Every “reasonable value” of the Elliott invariant, with nonempty
trace simplex, is realized by a simple inductive limit of
subhomogeneous C*-algebras with topological dimension < 2.
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Elliott conjecture: counterexamples

Theorem (Elliott)

Every “reasonable value” of the Elliott invariant, with nonempty
trace simplex, is realized by a simple inductive limit of
subhomogeneous C*-algebras with topological dimension < 2.

If C is a class of simple stably finite C*-algebras classified by
Ell(-),
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Elliott conjecture: counterexamples

Theorem (Elliott)

Every “reasonable value” of the Elliott invariant, with nonempty
trace simplex, is realized by a simple inductive limit of
subhomogeneous C*-algebras with topological dimension < 2.

If C is a class of simple stably finite C*-algebras classified by
Ell(-), and C contains the algebra in the above theorem then:

e Every C*-algebra in C has finite nuclear dimension (a concept
marrying Lebesgue covering dimension with Lance’s
completely positive approximation property).
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subhomogeneous C*-algebras with topological dimension < 2.

If C is a class of simple stably finite C*-algebras classified by
Ell(-), and C contains the algebra in the above theorem then:

e Every C*-algebra in C has finite nuclear dimension (a concept
marrying Lebesgue covering dimension with Lance’s
completely positive approximation property). This is the
restriction violated by the known counterexamples.
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Theorem (Elliott)

Every “reasonable value” of the Elliott invariant, with nonempty
trace simplex, is realized by a simple inductive limit of
subhomogeneous C*-algebras with topological dimension < 2.

If C is a class of simple stably finite C*-algebras classified by
Ell(-), and C contains the algebra in the above theorem then:

e Every C*-algebra in C has finite nuclear dimension (a concept
marrying Lebesgue covering dimension with Lance’s
completely positive approximation property). This is the
restriction violated by the known counterexamples.
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e Every C*-algebra in C satisfies the Universal Coefficient
Theorem.
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Elliott conjecture: counterexamples

If C is classified by ElI(-) then:

e Every C*-algebra in C has finite nuclear dimension (a concept
marrying Lebesgue covering dimension with Lance’s
completely positive approximation property). This is the
restriction violated by the examples of Villadsen, Rardam,
Toms, Giol-Kerr.

e Every C*-algebra in C is quasidiagonal. (Every trace on every
C*-algebra in C is quasidiagonal.)

e Every C*-algebra in C satisfies the Universal Coefficient
Theorem.

Can the latter two restrictions be violated, by simple, separable,
nuclear, unital C*-algebras?
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Elliott conjecture: revised

Revised Elliott Conjecture

If A, B are simple, separable, nuclear, unital C*-algebras
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Elliott conjecture: revised

Revised Elliott Conjecture

If A, B are simple, separable, nuclear, unital C*-algebras with
finite nuclear dimension then
A=B
if and only if
Ell(A) = ElI(B).
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Quasidiagonality

A separable C*-algebra A is quasidiagonal if there exists a
c.p.c. map
A= (N, Q)
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A separable C*-algebra A is quasidiagonal if there exists a
c.p.c. map
A= (N, Q)

which induces an injective *-homomorphism
A= Qu = LN, Q)/{(xn)| Jim [[al| = O},
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Quasidiagonality

A separable C*-algebra A is quasidiagonal if there exists a
c.p.c. map
A= (N, Q)

which induces an injective *-homomorphism
A= Qu = LN, Q)/{(xn)| Jim [[al| = O},
where w is a free ultrafilter.
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Quasidiagonality

A separable C*-algebra A is quasidiagonal if there exists a
c.p.c. map
A= (N, Q)

which induces an injective *-homomorphism
A= Qu = LN, Q)/{(xn)| Jim [[al| = O},
where w is a free ultrafilter.

In case Ais nuclear, A is quasidiagonal iff it embeds into

Qu-
(Cf. Connes’s embedding problem.)
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Quasidiagonality

A trace 7 € T(A) is quasidiagonal if there exists a c.p.c. map
A— (N, Q)
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Quasidiagonality

A trace 7 € T(A) is quasidiagonal if there exists a c.p.c. map
A— (N, Q)
which induces an *-homomorphism
Vi A— Q,
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Quasidiagonality

A trace 7 € T(A) is quasidiagonal if there exists a c.p.c. map

A— (N, Q)
which induces an *-homomorphism
Vi A— Q,
such that
T =Tg, 0.
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Quasidiagonality

A trace 7 € T(A) is quasidiagonal if there exists a c.p.c. map

A— (N, Q)
which induces an *-homomorphism
Vi A— Q,
such that
T =Tg, 0.

Proposition

(i) If Ais quasidiagonal and unital then it has a quasidiagonal
trace.
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Quasidiagonality

A trace 7 € T(A) is quasidiagonal if there exists a c.p.c. map

A— (N, Q)
which induces an *-homomorphism
Vi A— Q,
such that
T =Tg, 0.

Proposition

(i) If Ais quasidiagonal and unital then it has a quasidiagonal
trace.

(i) If A has a faithful quasidiagonal trace then it is
quasidiagonal.
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Quasidiagonality

Rosenberg ('87): If G is a discrete group and C*,(G) is
quasidiagonal then G is amenable.
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Quasidiagonality

Rosenberg ('87): If G is a discrete group and C*,(G) is
quasidiagonal then G is amenable.

The converse (“Rosenberg’s conjecture”) would be a
consequence of the revised Elliott conjecture,
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Quasidiagonality

Rosenberg ('87): If G is a discrete group and C*,(G) is
quasidiagonal then G is amenable.

The converse (“Rosenberg’s conjecture”) would be a
consequence of the revised Elliott conjecture, since if G is
amenable then C*,(G) embeds into a simple, separable,
nuclear, unital C*-algebra of finite nuclear dimension, namely
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Classification: results

Theorem (Gong—Lin—Niu, Elliott—-Gong—Lin—Niu)

Let A, B be simple, separable, nuclear, unital C*-algebras, such
that:
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Classification: results

Theorem (Gong—Lin—Niu, Elliott—-Gong—Lin—Niu)

Let A, B be simple, separable, nuclear, unital C*-algebras, such
that:

(a) A, B have finite nuclear dimension,
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Classification: results

Theorem (Gong—Lin—Niu, Elliott—-Gong—Lin—Niu)

Let A, B be simple, separable, nuclear, unital C*-algebras, such
that:

(a) A, B have finite nuclear dimension,

(b) every trace on A and on B is quasidiagonal, and

(c) A, B satisfy the Universal Coefficient Theorem.

If ElI(A) = Ell(B) then A= B.
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Classification: results

Theorem (Gong—Lin—Niu, Elliott—-Gong—Lin—Niu)

Let A, B be simple, separable, nuclear, unital C*-algebras, such
that:

(a) A, B have finite nuclear dimension,

(b) every trace on A and on B is quasidiagonal, and

(c) A, B satisfy the Universal Coefficient Theorem.

If ElI(A) = Ell(B) then A= B.

Theorem (T-White—Winter)

Let A be a separable nuclear C*-algebra which satisfies the
Universal Coefficient Theorem. Then every faithful trace on A is
quasidiagonal.
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