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First example

Some of the earliest non-type I C*-algebras to be studied are
the UHF algebras.
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First example

For the von Neumann algebraic construction:

Theorem (Murray–von Neumann)

For any p,q ∈ N \ {1},⋃
Mpk

SOT
=
⋃

Mqk

SOT
.

For the C*-algebraic construction:

Proposition

If p,q ∈ N \ {1} are coprime then
Mp∞ 6∼= Mq∞ .

To see this one needs some seeds of ideas from K-theory.
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Classification

Proposition

If p,q ∈ N \ {1} are coprime then
Mp∞ 6∼= Mq∞ .

Proposition

K0(Mp∞) ∼= Z
[

1
p

]
.

Question
What further information do we need to distinguish
non-isomorphic C*-algebras?

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras



Classification

Proposition

If p,q ∈ N \ {1} are coprime then
Mp∞ 6∼= Mq∞ .

Proposition

K0(Mp∞) ∼= Z
[

1
p

]
.

Question
What further information do we need to distinguish
non-isomorphic C*-algebras?

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras



Classification

Proposition

If p,q ∈ N \ {1} are coprime then
Mp∞ 6∼= Mq∞ .

Proposition

K0(Mp∞) ∼= Z
[

1
p

]
.

Question
What further information do we need to distinguish
non-isomorphic C*-algebras?

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras



Classification

Question
What further information do we need to distinguish
C*-algebras?

The “further information” should be in the form of algebraic
topology type invariants.

The Elliott invariant is ordered topological K-theory paired with
traces:

Ell(A) :=(K0(A),K0(A)+, [1A]K0(A),K1(A),T (A),

〈·, ·〉 : K0(A)× T (A)→ R).
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Second example

Let θ ∈ T ∼= R/Z be an irrational angle. Define Aθ to be the
universal C*-algebra generated by two unitaries u, v such that

vu = e2πiθuv .
(An irrational rotation algebra.)

This is one of the most tractable (yet interesting) examples of a
crossed product; namely,

Aθ ∼= C(T)oα Z,
where α : T→ T is rotation by θ.

(u maps to a generator of C(T), while v maps to the canonical
unitary of the crossed product.)
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Second example

Aθ ∼= C(T)oα Z,

Aθ is simple, separable, nuclear, and unital.

Rieffel, Pimsner–Voiculescu determined K-theory of Aθ,
concluded Aθ ∼= Aθ′ if and only if θ = ±θ′.

Elliott–Evans showed Aθ is AT, i.e., an inductive limit of
C*-algebras of the form

C(T,F )

where F is a finite dimensional C*-algebra.

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras



Second example

Aθ ∼= C(T)oα Z,

Aθ is simple, separable, nuclear, and unital.

Rieffel, Pimsner–Voiculescu determined K-theory of Aθ,
concluded Aθ ∼= Aθ′ if and only if θ = ±θ′.

Elliott–Evans showed Aθ is AT, i.e., an inductive limit of
C*-algebras of the form

C(T,F )

where F is a finite dimensional C*-algebra.

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras



Second example

Aθ ∼= C(T)oα Z,

Aθ is simple, separable, nuclear, and unital.

Rieffel, Pimsner–Voiculescu determined K-theory of Aθ,
concluded Aθ ∼= Aθ′ if and only if θ = ±θ′.

Elliott–Evans showed Aθ is AT, i.e., an inductive limit of
C*-algebras of the form

C(T,F )

where F is a finite dimensional C*-algebra.

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras



Second example

Aθ ∼= C(T)oα Z,

Aθ is simple, separable, nuclear, and unital.

Rieffel, Pimsner–Voiculescu determined K-theory of Aθ,
concluded Aθ ∼= Aθ′ if and only if θ = ±θ′.

Elliott–Evans showed Aθ is AT, i.e., an inductive limit of
C*-algebras of the form

C(T,F )

where F is a finite dimensional C*-algebra.

Aaron Tikuisis Quasidiagonality and the classification of nuclear C*-algebras



Second example

Let α : X → X and β : Y → Y be minimal homeomorphisms.
The Elliott conjecture predicts:

• C(X )oα Z ∼= C(Y )oβ Z if and only if the two algebras have
the same Elliott invariant. (This invariant is computable from the
dynamical data, using e.g., the Pimsner–Voiculescu exact
sequence.)

• C(X )oα Z has a “nice model”: it is isomorphic to an inductive
limit of subhomogeneous C*-algebras.
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Second example

• C(X )oα Z has a “nice model”: it is isomorphic to an inductive
limit of subhomogeneous C*-algebras.

This requires the following:

Theorem (Elliott)
Every “reasonable value” of the Elliott invariant, with nonempty
trace simplex, is realized by an inductive limit of
subhomogeneous C*-algebras with topological dimension ≤ 2.
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Elliott conjecture: counterexamples

Villadsen, Rørdam, Toms: There are counterexamples to the
Elliott conjecture.

Giol–Kerr: There are even counterexamples of the form
C(X )oα Z.

Obstructions
Once again:

Theorem (Elliott)
Every “reasonable value” of the Elliott invariant, with nonempty
trace simplex, is realized by a simple inductive limit of
subhomogeneous C*-algebras with topological dimension ≤ 2.
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Elliott conjecture: counterexamples

Theorem (Elliott)
Every “reasonable value” of the Elliott invariant, with nonempty
trace simplex, is realized by a simple inductive limit of
subhomogeneous C*-algebras with topological dimension ≤ 2.

If C is a class of simple stably finite C*-algebras classified by
Ell(·), and C contains the algebra in the above theorem then:

• Every C*-algebra in C has finite nuclear dimension (a concept
marrying Lebesgue covering dimension with Lance’s
completely positive approximation property). This is the
restriction violated by the known counterexamples.

• Every C*-algebra in C is quasidiagonal. (Every trace on every
C*-algebra in C is quasidiagonal.)

• Every C*-algebra in C satisfies the Universal Coefficient
Theorem.
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Elliott conjecture: counterexamples

If C is classified by Ell(·) then:

• Every C*-algebra in C has finite nuclear dimension (a concept
marrying Lebesgue covering dimension with Lance’s
completely positive approximation property). This is the
restriction violated by the examples of Villadsen, Rørdam,
Toms, Giol–Kerr.

• Every C*-algebra in C is quasidiagonal. (Every trace on every
C*-algebra in C is quasidiagonal.)

• Every C*-algebra in C satisfies the Universal Coefficient
Theorem.

Question
Can the latter two restrictions be violated, by simple, separable,
nuclear, unital C*-algebras?
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Elliott conjecture: revised

Revised Elliott Conjecture
If A,B are simple, separable, nuclear, unital C*-algebras with
finite nuclear dimension then

A ∼= B
if and only if

Ell(A) ∼= Ell(B).
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Quasidiagonality

A separable C*-algebra A is quasidiagonal if there exists a
c.p.c. map

A→ `∞(N,Q)

which induces an injective *-homomorphism
A→ Qω := `∞(N,Q)/{(xn)| lim

n→ω
‖xn‖ = 0},

where ω is a free ultrafilter.

In case A is nuclear, A is quasidiagonal iff it embeds into
Qω.

(Cf. Connes’s embedding problem.)
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Quasidiagonality

A trace τ ∈ T (A) is quasidiagonal if there exists a c.p.c. map
A→ `∞(N,Q)

which induces an *-homomorphism
ψ : A→ Qω

such that
τ = τQω ◦ ψ.

Proposition
(i) If A is quasidiagonal and unital then it has a quasidiagonal
trace.
(ii) If A has a faithful quasidiagonal trace then it is
quasidiagonal.
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Quasidiagonality

Rosenberg (’87): If G is a discrete group and C*r (G) is
quasidiagonal then G is amenable.

The converse (“Rosenberg’s conjecture”) would be a
consequence of the revised Elliott conjecture, since if G is
amenable then C*r (G) embeds into a simple, separable,
nuclear, unital C*-algebra of finite nuclear dimension, namely⊗

g∈G

M2∞ o G.
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Classification: results

Theorem (Gong–Lin–Niu, Elliott–Gong–Lin–Niu)

Let A,B be simple, separable, nuclear, unital C*-algebras, such
that:
(a) A,B have finite nuclear dimension,
(b) every trace on A and on B is quasidiagonal, and
(c) A,B satisfy the Universal Coefficient Theorem.
If Ell(A) ∼= Ell(B) then A ∼= B.

Theorem (T–White–Winter)
Let A be a separable nuclear C*-algebra which satisfies the
Universal Coefficient Theorem. Then every faithful trace on A is
quasidiagonal.
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