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Motivation

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von
Neumann semigroup V(A).

Definition (W(A)-The Cuntz semigroup)

Let A be a C∗-algebra and a, b ∈ A+.

a is Cuntz subequivalent to b
(a - b) ←→

∃ a sequence (xn) in A such
that ‖xnbx∗n − a‖ → 0

a and b are Cuntz equivalent if a - b and b - a (denoted a ∼ b).

Extending this relation to M∞(A)+ =
⋃∞

n=1 Mn(A)+, one defines the Cuntz
semigroup

W(A) = M∞(A)+/∼ .

Denote the equivalence classes by 〈a〉. The operation and order are given by

〈a〉+ 〈b〉 = 〈
(

a 0
0 b

)
〉, 〈a〉 ≤ 〈b〉 if a - b.

The order in W(A) is usually not the algebraic order.
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The Cuntz Semigroup

Continuity of W(A)

If A is a C*-algebra of the form A = lim−→(Ai ), then in general
W(A) 6= lim−→W(Ai ).

Remark

The assignment A 7→W(A) does not preserve inductive limits

Coward-Elliott-Ivanescu in 2008 defined Cu(A) for any C *-algebra, which
is a modified version of the Cuntz semigroup.
In fact, Cu(A) can be identified with W(A⊗K).

Properties

Cu(A) belongs to a category of semigroups called Cu that admits inductive
limits that are not algebraic.

The assignment A 7→ Cu(A) is sequentially continuous.



The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?——————————————— Joan Bosa Puigredon

Motivation

The Cuntz Semigroup

Continuity of W(A)

If A is a C*-algebra of the form A = lim−→(Ai ), then in general
W(A) 6= lim−→W(Ai ).

Remark

The assignment A 7→W(A) does not preserve inductive limits

Coward-Elliott-Ivanescu in 2008 defined Cu(A) for any C *-algebra, which
is a modified version of the Cuntz semigroup.
In fact, Cu(A) can be identified with W(A⊗K).

Properties

Cu(A) belongs to a category of semigroups called Cu that admits inductive
limits that are not algebraic.

The assignment A 7→ Cu(A) is sequentially continuous.



The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?——————————————— Joan Bosa Puigredon

Motivation

The Cuntz Semigroup

Continuity of W(A)

If A is a C*-algebra of the form A = lim−→(Ai ), then in general
W(A) 6= lim−→W(Ai ).

Remark

The assignment A 7→W(A) does not preserve inductive limits

Coward-Elliott-Ivanescu in 2008 defined Cu(A) for any C *-algebra, which
is a modified version of the Cuntz semigroup.
In fact, Cu(A) can be identified with W(A⊗K).

Properties

Cu(A) belongs to a category of semigroups called Cu that admits inductive
limits that are not algebraic.

The assignment A 7→ Cu(A) is sequentially continuous.



The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?——————————————— Joan Bosa Puigredon

Motivation

The Cuntz Semigroup

Continuity of W(A)

If A is a C*-algebra of the form A = lim−→(Ai ), then in general
W(A) 6= lim−→W(Ai ).

Remark

The assignment A 7→W(A) does not preserve inductive limits

Coward-Elliott-Ivanescu in 2008 defined Cu(A) for any C *-algebra, which
is a modified version of the Cuntz semigroup.
In fact, Cu(A) can be identified with W(A⊗K).

Properties

Cu(A) belongs to a category of semigroups called Cu that admits inductive
limits that are not algebraic.

The assignment A 7→ Cu(A) is sequentially continuous.



The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?——————————————— Joan Bosa Puigredon

Motivation

The Cuntz Semigroup

Continuity of W(A)

If A is a C*-algebra of the form A = lim−→(Ai ), then in general
W(A) 6= lim−→W(Ai ).

Remark

The assignment A 7→W(A) does not preserve inductive limits

Coward-Elliott-Ivanescu in 2008 defined Cu(A) for any C *-algebra, which
is a modified version of the Cuntz semigroup.
In fact, Cu(A) can be identified with W(A⊗K).

Properties

Cu(A) belongs to a category of semigroups called Cu that admits inductive
limits that are not algebraic.

The assignment A 7→ Cu(A) is sequentially continuous.



The Category Cu. Which maps are the correct ones? the *-homomorphisms or cpc order zero maps?——————————————— Joan Bosa Puigredon

Motivation

The Cuntz Semigroup

The category Cu

Definition

Let a, b be elements in a partially ordered set S . Then, we will say that a� b
(way-below) if for any increasing sequence {yn} with supremum in S such that
b ≤ sup(yn), there exists m such that a ≤ ym.

Definition (Cu)

An object of Cu is a partially ordered semigroup with zero element S such that:

The order, in S, is compatible with the addition, i.e., if xi ≤ yi , i ∈ {1, 2}
then x1 + x2 ≤ y1 + y2,

every increasing sequence in S has a supremum,

for all x ∈ S there exists a sequence {xn} such that x = sup(xn) where
xn � xn+1,

the relation � and suprema are compatible with addition.

The maps of Cu are those morphisms which preserve the order, the zero, the
suprema of increasing sequences and the relation �.
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The Cuntz Semigroup

Remark

In fact, 〈(a− ε)+〉 � 〈a〉 in Cu(A) for all ε > 0 and for all a ∈ A+.

Example

Let X be a compact metric space. Then, if O(X ) is the set of open sets in X
ordered by inclusion, it follows that O(X ) ∈ Cu. In this, we have that
U � V for U,V ∈ O(X ), if there exists a compact subset K ⊆ X such that
U ⊆ K ⊆ V .

Let X be a finite-dimensional compact metric space, then Lsc(X ,N) ∈ Cu,
where N = N ∪ {∞}.

Remark

Not all the maps between semigroups preserve �, usually maps between two
semigroups just preserve (+,≤, sup).
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Motivation

Maps between C*-algebras

Let A,B be two C*-algebras and ϕ : A→ B a map. There are various types of
interesting maps:

Linear Maps
//

cpc order zero

OO Continuous *-homomorphisms

Definition

A map ϕ : A→ B is positive if ∀a ≥ 0 =⇒ ϕ(a) ≥ 0, and it is completely
positive (c.p.) if ϕn : Mn(A)→ Mn(B) is positive.

A c.p. map ϕ : A→ B is order zero if for a, b ∈ A+ such that
ab = 0 =⇒ ϕ(a)ϕ(b) = 0.
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Theorem (Winter-Zacharias ’09)

Let A,B be C*-algebras and ϕ : A→ B a cpc order zero map and set
C = C∗(ϕ(A)) ⊆ B. Then, there exists

hϕ ∈M(C ) ∩ C ′ a positive element

a *-homomorphism πϕ : A→M(C ) ∩ {h}′

such that
πϕ(a)hϕ = ϕ(a) ∀a ∈ A.

Consequences

With the same notation:

(Functional calculus on cpc⊥)If f ∈ C0((0, 1]), then f (ϕ) : A→ B given by
f (ϕ)(a) = f (hϕ)πϕ(a) is a well-defined c.p. order zero map.

ϕ induces a morphism of ordered semigroups

Cu(ϕ) : Cu(A)→ Cu(B)

via Cu(ϕ)(〈a〉) = 〈ϕk(a)〉 if a ∈ Mk(A)+. (They don’t preserve �)
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Motivation

Maps between C*-algebras

Proposition

Let A,B be C*-algebras. Then every cpc order zero map ϕ : A→ B naturally
induces a map Cu(ϕ) : Cu(A)→ Cu(B) which preserves addition, order, the zero
element and the suprema of increasing sequences, but, in general, not the
way-below.
If, furthermore, ϕ is an *-homomorphism, then Cu(ϕ) preserves the way-below
relation.

��
Framework to study:

Question

When maps at the level of Cuntz Semigroup can be lifted to maps between
C*-algebras?

(Possible answer) Study a bivariant verion of Cuntz Semigroup (as done by
KK -theory)
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The Bivariant Cuntz Semigroup

Definition (Cu(A,B))

Let A,B be two C∗-algebras and ψ,ϕ ∈ C∗Alg++
0 (A⊗K,B ⊗K) be cpc⊥

between the C*-algebras A and B.

ψ is Cuntz subequivalent to ϕ
(ψ - ϕ) ←→

∃{zn}n∈N ∈ B |
‖z∗nϕ(a)zn − ψ(a)‖ → 0∀a ∈ A.

ϕ and ψ are Cuntz equivalent if ϕ - ψ and ψ - ϕ (denoted ϕ ∼ ψ).

Using the above equivalence relation, one defines the bivariant Cuntz semigroup as

Cu(A,B) = C∗Alg++
0 (A⊗K,B ⊗K)/∼ .

Denote the equivalence classes by 〈ϕ〉. The operation and order are given by

〈ϕ〉+ 〈ψ〉 = 〈
(
ϕ 0
0 ψ

)
〉, 〈ϕ〉 ≤ 〈ψ〉 if ϕ - ψ.

It follows that it is an abelian semigroup
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