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C*-algebras

A C*-algebra is a subalgebra of B(#) which is norm-closed
and closed under adjoints.

Isomorphism of C*-algebras: this notion makes no reference to
the Hilbert space.

C*-algebras A and B are isomorphic if there is a bijective
linear map A — B which preserves multiplication and adjoints.

(Such a map automatically preserves the norm.)
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C*-algebras: examples

M, (C) = n x n matrices with complex entries.
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C*-algebras: examples

M, (C) = n x n matrices with complex entries.

This is B(H) where H = C".

Multiplication = matrix multiplication.
Adjoint = conjugate transpose.
||All = operator norm = (largest eigenvalue of A*A)'/2,

Every finite dimensional C*-algebra is a direct sum of matrix
algebras.
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C*-algebras: examples

Cp(X, C) = continuous, bounded functions X — C, where X is a
topological space.
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C*-algebras: examples

Cp(X, C) = continuous, bounded functions X — C, where X is a
topological space.

This can be identified with “diagonal” operators on ¢2(X).
Multiplication = pointwise multiplication.
Adjoint = pointwise conjugation.

1]l = supxex ()]
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C*-algebras: examples

Cyp(X, C) = continuous, bounded functions X — C, where X is a
topological space.

Every commutative unital C*-algebra is C(X, C) for a unique
compact Hausdorff space X.

In fact, X — C(X, C) is an equivalence of categories.

C*-algebras are considered noncommutative topological
spaces.

Many topological concepts generalise to C*-algebras, eg.
K-theory.
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Interesting C*-algebras can be constructed from groups,
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C*-algebras: examples

Interesting C*-algebras can be constructed from groups,
dynamical systems, directed graphs, rings, coarse metric
spaces,...

What do properties of a C*-algebra tell us about the object from
which it is constructed?

C*-properties: amenability of a group; exactness of a group,...
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UHF algebras

Consider the following C*-algebra:

)

M.(C)
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CIC|CIC
CIC|C|C
CIC|CIC




UHF algebras

Consider the following C*-algebra:

c|C | c|c c|c | c|C
CIC| CIC ClIC|CIC

ClC|C|IC | c|c|cic
CiC|CIC J CIC|CIC

CF qt CF qC
CIC| CIC ClC|CIC
C|C | C|C C|C | C|C
ClC| CIC clic|clc

Mg(C)
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UHF algebras

Consider the following C*-algebra:

S i
DA
e

g el s e

Moo = Mp(C)®2°,

a uniformly hyperfinite algebra.
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UHF algebras
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UHF algebras

Mowe = Mp(C)F.

A noncommutative Cantor set construction.
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Moo = Mp(CT)o.

A noncommutative Cantor set construction.
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UHF algebras

Mowe = Mp(C)F.

A noncommutative Cantor set construction.

N
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UHF algebras

Moo = Mp(CT)o>

A noncommutative Cantor set construction.
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UHF algebras

Mowe = Mp(C)F.

A noncommutative Cantor set construction.

Can likewise define My~ for any p € N.
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we go about proving it?
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Classification

Conjecture (Elliott, ~1990)

If A, B are separable, simple, amenable C*-algebras then A= B
if and only if Ell(A) = ElI(B), where ElI(A) is K-theory paired
with traces (the Elliott invariant).

Separable: 3 dense sequence.
Simple: no nontrivial closed, two-sided ideals.
Amenable: many equivalent definitions, including a finite

dimensional approximation property, akin to noncommutative
partitions of unity.
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If A, B are separable, simple, amenable C*-algebras then A= B
if and only if Ell(A) = ElI(B), where ElI(A) is K-theory paired
with traces (the Elliott invariant).

K-theory: arose from topological K-theory, a cohomology theory
founded in vector bundles.
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Traces: a trace on A is a positive linear functional : A — C
such that 7(ab) = 7(ba) for all a, b.
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Classification

Conjecture (Elliott, ~1990)

If A, B are separable, simple, amenable C*-algebras then A= B
if and only if Ell(A) = ElI(B), where ElI(A) is K-theory paired
with traces (the Elliott invariant).

K-theory: arose from topological K-theory, a cohomology theory
founded in vector bundles.

“Computable” (exact sequences, Kinneth formula, ...)
Eg. Ko(Mp) = Z[,l)]

Traces: a trace on A is a positive linear functional : A — C
such that 7(ab) = 7(ba) for all a, b.

Eg. Trace on M,(C).
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Classification — counterexamples

Conjecture (Elliott, ~1990)

If A, B are separable, simple, amenable C*-algebras then A= B
if and only if Ell(A) = ElI(B), where ElI(A) is K-theory paired
with traces (the Elliott invariant).
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Classification — counterexamples
Conjecture (Elliott, ~1990)

If A, B are separable, simple, amenable C*-algebras then A= B
if and only if Ell(A) = ElI(B), where ElI(A) is K-theory paired
with traces (the Elliott invariant).

v

Theorem (Villadsen, Rgrdam, Toms, ~2000)

There exist separable, simple, nuclear, unital C*-algebras A, B
such that ElI(A) = Ell(B) but A % B.
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Why? A seems to have “high topological dimension” and B has
“low topological dimension”.

Aaron Tikuisis C*-algebras, classification, and regularity



Classification — counterexamples
Conjecture (Elliott, ~1990)

If A, B are separable, simple, amenable C*-algebras then A= B
if and only if Ell(A) = ElI(B), where ElI(A) is K-theory paired
with traces (the Elliott invariant).

v

Theorem (Villadsen, Rgrdam, Toms, ~2000)

There exist separable, simple, nuclear, unital C*-algebras A, B
such that ElI(A) = Ell(B) but A % B.

Why? A seems to have “high topological dimension” and B has
“low topological dimension”.

Infact, B= A® Moe.
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The current state of classification

Can we make the dichotomy between “high topological
dimension” and “low topological dimension” precise?
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Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with
“low topological dimension” are classified (as in the Elliott
conjecture)?

Aaron Tikuisis C*-algebras, classification, and regularity



The current state of classification

Can we make the dichotomy between “high topological
dimension” and “low topological dimension” precise?

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with
“low topological dimension” are classified (as in the Elliott
conjecture)?

Problem: Establish what the Toms-Winter properties mean for
Cr-algebra constructions, eg. group C*-algebras.
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 1: nuclear dimension

Partition of unity
(topology)
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 1: nuclear dimension

Partition of unity
(topology)

Noncommutative
POU = amenability
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 1: nuclear dimension

Partition of unity

(topology)
Noncommutative Lebesgue covering
POU = amenability dimension
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 1: nuclear dimension

Partition of unity

(topology)
Noncommutative Lebesgue covering
POU = amenability dimension
pN v

Nuclear dimension
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 1: nuclear dimension

Partition of unity

(topology)
Noncommutative Lebesgue covering
POU = amenability dimension
pN v

Nuclear dimension

Eg. The nuclear dimension of C(X,C) is dim X.



Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra A ® Mo~ has much more
uniformity;
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra A ® Mo~ has much more
uniformity; is “low dimensional” in a sense.
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra A ® Mo~ has much more
uniformity; is “low dimensional” in a sense.

Ais Mr-stable if A= A® M.
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra A ® Mo~ has much more
uniformity; is “low dimensional” in a sense.

Ais Mr-stable if A= A® M.

Observe Moo = Mjoo =2 Moo @ Mo
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra A ® Mo~ has much more
uniformity; is “low dimensional” in a sense.

Ais Mr-stable if A= A® M.
Observe Moo = Mjoo =2 Moo @ Mo

Unfortunately, many C*-algebras (such as Mz~) are not
M, -stable.
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability
Ais Mo-stable if A~ AR M.

Unfortunately, many C*-algebras (such as Mz~) are not
Mo -stable.
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability
Ais Mo-stable if A~ AR M.

Unfortunately, many C*-algebras (such as Mz~) are not
Mo -stable.

There is another C*-algebra, the Jiang-Su algebra Z, with
similar properties to Mo~ (9. Z = Z ® Z),
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability
Ais Mo-stable if A~ AR M.

Unfortunately, many C*-algebras (such as Mz~) are not
Mo -stable.

There is another C*-algebra, the Jiang-Su algebra Z, with

similar properties to Mo~ (eg. Z = Z ® Z), and many
C*-algebras are Z-stable (eg. Mp= = Mp=~ ® Z).
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Theorem (Winter 2012, T 2014)

If Ais a separable simple C*-algebra with finite nuclear
dimension then A is Z-stable (unless A = M,(C) or K(H)).
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Theorem (Winter 2012, T 2014)

If Ais a separable simple C*-algebra with finite nuclear
dimension then A is Z-stable (unless A = M,(C) or K(H)).

Theorem (Bosa-Brown-Sato-T-White-Winter 2015)

If Ais a separable simple amenable C*-algebra which is
Z-stable, then it has nuclear dimension < 1 (provided it is unital
and the set of extreme points of T(A) is weak*-closed).
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The current state of classification

Can we make the dichotomy between “high topological
dimension” and “low topological dimension” precise?

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with
“low topological dimension” are classified (as in the Elliott
conjecture)?

Problem: Establish what the Toms-Winter properties mean for
Cr-algebra constructions, eg. group C*-algebras.
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