C*-algebras, classification, and regularity

Aaron Tikuisis a.tikuisis@abdn.ac.uk

University of Aberdeen

Aaron Tikuisis C*-algebras, classification, and regularity

 $\mathcal{B}(\mathcal{H})$ is a (complex) algebra: multiplication = composition of operators.

Operators are continuous if and only if they are bounded \rightsquigarrow (operator) norm on $\mathcal{B}(\mathcal{H})$.

Every operator T has an adjoint $T^* \rightsquigarrow$ involution on $\mathcal{B}(\mathcal{H})$.

A **C*-algebra** is a subalgebra of $\mathcal{B}(\mathcal{H})$ which is norm-closed and closed under adjoints.

◆□ > ◆□ > ◆豆 > ◆豆 > →

 $\mathcal{B}(\mathcal{H})$ is a (complex) algebra: multiplication = composition of operators.

Operators are continuous if and only if they are bounded \rightsquigarrow (operator) norm on $\mathcal{B}(\mathcal{H})$.

Every operator T has an adjoint $T^* \rightsquigarrow$ involution on $\mathcal{B}(\mathcal{H})$.

A **C*-algebra** is a subalgebra of $\mathcal{B}(\mathcal{H})$ which is norm-closed and closed under adjoints.

ヘロン 人間 とくほ とくほ とう

 $\mathcal{B}(\mathcal{H})$ is a (complex) algebra: multiplication = composition of operators.

Operators are continuous if and only if they are bounded \rightsquigarrow (operator) norm on $\mathcal{B}(\mathcal{H})$.

Every operator T has an adjoint $T^* \rightsquigarrow$ involution on $\mathcal{B}(\mathcal{H})$.

A **C***-algebra is a subalgebra of $\mathcal{B}(\mathcal{H})$ which is norm-closed and closed under adjoints.

ヘロト ヘアト ヘビト ヘビト

 $\mathcal{B}(\mathcal{H})$ is a (complex) algebra: multiplication = composition of operators.

Operators are continuous if and only if they are bounded \rightsquigarrow (operator) norm on $\mathcal{B}(\mathcal{H})$.

Every operator T has an adjoint $T^* \rightsquigarrow$ involution on $\mathcal{B}(\mathcal{H})$.

A **C***-algebra is a subalgebra of $\mathcal{B}(\mathcal{H})$ which is norm-closed and closed under adjoints.

ヘロト ヘアト ヘビト ヘビト

 $\mathcal{B}(\mathcal{H})$ is a (complex) algebra: multiplication = composition of operators.

Operators are continuous if and only if they are bounded \rightsquigarrow (operator) norm on $\mathcal{B}(\mathcal{H})$.

Every operator T has an adjoint $T^* \rightarrow \text{involution on } \mathcal{B}(\mathcal{H})$.

A **C*-algebra** is a subalgebra of $\mathcal{B}(\mathcal{H})$ which is norm-closed and closed under adjoints.

ヘロン 人間 とくほとくほとう

 $\mathcal{B}(\mathcal{H})$ is a (complex) algebra: multiplication = composition of operators.

Operators are continuous if and only if they are bounded \rightsquigarrow (operator) norm on $\mathcal{B}(\mathcal{H})$.

Every operator T has an adjoint $T^* \rightsquigarrow$ involution on $\mathcal{B}(\mathcal{H})$.

A **C*-algebra** is a subalgebra of $\mathcal{B}(\mathcal{H})$ which is norm-closed and closed under adjoints.

・ロト ・ 理 ト ・ ヨ ト ・

 $\mathcal{B}(\mathcal{H})$ is a (complex) algebra: multiplication = composition of operators.

Operators are continuous if and only if they are bounded \rightsquigarrow (operator) norm on $\mathcal{B}(\mathcal{H})$.

Every operator T has an adjoint $T^* \rightsquigarrow$ involution on $\mathcal{B}(\mathcal{H})$.

A **C*-algebra** is a subalgebra of $\mathcal{B}(\mathcal{H})$ which is norm-closed and closed under adjoints.

ヘロン 人間 とくほとくほとう

Isomorphism of C*-algebras: this notion makes no reference to the Hilbert space.

C*-algebras A and B are **isomorphic** if there is a bijective linear map $A \rightarrow B$ which preserves multiplication and adjoints.

(Such a map automatically preserves the norm.)

Isomorphism of C*-algebras: this notion makes no reference to the Hilbert space.

C*-algebras A and B are **isomorphic** if there is a bijective linear map $A \rightarrow B$ which preserves multiplication and adjoints.

(Such a map automatically preserves the norm.)

Isomorphism of C*-algebras: this notion makes no reference to the Hilbert space.

C*-algebras A and B are **isomorphic** if there is a bijective linear map $A \rightarrow B$ which preserves multiplication and adjoints.

(Such a map automatically preserves the norm.)

く 同 と く ヨ と く ヨ と

Isomorphism of C*-algebras: this notion makes no reference to the Hilbert space.

C*-algebras A and B are **isomorphic** if there is a bijective linear map $A \rightarrow B$ which preserves multiplication and adjoints.

(Such a map automatically preserves the norm.)

 $M_n(\mathbb{C}) = n \times n$ matrices with complex entries.

```
This is \mathcal{B}(\mathcal{H}) where \mathcal{H} = \mathbb{C}^n.
```

```
Multiplication = matrix multiplication.
```

Adjoint = conjugate transpose.

 $||A|| = \text{operator norm} = (\text{largest eigenvalue of } A^*A)^{1/2}.$

Every finite dimensional C*-algebra is a direct sum of matrix algebras.

 $M_n(\mathbb{C}) = n \times n$ matrices with complex entries.

This is $\mathcal{B}(\mathcal{H})$ where $\mathcal{H} = \mathbb{C}^n$.

Multiplication = matrix multiplication.

Adjoint = conjugate transpose.

 $||A|| = \text{operator norm} = (\text{largest eigenvalue of } A^*A)^{1/2}.$

Every finite dimensional C*-algebra is a direct sum of matrix algebras.

ヘロト ヘアト ヘビト ヘビト

 $M_n(\mathbb{C}) = n \times n$ matrices with complex entries.

```
This is \mathcal{B}(\mathcal{H}) where \mathcal{H} = \mathbb{C}^n.
```

Multiplication = matrix multiplication.

Adjoint = conjugate transpose.

 $||A|| = \text{operator norm} = (\text{largest eigenvalue of } A^*A)^{1/2}.$

Every finite dimensional C*-algebra is a direct sum of matrix algebras.

ヘロン 人間 とくほ とくほ とう

1

 $M_n(\mathbb{C}) = n \times n$ matrices with complex entries.

```
This is \mathcal{B}(\mathcal{H}) where \mathcal{H} = \mathbb{C}^n.
```

Multiplication = matrix multiplication.

```
Adjoint = conjugate transpose.
```

 $||A|| = \text{operator norm} = (\text{largest eigenvalue of } A^*A)^{1/2}.$

Every finite dimensional C*-algebra is a direct sum of matrix algebras.

ヘロン 人間 とくほ とくほ とう

3

 $M_n(\mathbb{C}) = n \times n$ matrices with complex entries.

```
This is \mathcal{B}(\mathcal{H}) where \mathcal{H} = \mathbb{C}^n.
```

Multiplication = matrix multiplication.

Adjoint = conjugate transpose.

 $||A|| = \text{operator norm} = (\text{largest eigenvalue of } A^*A)^{1/2}.$

Every finite dimensional C*-algebra is a direct sum of matrix algebras.

ヘロン 人間 とくほ とくほ とう

3

 $M_n(\mathbb{C}) = n \times n$ matrices with complex entries.

```
This is \mathcal{B}(\mathcal{H}) where \mathcal{H} = \mathbb{C}^n.
```

Multiplication = matrix multiplication.

Adjoint = conjugate transpose.

||A|| =operator norm = (largest eigenvalue of A^*A)^{1/2}.

Every finite dimensional C*-algebra is a direct sum of matrix algebras.

ヘロン 人間 とくほ とくほ とう

э.

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

This can be identified with "diagonal" operators on $\ell^2(X)$.

Multiplication = pointwise multiplication.

Adjoint = pointwise conjugation.

 $\|f\| = \sup_{x \in X} |f(x)|.$

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

This can be identified with "diagonal" operators on $\ell^2(X)$.

Multiplication = pointwise multiplication.

Adjoint = pointwise conjugation.

 $\|f\| = \sup_{x \in X} |f(x)|.$

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

This can be identified with "diagonal" operators on $\ell^2(X)$.

Multiplication = pointwise multiplication.

Adjoint = pointwise conjugation.

 $\|f\| = \sup_{x \in X} |f(x)|.$

ヘロト ヘアト ヘビト ヘビト

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

This can be identified with "diagonal" operators on $\ell^2(X)$.

Multiplication = pointwise multiplication.

Adjoint = pointwise conjugation.

 $\|f\| = \sup_{x \in X} |f(x)|.$

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

This can be identified with "diagonal" operators on $\ell^2(X)$.

Multiplication = pointwise multiplication.

Adjoint = pointwise conjugation.

 $\|f\| = \sup_{x \in X} |f(x)|.$

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

Every commutative unital C*-algebra is $C(X, \mathbb{C})$ for a unique compact Hausdorff space *X*.

In fact, $X \mapsto C(X, \mathbb{C})$ is an equivalence of categories.

C*-algebras are considered noncommutative topological spaces.

Many topological concepts generalise to C*-algebras, eg. K-theory.

ヘロン ヘアン ヘビン ヘビン

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

Every commutative unital C*-algebra is $C(X, \mathbb{C})$ for a unique compact Hausdorff space *X*.

In fact, $X \mapsto C(X, \mathbb{C})$ is an equivalence of categories.

C*-algebras are considered noncommutative topological spaces.

Many topological concepts generalise to C*-algebras, eg. K-theory.

・ロト ・ 理 ト ・ ヨ ト ・

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

Every commutative unital C*-algebra is $C(X, \mathbb{C})$ for a unique compact Hausdorff space *X*.

In fact, $X \mapsto C(X, \mathbb{C})$ is an equivalence of categories.

C*-algebras are considered noncommutative topological spaces.

Many topological concepts generalise to C*-algebras, eg. K-theory.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

Every commutative unital C*-algebra is $C(X, \mathbb{C})$ for a unique compact Hausdorff space *X*.

In fact, $X \mapsto C(X, \mathbb{C})$ is an equivalence of categories.

C*-algebras are considered noncommutative topological spaces.

Many topological concepts generalise to C*-algebras, eg. K-theory.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

 $C_b(X, \mathbb{C})$ = continuous, bounded functions $X \to \mathbb{C}$, where X is a topological space.

Every commutative unital C*-algebra is $C(X, \mathbb{C})$ for a unique compact Hausdorff space *X*.

In fact, $X \mapsto C(X, \mathbb{C})$ is an equivalence of categories.

C*-algebras are considered noncommutative topological spaces.

Many topological concepts generalise to C*-algebras, eg. K-theory.

ヘロン 人間 とくほ とくほ とう

ъ

Interesting C*-algebras can be constructed from groups,

dynamical systems, directed graphs, rings, coarse metric spaces,...

Question

What do properties of a C*-algebra tell us about the object from which it is constructed?

C*-properties: amenability of a group; exactness of a group,...

Question

What do properties of a C*-algebra tell us about the object from which it is constructed?

C*-properties: amenability of a group; exactness of a group,...

Question

What do properties of a C*-algebra tell us about the object from which it is constructed?

C*-properties: amenability of a group; exactness of a group,...

Question

What do properties of a C*-algebra tell us about the object from which it is constructed?

C*-properties: amenability of a group; exactness of a group,...

Question

What do properties of a C*-algebra tell us about the object from which it is constructed?

C*-properties: amenability of a group; exactness of a group,...

Question

What do properties of a C*-algebra tell us about the object from which it is constructed?

C*-properties: amenability of a group; exactness of a group,...

Question

What do properties of a C*-algebra tell us about the object from which it is constructed?

C*-properties: amenability of a group; exactness of a group,...

Question

What do properties of a C*-algebra tell us about the object from which it is constructed?

C*-properties: amenability of a group; exactness of a group,...
UHF algebras

Consider the following C*-algebra:

 $M_2(\mathbb{C})$

Aaron Tikuisis C*-algebras, classification, and regularity

(문) 문

Consider the following C*-algebra:

 $M_4(\mathbb{C})$

Aaron Tikuisis C*-algebras, classification, and regularity

э

ъ

UHF algebras

Consider the following C*-algebra:

 $M_8(\mathbb{C})$

3

ъ

UHF algebras

Consider the following C*-algebra:

$$M_{2^{\infty}} = \overline{M_2(\mathbb{C})^{\otimes \infty}},$$

a uniformly hyperfinite algebra.

э

$$M_{2^{\infty}} = \overline{M_2(\mathbb{C})^{\otimes \infty}}.$$

ヘロン 人間 とくほ とくほ とう

æ –

$$M_{2^{\infty}} = \overline{M_2(\mathbb{C})^{\otimes \infty}}.$$

ヘロン 人間 とくほとく ほとう

$$M_{2^{\infty}} = \overline{M_2(\mathbb{C})^{\otimes \infty}}.$$

프 🖌 🛪 프 🕨

3

$$M_{2^{\infty}} = \overline{M_2(\mathbb{C})^{\otimes \infty}}.$$

프 🖌 🛪 프 🕨

ъ

$$M_{2^{\infty}} = \overline{M_2(\mathbb{C})^{\otimes \infty}}.$$

ヨトメヨト

ъ

$$M_{2^{\infty}} = \overline{M_2(\mathbb{C})^{\otimes \infty}}.$$

Can likewise define $M_{p^{\infty}}$ for any $p \in \mathbb{N}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Is $M_{2^{\infty}} \cong M_{3^{\infty}}$?

If we suspect that two C*-algebras are not isomorphic, how do we go about proving it?

When do we stop trying to prove they are non-isomorphic?

Conjecture (Elliott, \sim 1990)

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant)**.

イロト イポト イヨト イヨト

Is $M_{2^{\infty}} \cong M_{3^{\infty}}$?

If we suspect that two C*-algebras are not isomorphic, how do we go about proving it?

When do we stop trying to prove they are non-isomorphic?

Conjecture (Elliott, \sim 1990)

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant)**.

イロト イポト イヨト イヨト

Is $M_{2^{\infty}} \cong M_{3^{\infty}}$?

If we suspect that two C*-algebras are not isomorphic, how do we go about proving it?

When do we stop trying to prove they are non-isomorphic?

Conjecture (Elliott, ~1990)

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant)**.

ヘロト ヘ戸ト ヘヨト ヘヨト

Is $M_{2^{\infty}} \cong M_{3^{\infty}}$?

If we suspect that two C*-algebras are not isomorphic, how do we go about proving it?

When do we stop trying to prove they are non-isomorphic?

Conjecture (Elliott, ~1990)

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant)**.

ヘロト ヘアト ヘビト ヘビ

Is $M_{2^{\infty}} \cong M_{3^{\infty}}$?

If we suspect that two C*-algebras are not isomorphic, how do we go about proving it?

When do we stop trying to prove they are non-isomorphic?

Conjecture (Elliott, ~1990)

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

イロト イポト イヨト イヨ

Is $M_{2^{\infty}} \cong M_{3^{\infty}}$?

If we suspect that two C*-algebras are not isomorphic, how do we go about proving it?

When do we stop trying to prove they are non-isomorphic?

Conjecture (Elliott, ~1990)

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant)**.

ヘロト ヘアト ヘヨト ヘ

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Separable: \exists dense sequence.

Simple: no nontrivial closed, two-sided ideals.

Amenable: many equivalent definitions, including a finite dimensional approximation property, akin to noncommutative partitions of unity.

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Separable: \exists dense sequence.

Simple: no nontrivial closed, two-sided ideals.

Amenable: many equivalent definitions, including a finite dimensional approximation property, akin to noncommutative partitions of unity.

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Separable: \exists dense sequence.

Simple: no nontrivial closed, two-sided ideals.

Amenable: many equivalent definitions, including a finite dimensional approximation property, akin to noncommutative partitions of unity.

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Separable: \exists dense sequence.

Simple: no nontrivial closed, two-sided ideals.

Amenable: many equivalent definitions, including a finite dimensional approximation property, akin to noncommutative partitions of unity.

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Separable: \exists dense sequence.

Simple: no nontrivial closed, two-sided ideals.

Amenable: many equivalent definitions, including a finite dimensional approximation property, akin to noncommutative partitions of unity.

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

K-theory: arose from topological K-theory, a cohomology theory founded in vector bundles.

"Computable" (exact sequences, Künneth formula, ...)

Eg. $K_0(M_{p^{\infty}}) = \mathbb{Z}[\frac{1}{p}]$

Traces: a trace on *A* is a positive linear functional $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$ for all *a*, *b*.

Eg. Trace on $M_n(\mathbb{C})$.

・ 回 ト ・ ヨ ト ・ ヨ ト

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

K-theory: arose from topological K-theory, a cohomology theory founded in vector bundles.

"Computable" (exact sequences, Künneth formula, ...)

Eg. $K_0(M_{p^{\infty}}) = \mathbb{Z}[\frac{1}{p}]$

Traces: a trace on A is a positive linear functional $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$ for all a, b.

Eg. Trace on $M_n(\mathbb{C})$.

イロト イポト イヨト イヨト

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

K-theory: arose from topological K-theory, a cohomology theory founded in vector bundles.

"Computable" (exact sequences, Künneth formula, ...)

Eg. $K_0(M_{p^{\infty}}) = \mathbb{Z}[\frac{1}{p}]$

Traces: a trace on A is a positive linear functional $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$ for all a, b.

Eg. Trace on $M_n(\mathbb{C})$.

ヘロア 人間 アメヨア 人口 ア

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

K-theory: arose from topological K-theory, a cohomology theory founded in vector bundles.

"Computable" (exact sequences, Künneth formula, ...)

Eg.
$$K_0(M_{p^{\infty}}) = \mathbb{Z}[\frac{1}{p}]$$

Traces: a trace on A is a positive linear functional $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$ for all a, b.

Eg. Trace on $M_n(\mathbb{C})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

K-theory: arose from topological K-theory, a cohomology theory founded in vector bundles.

"Computable" (exact sequences, Künneth formula, ...)

Eg.
$$K_0(M_{p^{\infty}}) = \mathbb{Z}[\frac{1}{p}]$$

Traces: a trace on *A* is a positive linear functional $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$ for all *a*, *b*.

Eg. Trace on $M_n(\mathbb{C})$.

・ 回 ト ・ ヨ ト ・ ヨ ト

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

K-theory: arose from topological K-theory, a cohomology theory founded in vector bundles.

"Computable" (exact sequences, Künneth formula, ...)

Eg.
$$K_0(M_{p^{\infty}}) = \mathbb{Z}[\frac{1}{p}]$$

Traces: a trace on *A* is a positive linear functional $\tau : A \to \mathbb{C}$ such that $\tau(ab) = \tau(ba)$ for all *a*, *b*.

Eg. Trace on $M_n(\mathbb{C})$.

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Theorem (Villadsen, Rørdam, Toms, \sim 2000)

There exist separable, simple, nuclear, unital C*-algebras A, B such that $Ell(A) \cong Ell(B)$ but $A \not\cong B$.

Why? *A* seems to have "high topological dimension" and *B* has "low topological dimension".

In fact, $B = A \otimes M_{2^{\infty}}$.

ヘロト ヘワト ヘビト ヘビト

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Theorem (Villadsen, Rørdam, Toms, ~2000)

There exist separable, simple, nuclear, unital C*-algebras A, B such that $Ell(A) \cong Ell(B)$ but $A \not\cong B$.

Why? *A* seems to have "high topological dimension" and *B* has "low topological dimension".

In fact, $B = A \otimes M_{2^{\infty}}$.

イロト イポト イヨト イヨト

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Theorem (Villadsen, Rørdam, Toms, ~2000)

There exist separable, simple, nuclear, unital C*-algebras A, B such that $Ell(A) \cong Ell(B)$ but $A \not\cong B$.

Why? *A* seems to have "high topological dimension" and *B* has "low topological dimension".

In fact, $B = A \otimes M_{2^{\infty}}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

If *A*, *B* are separable, simple, amenable C*-algebras then $A \cong B$ if and only if $Ell(A) \cong Ell(B)$, where Ell(A) is K-theory paired with traces (the **Elliott invariant**).

Theorem (Villadsen, Rørdam, Toms, ~2000)

There exist separable, simple, nuclear, unital C*-algebras A, B such that $Ell(A) \cong Ell(B)$ but $A \not\cong B$.

Why? *A* seems to have "high topological dimension" and *B* has "low topological dimension".

In fact, $B = A \otimes M_{2^{\infty}}$.

イロト イポト イヨト イヨト

Conjecture (Toms-Winter, \sim 2008)

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with "low topological dimension" are classified (as in the Elliott conjecture)?

Problem: Establish what the Toms-Winter properties mean for C*-algebra constructions, eg. group C*-algebras.

(4回) (日) (日)

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with "low topological dimension" are classified (as in the Elliott conjecture)?

Problem: Establish what the Toms-Winter properties mean for C*-algebra constructions, eg. group C*-algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with "low topological dimension" are classified (as in the Elliott conjecture)?

Problem: Establish what the Toms-Winter properties mean for C*-algebra constructions, eg. group C*-algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with "low topological dimension" are classified (as in the Elliott conjecture)?

Problem: Establish what the Toms-Winter properties mean for C*-algebra constructions, eg. group C*-algebras.

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 1: nuclear dimension

・ 同 ト ・ ヨ ト ・ ヨ ト
Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 1: nuclear dimension

Partition of unity (topology)

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 1: nuclear dimension

Partition of unity (topology) Noncommutative POU = amenability

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 1: nuclear dimension

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 1: nuclear dimension

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 1: nuclear dimension

Eg. The nuclear dimension of $C(X, \mathbb{C})$ is dim X.

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra *A*, the C*-algebra $A \otimes M_{2^{\infty}}$ has much more uniformity; is "low dimensional" in a sense.

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Observe $M_{2^{\infty}} \cong M_{4^{\infty}} \cong M_{2^{\infty}} \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3\infty}$) are not $M_{2\infty}$ -stable.

ヘロト ヘ戸ト ヘヨト ヘヨト

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra *A*, the C*-algebra $A \otimes M_{2^{\infty}}$ has much more uniformity; is "low dimensional" in a sense.

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Observe $M_{2^{\infty}} \cong M_{4^{\infty}} \cong M_{2^{\infty}} \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3\infty}$) are not $M_{2\infty}$ -stable.

ヘロト 人間 とくほとくほとう

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra $A \otimes M_{2^{\infty}}$ has much more uniformity; is "low dimensional" in a sense.

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Observe $M_{2^{\infty}} \cong M_{4^{\infty}} \cong M_{2^{\infty}} \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3\infty}$) are not $M_{2\infty}$ -stable.

ヘロン ヘアン ヘビン ヘビン

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra $A \otimes M_{2^{\infty}}$ has much more uniformity; is "low dimensional" in a sense.

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Observe $M_{2^{\infty}} \cong M_{4^{\infty}} \cong M_{2^{\infty}} \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3\infty}$) are not $M_{2\infty}$ -stable.

・ロト ・ 理 ト ・ ヨ ト ・

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra $A \otimes M_{2^{\infty}}$ has much more uniformity; is "low dimensional" in a sense.

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Observe $M_{2^{\infty}} \cong M_{4^{\infty}} \cong M_{2^{\infty}} \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3\infty}$) are not $M_{2\infty}$ -stable.

・ロト ・ 理 ト ・ ヨ ト ・

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra $A \otimes M_{2^{\infty}}$ has much more uniformity; is "low dimensional" in a sense.

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Observe $M_{2^{\infty}} \cong M_{4^{\infty}} \cong M_{2^{\infty}} \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3^{\infty}}$) are not $M_{2^{\infty}}$ -stable.

ヘロン 人間 とくほとくほとう

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3\infty}$) are not $M_{2\infty}$ -stable.

There is another C*-algebra, the **Jiang-Su algebra** \mathcal{Z} , with similar properties to $M_{2^{\infty}}$ (eg. $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$), and many C*-algebras are \mathcal{Z} -stable (eg. $M_{p^{\infty}} \cong M_{p^{\infty}} \otimes \mathcal{Z}$).

ヘロト ヘ戸ト ヘヨト ヘヨト

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3\infty}$) are not $M_{2\infty}$ -stable.

There is another C*-algebra, the **Jiang-Su algebra** \mathcal{Z} , with similar properties to $M_{2^{\infty}}$ (eg. $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$), and many C*-algebras are \mathcal{Z} -stable (eg. $M_{0^{\infty}} \cong M_{0^{\infty}} \otimes \mathcal{Z}$).

くロト (過) (目) (日)

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Property 2: Jiang-Su stability

A is $M_{2^{\infty}}$ -stable if $A \cong A \otimes M_{2^{\infty}}$.

Unfortunately, many C*-algebras (such as $M_{3\infty}$) are not $M_{2\infty}$ -stable.

There is another C*-algebra, the **Jiang-Su algebra** \mathcal{Z} , with similar properties to $M_{2^{\infty}}$ (eg. $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$), and many C*-algebras are \mathcal{Z} -stable (eg. $M_{p^{\infty}} \cong M_{p^{\infty}} \otimes \mathcal{Z}$).

ヘロト ヘ戸ト ヘヨト ヘヨト

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Theorem (Winter 2012, T 2014)

If *A* is a separable simple C*-algebra with finite nuclear dimension then *A* is \mathbb{Z} -stable (unless $A = M_n(\mathbb{C})$ or $\mathcal{K}(\mathcal{H})$).

Theorem (Bosa-Brown-Sato-T-White-Winter 2015)

If A is a separable simple amenable C*-algebra which is \mathcal{Z} -stable, then it has nuclear dimension \leq 1 (provided it is unital and the set of extreme points of T(A) is weak*-closed).

イロト イポト イヨト イヨト

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Theorem (Winter 2012, T 2014)

If *A* is a separable simple C*-algebra with finite nuclear dimension then *A* is \mathbb{Z} -stable (unless $A = M_n(\mathbb{C})$ or $\mathcal{K}(\mathcal{H})$).

Theorem (Bosa-Brown-Sato-T-White-Winter 2015)

If A is a separable simple amenable C*-algebra which is \mathcal{Z} -stable, then it has nuclear dimension \leq 1 (provided it is unital and the set of extreme points of T(A) is weak*-closed).

イロト イポト イヨト イヨト

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Theorem (Winter 2012, T 2014)

If *A* is a separable simple C*-algebra with finite nuclear dimension then *A* is \mathbb{Z} -stable (unless $A = M_n(\mathbb{C})$ or $\mathcal{K}(\mathcal{H})$).

Theorem (Bosa-Brown-Sato-T-White-Winter 2015)

If *A* is a separable simple amenable C*-algebra which is \mathcal{Z} -stable, then it has nuclear dimension ≤ 1 (provided it is unital and the set of extreme points of *T*(*A*) is weak*-closed).

イロト イポト イヨト イヨト

Can we make the dichotomy between "high topological dimension" and "low topological dimension" precise?

Conjecture (Toms-Winter, ~2008)

Three diverse properties coincide for the class of separable, simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with "low topological dimension" are classified (as in the Elliott conjecture)?

Problem: Establish what the Toms-Winter properties mean for C*-algebra constructions, eg. group C*-algebras.