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C*-algebras

The canonical C*-algebra is
B(H) := {continuous linear operators H → H},

where H is a (complex) Hilbert space.

B(H) is a (complex) algebra: multiplication = composition of
operators.

Operators are continuous if and only if they are bounded 
(operator) norm on B(H).

Every operator T has an adjoint T ∗  involution on B(H).

A C*-algebra is a subalgebra of B(H) which is norm-closed
and closed under adjoints.
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C*-algebras

A C*-algebra is a subalgebra of B(H) which is norm-closed
and closed under adjoints.

Isomorphism of C*-algebras: this notion makes no reference to
the Hilbert space.

C*-algebras A and B are isomorphic if there is a bijective
linear map A→ B which preserves multiplication and adjoints.

(Such a map automatically preserves the norm.)
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C*-algebras: examples

Example

Mn(C) = n × n matrices with complex entries.

This is B(H) where H = Cn.

Multiplication = matrix multiplication.

Adjoint = conjugate transpose.

‖A‖ = operator norm = (largest eigenvalue of A∗A)1/2.

Every finite dimensional C*-algebra is a direct sum of matrix
algebras.
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C*-algebras: examples

Example

Cb(X ,C) = continuous, bounded functions X → C, where X is a
topological space.

This can be identified with “diagonal” operators on `2(X ).

Multiplication = pointwise multiplication.

Adjoint = pointwise conjugation.

‖f‖ = supx∈X |f (x)|.
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C*-algebras: examples

Example

Cb(X ,C) = continuous, bounded functions X → C, where X is a
topological space.

Every commutative unital C*-algebra is C(X ,C) for a unique
compact Hausdorff space X .

In fact, X 7→ C(X ,C) is an equivalence of categories.

C*-algebras are considered noncommutative topological
spaces.

Many topological concepts generalise to C*-algebras, eg.
K-theory.
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C*-algebras: examples

Interesting C*-algebras can be constructed from groups,
dynamical systems, directed graphs, rings, coarse metric
spaces,...

Question
What do properties of a C*-algebra tell us about the object from
which it is constructed?

C*-properties: amenability of a group; exactness of a group,...
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UHF algebras

Consider the following C*-algebra:

M2(C)
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UHF algebras

Consider the following C*-algebra:

M4(C)

Aaron Tikuisis C*-algebras, classification, and regularity



UHF algebras

Consider the following C*-algebra:

M8(C)
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UHF algebras

Consider the following C*-algebra:

M2∞ = M2(C)⊗∞,

a uniformly hyperfinite algebra.
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UHF algebras

M2∞ = M2(C)⊗∞.

A noncommutative Cantor set construction.
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UHF algebras

M2∞ = M2(C)⊗∞.

A noncommutative Cantor set construction.

Can likewise define Mp∞ for any p ∈ N.
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Classification

Question
Is M2∞ ∼= M3∞?

If we suspect that two C*-algebras are not isomorphic, how do
we go about proving it?

When do we stop trying to prove they are non-isomorphic?

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).
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Classification

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).

Separable: ∃ dense sequence.

Simple: no nontrivial closed, two-sided ideals.

Amenable: many equivalent definitions, including a finite
dimensional approximation property, akin to noncommutative
partitions of unity.
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Classification

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).

K-theory: arose from topological K-theory, a cohomology theory
founded in vector bundles.

“Computable” (exact sequences, Künneth formula, ...)

Eg. K0(Mp∞) = Z[1
p ]

Traces: a trace on A is a positive linear functional τ : A→ C
such that τ(ab) = τ(ba) for all a,b.

Eg. Trace on Mn(C).

Aaron Tikuisis C*-algebras, classification, and regularity



Classification

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).

K-theory: arose from topological K-theory, a cohomology theory
founded in vector bundles.

“Computable” (exact sequences, Künneth formula, ...)

Eg. K0(Mp∞) = Z[1
p ]

Traces: a trace on A is a positive linear functional τ : A→ C
such that τ(ab) = τ(ba) for all a,b.

Eg. Trace on Mn(C).

Aaron Tikuisis C*-algebras, classification, and regularity



Classification

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).

K-theory: arose from topological K-theory, a cohomology theory
founded in vector bundles.

“Computable” (exact sequences, Künneth formula, ...)

Eg. K0(Mp∞) = Z[1
p ]

Traces: a trace on A is a positive linear functional τ : A→ C
such that τ(ab) = τ(ba) for all a,b.

Eg. Trace on Mn(C).

Aaron Tikuisis C*-algebras, classification, and regularity



Classification

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).

K-theory: arose from topological K-theory, a cohomology theory
founded in vector bundles.

“Computable” (exact sequences, Künneth formula, ...)

Eg. K0(Mp∞) = Z[1
p ]

Traces: a trace on A is a positive linear functional τ : A→ C
such that τ(ab) = τ(ba) for all a,b.

Eg. Trace on Mn(C).

Aaron Tikuisis C*-algebras, classification, and regularity



Classification

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).

K-theory: arose from topological K-theory, a cohomology theory
founded in vector bundles.

“Computable” (exact sequences, Künneth formula, ...)

Eg. K0(Mp∞) = Z[1
p ]

Traces: a trace on A is a positive linear functional τ : A→ C
such that τ(ab) = τ(ba) for all a,b.

Eg. Trace on Mn(C).

Aaron Tikuisis C*-algebras, classification, and regularity



Classification

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).

K-theory: arose from topological K-theory, a cohomology theory
founded in vector bundles.

“Computable” (exact sequences, Künneth formula, ...)

Eg. K0(Mp∞) = Z[1
p ]

Traces: a trace on A is a positive linear functional τ : A→ C
such that τ(ab) = τ(ba) for all a,b.

Eg. Trace on Mn(C).

Aaron Tikuisis C*-algebras, classification, and regularity



Classification – counterexamples

Conjecture (Elliott, ∼1990)
If A,B are separable, simple, amenable C*-algebras then A ∼= B
if and only if Ell(A) ∼= Ell(B), where Ell(A) is K-theory paired
with traces (the Elliott invariant).

Theorem (Villadsen, Rørdam, Toms, ∼2000)
There exist separable, simple, nuclear, unital C*-algebras A,B
such that Ell(A) ∼= Ell(B) but A 6∼= B.

Why? A seems to have “high topological dimension” and B has
“low topological dimension”.

In fact, B = A⊗M2∞ .
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The current state of classification

Can we make the dichotomy between “high topological
dimension” and “low topological dimension” precise?

Conjecture (Toms-Winter, ∼2008)
Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Can we prove that separable, simple, nuclear C*-algebras with
“low topological dimension” are classified (as in the Elliott
conjecture)?

Problem: Establish what the Toms-Winter properties mean for
C*-algebra constructions, eg. group C*-algebras.
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ∼2008)
Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 1: nuclear dimension
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ∼2008)
Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 1: nuclear dimension

Eg. The nuclear dimension of C(X ,C) is dim X .

Aaron Tikuisis C*-algebras, classification, and regularity



Toms-Winter regularity properties

Conjecture (Toms-Winter, ∼2008)
Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Property 2: Jiang-Su stability

Given a C*-algebra A, the C*-algebra A⊗M2∞ has much more
uniformity; is “low dimensional” in a sense.

A is M2∞-stable if A ∼= A⊗M2∞ .

Observe M2∞ ∼= M4∞ ∼= M2∞ ⊗M2∞ .

Unfortunately, many C*-algebras (such as M3∞) are not
M2∞-stable.
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Property 2: Jiang-Su stability

A is M2∞-stable if A ∼= A⊗M2∞ .

Unfortunately, many C*-algebras (such as M3∞) are not
M2∞-stable.

There is another C*-algebra, the Jiang-Su algebra Z, with
similar properties to M2∞ (eg. Z ∼= Z ⊗ Z), and many
C*-algebras are Z-stable (eg. Mp∞ ∼= Mp∞ ⊗Z).
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Toms-Winter regularity properties

Conjecture (Toms-Winter, ∼2008)
Three diverse properties coincide for the class of separable,
simple, amenable C*-algebras.

Theorem (Winter 2012, T 2014)
If A is a separable simple C*-algebra with finite nuclear
dimension then A is Z-stable (unless A = Mn(C) or K(H)).

Theorem (Bosa-Brown-Sato-T-White-Winter 2015)
If A is a separable simple amenable C*-algebra which is
Z-stable, then it has nuclear dimension ≤ 1 (provided it is unital
and the set of extreme points of T (A) is weak∗-closed).
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