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Abstract. The relative commutant A′∩AU of a strongly self-absorbing
algebra A is indistinguishable from its ultrapower AU . This applies both
to the case when A is the hyperfinite II1 factor and to the case when
it is a strongly self-absorbing C*-algebra. In the latter case we prove
analogous results for `∞(A)/c0(A) and reduced powers corresponding to
other filters on N. Examples of algebras with approximately inner flip
and approximately inner half-flip are provided, showing the optimality
of our results. We also prove that strongly self-absorbing algebras are
smoothly classifiable, unlike the algebras with approximately inner half-
flip.

Most uses of ultrapowers in operator algebras and elsewhere rely on two
of their model-theoretic properties: countable saturation and  Loś’s theo-
rem, stating that the canonical embedding of a structure in its ultrapower
is elementary.1 These conditions – saturation and elementary equivalence
– characterize the ultrapower under the assumption of the continuum hy-
pothesis: two elementary extensions of density character ℵ1 of a separable
structure A which are saturated are necessarily isomorphic over A. (this is
the uniqueness theorem for saturated models; see §1). We can identify A
with its diagonal image in ultrapower AU and, provided A is a C*-algebra
or II1-factor (or more generally, when it has a multiplicative structure),
consider the relative commutant

A′ ∩AU := {b ∈ AU : ab = ba for all a ∈ A}.

When A is unital, the relative commutant is denoted F (A) by Kirchberg
in [22] (suppressing the choice of ultrafiler U). Kirchberg also defines F (A)
for non-unital C*-algebras in such a way that Theorem 2.1 extends to the
case where A is non-unital. The relative commutant plays an even more
significant role in classification of both II1 factors and C*-agebras than the
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ultrapower itself ([32], [28], [6], [23], [22], [30], [27], [25]. . . ). Relative com-
mutants do not satisfy the standard form of  Loś’s theorem since A is not
even a subalgebra of A′∩AU and are in general only known to be quantifier-
free saturated. The latter property is closely related to Kirchberg’s ε-test
(see [22, Lemma A.1] or [24, Lemma 3.1]). Moreover, unlike the ultrapower,
the construction of a relative commutant does not have a well-studied ab-
stract analogue. We aim to show that the relative commutant of strongly
self-absorbing algebras is no different from its ultrapower.

Two *-homomorphisms Φ and Ψ with common domains and codomains
are approximately unitarily equivalent if there is a net of unitaries uλ such
that Aduλ ◦ Φ converges to Ψ in the point-norm topology. An endomor-
phism of a C*-algebra is approximately inner if it is approximately unitarily
equivalent to the identity map. Let D be a C*-algebra. Recall the following
definitions from [9] and [33].

(1) D has an approximately inner flip if the automorphism of D⊗minD
that interchanges a⊗ b and b⊗ a is approximately inner.2

(2) D has an approximately inner half-flip if maps idD ⊗1D and 1D⊗idD
from D into D ⊗min D are approximately unitarily equivalent.

(3) D is strongly self absorbing if D ⊗min D ∼= D and the map idD ⊗1D
is approxiamately unitarily equivalent to an isomorphism between
D and D ⊗min D.

If D is strongly self-absorbing then it has an approximately inner flip
([33]), and if D has an approximately inner flip then it easily has an ap-
proximately inner half-flip. Converses to both of these implications are
well-known to be false (see Example 3.9). The weakest of these properties
implies that D is nuclear, simple, unital, and has at most one trace ([9]).3

If D has approximately inner half-flip then D⊗∞ is strongly self-absorbing
([33, Proposition 1.9]).

We now state Theorem 1 under the assumption of the continuum hypoth-
esis for convenience; the result will be strengthened later.

Theorem 1. Assume D has approximately inner half-flip and A is sepa-
rable and D-absorbing. Then the continuum hypothesis (CH) implies the
following.

(1) If Φ: D → AU is a unital *-homomorphism then Φ(D)′ ∩ AU is
isomorphic to AU .

(2) If Φ: D → `∞(A)/c0(A) is a unital *-homomorphism then Φ(D)′ ∩
`∞(A)/c0(A) is isomorphic to `∞(A)/c0(A).

Moreover, in both cases, the inclusion maps are approximately unitarily
equivalent to isomorphisms.

2⊗min denotes the minimal, or spatial, tensor product of C*-algebras. In most of this
paper, we work with tensor products where one factor is nuclear, and then simply write
⊗ (since all C*-tensor norms are the same).

3All C*-algebras and all *-homomorphisms between them are assumed to be unital.
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Theorem 1 is a consequence of Corollary 2.13, stating that, assuming CH,
`∞(A)/cF (A) and A′ ∩ `∞(A)/cF (A) are isomorphic for a number of free
filters F . Our second result, Theorem 2, does not require CH or any other
additional set-theoretic assumptions. It is stated in terms of logic of metric
structures ([1]) and its adaptation to C*-algebras ([14]). Some acquaintance
with this logic is expected from the reader; §1 contains a brief recap and all
the relevant definitions can be found in [14].

We say that C is potentially D-absorbing if C is elementarily equivalent
to a D-absorbing algebra (see §2). If A is potentially D-absorbing then AF

is potentially D-absorbing for every filter F (see Lemma 2.6).

Theorem 2. Assume D has approximately inner half-flip and C is countably
saturated and potentially D-absorbing. Then

(1) All unital *-homomorphisms of D into C are unitarily conjugate.
(2) Fixing an inclusion of D in C, we have that D′∩C is an elementary

submodel of C, and
(3) D′ ∩ C is countably saturated.

If the continuum hypothesis holds and C has density character ℵ1 then
items (2) and (3) of Theorem 2 imply D′∩C ∼= C by a transfinite back-and-
forth argument.

The natural intuition that an ultrapower AU of a D-absorbing algebra A
is D-absorbing is wrong because countably quantifier-free saturated algebras
are, by [20], tensorially indecomposable. Since ultrapowers of D-absorbing
algebras are potentially D-absorbing (Lemma 2.6) Theorem 2 morally jus-
tifies this intuition.

Proof of Theorem 2. Item (1) was essentially proved in [9], see Lemma 2.8.
(2) is Theorem 2.9. The quantifier-free case of (3) is in [11] and the general
case is Corollary 2.11. �

The proofs of Theorem 1 and Theorem 2 apply in the case of II1 factors
where, by a result of Connes, the only strongly self-absorbing example is
the hyperfinite II1 factor R (in the following the ultrapower is tracial von
Neumann ultrapower).

Theorem 3. For any McDuff factor M , given an embedding of R into MU ,
we have R′ ∩MU is countably saturated and R′ ∩MU ≺ MU . If CH holds
then R′ ∩MU is isomorphic to MU .

If M denotes the von Neumann subalgebra of RU generated by R and
R′ ∩RU then R′ ∩RU ≺M and M ≺ RU .

A topological dynamical system associated to unitary equivalence classes
of *-homomorphisms from a C*-algebra A into an ultrapower of a C*-algebra
B was introduced by Brown in [4]. Much is known about such systems in case
of II1 factors and some of our results can be recast in Brown’s terminology
to give information about such dynamical systems when A is strongly self-
absorbing and B is A-absorbing.



4 ILIJAS FARAH, BRADD HART, MIKAEL RØRDAM, AND AARON TIKUISIS

We also give a new characterization of strongly self-absorbing algebras
as those unital algebras D such that all unital *-homomorphisms of D into
its ultrapower are conjugate and D is elementarily equivalent to D ⊗ D
(Theorem 2.15).

Organization of the paper. In §1 we review basics of countable saturation
and introduce massive extensions. §1.2 is about arbitrary metric structures
and in it we prove some continuous variants of Tarski–Vaught criterion for
elementarity. The main results of the paper, including Theorem 2 and a
strengthening of Theorem 1, are proved in §2.2. The model-theoretic char-
acterization of strongly self-absorbing algebras mentioned above is given in
§2.3. In §2.4 we show that (unlike the class of all separable, nuclear, simple,
unital C*-algebras) strongly self-absorbing algebras are smoothly classifiable
by their universal theories, while algebras with approximately inner half-flip
are not. Several limiting examples are given in §3.

1. Preliminaries

1.1. Logic of C*-algebras. We quickly review basic notions from the logic
of metric structures ([1]) as modified for C*-algebras (proofs and more details
can be found in [14] or [12]).

1.1.1. Formulas, theories, elementary submodels. The formulas for C*-al-
gebras are recursively defined as follows.

(1) Terms are *-polynomials with complex coefficients in variables xn,
for n ≥ 0.

(2) Atomic formulas are expressions of the form ‖P‖ where P is a term.
(3) Formulas form the smallest set that includes all atomic formulas and

satisfies the following requirements.
(a) If n ≥ 1, φj for 0 ≤ j < n are formulas, and f : Rn → R is

continuous, then f(φ0, φ1, . . . , φn−1) is a formula.
(b) If φ is a formula and x is xj for some j ≥ 0, then sup‖x‖≤1 φ

and inf‖x‖≤1 φ are formulas.

This definition is slightly more restrictive than the one given in [14] in that
we consider only the unit ball of the C*-algebra as a domain of quantification.
This simplification does not alter the expressive power of the logic and it
suffices for our present purposes.

We will frequently use x̄ to denote the n-tuple (x0, . . . , xn−1) or ω-tuple
(x0, x1, . . . ) of variables, and likewise ā (or b̄, etc.) to denote a finite or
countable tuple of elements in a C*-algebra A; we’ll write ā ∈ A to mean
that aj ∈ A for each aj in the tuple ā. A formula with variables included
in the tuple x̄ will be denote φ(x̄) (it is convenient to sometimes allow x̄ to
be a countable tuple, even though the definition of a formula only allows
finitely many of the variables to be used).

Let n = 0, 1, . . . , ω. Given a formula φ(x̄) where x̄ is an n-tuple, a C*-
algebra A and an n-tuple ā in A, one can define the interpretation of φ(ā)
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in A recursively, by following the the structure of φ as in (1)–(3). This
interpretation, denoted by φ(ā)A, defines a function φA : An → R. This
function is uniformly continuous on the set of n-tuples in the unit ball of
A, and the modulus of uniform continuity depends only on φ and not on A.
We denote the set of formulas whose free variables are included in x̄, by Fx̄.

We can expand the notion of formula slightly by allowing parameters. If
A ⊆ B, ϕ(x̄, ȳ) is a formula and ā ∈ A has the same length as ȳ then we
call ϕ(x̄, ā) a formula with parameters in A. We denote by Fx̄A the set of
formulas with free variables included in x̄ and parameters in A.

A formula is a sentence if it has no free variables; we denote the set of
sentences as F0. For a sentence φ the interpretation φA is a real number.
Note that F0 is an R-algebra and that for every A the map φ 7→ φA is linear.

The theory of a C*-algebra A is the kernel of this map on F0,

Th(A) := {φ ∈ F0 : φA = 0}.
Since φA = r if and only if {φ .− r, r .− φ} ⊆ Th(A), where a .− b =
max{a − b, 0}, the theory of A can be identified with the linear functional
φ 7→ φA. We say that A and B are elementarily equivalent, in symbols
A ≡ B, if Th(A) = Th(A).

If A is a subalgebra of B and for every n-ary formula φ the interpretations
φA and φB agree on An then we write A ≺ B and say that A is an elementary
submodel of B and that B is an elementary extension of A. The following
easily checked facts will be used tacitly. If A ⊆ B ⊆ C then A ≺ B and
B ≺ C implies A ≺ C. Also A ≺ C and B ≺ C implies A ≺ B. (Note,
however, that A ≺ C and A ≺ B does not imply B ≺ C.) By  Loś’ theorem
an ultrapower is always an elementary extension of A, A ≺ AU , via the
diagonal embedding.

1.1.2. Types and saturation. If A ⊆ B ≺ C and c̄ ∈ C then the complete
type of c̄ over A with respect to Th(B), p, written tp(c̄/A), is the linear
functional from Fx̄A → R given by p(ϕ(x̄, ā)) = ϕC(c̄, ā). A type over A with
respect to the Th(B) is the restriction of a complete type to a subset of
F x̄A. As a type can be extended by linearity to a subspace of F x̄A, a type
is determined by its kernel. For ϕ ∈ F x̄A and a type p, we write ϕ ∈ p if
p(ϕ) = 0. A set of formulas Σ with parameters in A is consistent with the
Th(B) if for some type p over A with respect to Th(B), we have Σ ⊆ p.
The following, which is used throughout, can be proved by an application
of  Loś’ theorem.

Proposition 1.1. Suppose that A ⊆ B and Σ is a set of formulas with
parameters in A. Then Σ is consistent with Th(B) if and only if every
finite subset of Σ0 ⊆ Σ and ε > 0, Σ0 can be ε-approximated in B i.e., there
exists b̄ ∈ B such that |ϕB(b̄, ā)| < ε for every ϕ(x̄, ā) ∈ Σ0.

If A is separable then every type over A is realized in AU .

A C*-algebra C is countably saturated if for every separable A ⊆ C, every
type over A is realized in C. The second key property of ultrapowers alluded
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to in the introduction is the fact that AU is always countably saturated. We
record a classical result, proved by transfinite back-and-forth construction,
for reference.

Theorem 1.2. Assume C and D are elementarily equivalent, countably sat-
urated, and both have density character ℵ1. Then C and D are isomorphic.

In particular, if the continuum hypothesis holds and A is separable then
every countably saturated model of density character ℵ1 elementarily equiva-
lent to A is isomorphic to every ultrapower of A associated to a nonprincipal
ultrafilter on N. �

We should note that, unless the continuum hypothesis holds, there are no
infinite-dimensional and countably saturated C*-algebras of density charac-
ter ℵ1 by the main result in [14].

We end this section with a well-known lemma.

Lemma 1.3. For any pair of C*-algebras A,B, the set of elementary em-
beddings from A to B is closed in the point-norm topology. In particular, if
Φ: A→ B is approximately unitarily equivalent to an elementary embedding
Ψ: A→ B then Φ is an elementary embedding.

Proof. Let Φλ, for λ ∈ Λ, be a net of elementary maps from A to B that
converges to Φ point-norm topology. In order to check that Φ is elementary
fix a formula ψ(x̄). Then for every ā in A of the appropriate sort we have
that ψ(ā)A = ψ(Φλ(ā))B for all λ. If b̄ = limλ Φλ(ā) then by the continuity
of the interpretation of ψ we have ψ(b̄)B = limλ ψ(Φλ(ā))B = ψ(ā)A. Since
ψ was arbitrary this completes the proof. The second statement follows
immediately. �

1.2. Criteria for elementarity. Lemmas in this subsection are stated and
proved for general metric structures (as in [1]), although we shall need only
the case when they are C*-algebras. Although not technically difficult, these
lemmas do not appear elsewhere to the best of our knowledge. They were
inspired by analysis of the model-theoretic behaviour of relative commutants
of strongly self-absorbing algebras. In all of these lemmas A,B and C de-
note metric structures of the same signature. By A ≺ B we mean A is an
elementary substructure of B.

Lemma 1.4. Assume C ≺ B and C ⊆ A ⊆ B. Assume moreover that for
every m and every ā ∈ A we have

inf{dist(α(ā), Cm) : α ∈ Aut(B), α � A ∈ Aut(A)} = 0.

Then C ≺ A ≺ B.

Proof. It suffices to prove that A ≺ B, since from this it follows that C ≺
A. Fix a formula infy φ(x̄, y) and ā in A. By the Tarski–Vaught test ([1,
Proposition 4.5]) we need to check that infy∈A φ(ā, y)B = infy∈B φ(ā, y)B.
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Since C ≺ B, if c̄ is in Cm we have

inf
y∈B

φ(c̄, y)B = inf
y∈C

φ(c̄, y)B

for all n. The monotonicity of taking inf implies

inf
y∈B

φ(c̄, y)B ≤ inf
y∈A

φ(c̄, y)B ≤ inf
y∈C

φ(c̄, y)B

and therefore we have the equality

inf
y∈A

φ(c̄, y)B = inf
y∈B

φ(c̄, y)B.

Fix a sequence αn, for n ∈ N, of automorphisms of B such that αn � A is an
automorphism of A such that limn dist(αn(ā), Cm) = 0. Let ā(n) be a tuple
from C such that limn dist(αn(ā), ā(n)) = 0.

Then infy∈B φ(ā, y)B = infy∈B φ(αn(ā), y)B and limn | infy∈B φ(αn(ā))B−
infy∈B φ(ā(n))B| = 0 by the uniform continuity of the interpretation of φ.
By the above, the conclusion follows. �

Lemma 1.5. Assume A ⊂ B. Assume in addition that for all m,n, and
b̄ ∈ B and ā ∈ A we have

inf{d(α(ā), ā) + dist(α(b̄), Am) : α ∈ Aut(B)} = 0.

Then A ≺ B. If B is in addition separable, then A ∼= B.

Proof. We need to check the Tarski–Vaught test, that for every n-ary formula
infy ψ(x̄, y) and all ā ∈ A we have

inf
y∈B

ψ(ā, y)B = inf
y∈A

ψ(ā, y)B.

We clearly have ≤. In order to prove ≥, set r := infy∈B ψ(ā, ȳ)B. Fix ε > 0

and b ∈ B such that ψ(ā, b)B < r + ε/2. Now ψB is uniformly continuous
so fix δ corresponding to ε/2 for ψ’s uniform continuity modulus. Pick an
automorphism α of B such that

d(ā, α(ā)) + d(α(b), A) < δ.

Then ψ(α(ā), α(b))B = ψ(ā, b)B < r + ε/2. Now pick b′ ∈ A such that
d(α(b), b′)) < δ. Since we also have d(ā, α(ā)) < δ, altogether we get

|ψB(ā, b′)− ψB(α(ā), α(b))| < ε/2

Since b′ ∈ A, the conclusion follows.
The final statement is by an intertwining argument as in the proof of [32,

Proposition 2.3.5]. �

We record a slightly simpler form of Lemma 1.5 (for use when B is count-
ably quantifier-free saturated, under which condition this version is equiva-
lent).
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Lemma 1.6. Assume A ⊂ B are models of the same continuous language.
Assume in addition that for all m,n and b̄ ∈ B and ā ∈ A there exists an
automorphism α of B such that (with a slight abuse of notation) α(ā) = ā
and α(b̄) ∈ A. Then A ≺ B. �

2. Main results

If A and D are C*-algebras we say that A is D-absorbing if A⊗D ∼= A.
We record a key fact about C*-algebras with approximately inner half-flip
taken from [32, Theorem 7.2.2] (as extracted from [9]).

Theorem 2.1. If A and D are separable and D has approximately inner
half-flip then A is D-absorbing if D unitally embeds into A′∩AU . If D is in
addition strongly self-absorbing then the converse holds, so A is D-absorbing
if and only if D unitally embeds into A′ ∩AU . �

(The choice of the ultrafilter U is irrelevant in this statement, although
the isomorphism type of A′ ∩ AU depends on the choice of U unless the
continuum hypothesis holds; see [13].)

Example 3.12 shows that the converse in Theorem 2.1 need not hold if D
has approximately inner half-flip, or even approximately inner flip, but isn’t
strongly self-absorbing.

2.1. Theory TD. Fix a separable C*-algebra D. Suppose that p1, . . . , pn
are *-polynomials in the variables y1, . . . , yn and d1, . . . , dn ∈ D. Let rj =
‖pj(d1, . . . , dn)‖ for j = 1, . . . , n. Let ∆ = (p1, . . . , pn, d1, . . . , dn). We define
the formula

φD,∆(x̄, ȳ) := max
i<n,j<n

‖[xi, yj ]‖+ max
j<n
|rj − ‖pj(ȳ)‖|,

ψD,∆ := sup
x̄

inf
ȳ
φD,∆(x̄, ȳ).

Set

TD := {ψD,∆ : ∆},
where ∆ ranges over all (p1, . . . , pn, d1, . . . , dn), over all n ∈ N. Recall that
Th(A) = {φ : φA = 0}. We write A |= T if T ⊆ Th(A). The C*-algebra D
in the following lemma is not assumed to have any special properties such
as approximately inner half-flip.

Lemma 2.2. For separable C*-algebras A and D, and an ultrafilter U , the
algebra D embeds into the relative commutant A′∩AU if and only if A |= TD.

Proof. Assume D embeds into A′ ∩AU and fix n. Since A is an elementary

submodel of AU , for every n-tuple ā in A we have φD,n(ā)A = φD,n(ā)A
U

= 0.
Therefore A |= TD.

Now assume A |= TD. Introduce variables yd for every d ∈ X where X is
a countable dense subset of D. Consider the type over A given by all the for-
mulas φD,∆(a1, . . . , an, yd1 , . . . , ydn) where ∆ = (p1, . . . , pn, d1, . . . , dn) and



RELATIVE COMMUTANTS OF STRONGLY SELF-ABSORBING C*-ALGEBRAS 9

a1, . . . , an ∈ A. This type is consistent because A |= TD and hence is real-
ized in AU by some set {cd : d ∈ X}. The map d 7→ cd can be extended to
a *-homomorphism from D into A′ ∩AU . �

Theorem 2.1 and Lemma 2.2 imply the following.

Lemma 2.3. If A is separable and D has approximately inner half-flip then
A |= TD implies that A is D-absorbing. If D is in addition strongly self-
absorbing then A |= TD if and only if A is D-absorbing. �

The separability of A is necessary in Lemma 2.3 since by [20] ultrapow-
ers are always tensorially indecomposable. By Example 3.12 A being D-
absorbing for some D with approximately inner flip does not imply A |= TD.

Definition 2.4. Fix a separable C*-algebra D and a (typically nonsepara-
ble) C*-algebra C.

(1) We say C is potentially D-absorbing if C |= TD.
(2) We say C is D-saturated if for every separable X ⊆ C there is a

unital *-homomorphism of D into X ′ ∩ C.

We record an immediate consequence of the above.

Lemma 2.5. (1) If C is countably saturated then it is potentially D-
absorbing if and only if it is D-saturated.

(2) If D has approximately inner half-flip and C is potentially D-absorbing
then every separable A elementarily equivalent to C is D-absorbing.

(3) If D is strongly self-absorbing then C is potentially D-absorbing if
and only if every separable A elementarily equivalent to C is D-
absorbing. �

Let F be a filter on N (we stick to N only for convenience). Identifying
a ∈ `∞(A) with the sequence (a(n) : n ∈ N) we set

cF (A) := {a ∈ `∞(A) : inf
X∈F

sup
n∈X
‖a(n)‖ = 0}.

This is a two-sided, norm-closed, (therefore) self-adjoint ideal in `∞(A). Set

AF := `∞(A)/cF (A).

Important special cases are ultrapowers (when F is an ultrafilter) and the
asymptotic sequence algebra (when F is the Frechét filter).

Although the  Loś’s theorem fails for the embedding of A into AF unless F
is an ultrafilter, the theory of AF can be computed from theory of A and
some information on F by Ghasemi’s metric version of the Feferman–Vaught
theorem ([19]). The following lemma is an easy instance of this theorem.

Lemma 2.6. Assume F is a filter on N and B is separable. Then A is
potentially B-absorbing if and only if AF is potentially B-absorbing.
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Proof. We shall prove that (ψB,∆)A
F

= 0 if and only if (ψB,∆)A = 0 for
all ∆. Fix ∆ = (p1, . . . , pm, d1, . . . , dm) and m-tuples ā and b̄ in A. with
representing sequences 〈ā(n) : n ∈ N〉 and 〈b̄(n) : n ∈ N〉, respectively. Then

φD,∆(ā, b̄)A
F

= max
i<m,j<m

‖[ai, bj ]‖A
F

+ max
j<m
|rj − ‖pj(b̄)‖A

F |

= max
i<m,j<m

inf
X∈F

sup
n∈X
‖[ai(n), bj(n)]‖+ max

j<m
inf
X∈F

sup
n∈X
|rj − ‖pj(b̄(n))‖|

and

inf
X∈F

sup
n∈X

φD,∆(ā(n), b̄(n)) ≤ φD,∆(ā, b̄)A
|cF ≤ 2n inf

X∈F
sup
n∈X

φD,∆(ā(n), b̄(n)).

Therefore ψD,∆ := supx̄ inf ȳ φD,∆(x̄, ȳ) satisfies

(ψD,∆)A ≤ (ψD,∆)A
F ≤ 2n(ψD,∆)A,

and the conclusion follows. �

The case of Proposition 2.7 when F is an ultrafilter is a result of Kirch-
berg ([22]). This result also applies to asymptotic sequence algebras which
were proved to be countably saturated in [16, Theorem 1.5].

Proposition 2.7. Assume A and B are separable. Then for a nonprin-
cipal filter F on N such that AF is countably saturated, the following are
equivalent:

(1) A is potentially B-absorbing.
(2) A′ ∩AF is potentially B-absorbing.
(3) B embeds into A′ ∩AF .

Proof. Lemma 2.6 and Lemma 2.2 together imply this result. �

A few remarks on the optimality of Proposition 2.7 are in order.
(a) There are separable A and B such that A |= TB but A ⊗ B is not

isomorphic to A. If A is an infinite-dimensional unital C*-algebra, then
A′∩AU is nonseparable and in particular C([0, 1]) embeds into it. However,
if the center of A is trivial then A does not absorb C([0, 1]) tensorially.

(b) There are separable A and B such that B has approximately inner
flip and A⊗B ∼= A, but A 6|= TB (see Example 3.12). However, if A ∼= A⊗B
and the isomorphism is approximately unitarily equivalent to the inclusion
map on A (approximate unitary equivalence is typically determined by K-
theoretic invariants; see Theorem 3.3 and [26]), then A⊗ 1 is an elementary
submodel of A⊗B and therefore A |= TB.

(c) If A |= TB and B is nuclear and separable then A |= TB⊗∞ (nuclearity
of B is used only to assure that B⊗∞ is uniquely defined). In particular,
if B is nuclear then every B-saturated algebra is B⊗∞-saturated. This was
proved by Kirchberg in [22] for A′ ∩AU .

(d) There exist nonprincipal filters F such that AF is not necessarily
countably saturated (Example 3.2). However, many nonprincipal filters F
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on N have the property that AF is countably saturated for every algebra A
[16, Theorem 2.7].

The following is essentially contained in [9].

Lemma 2.8. Assume D has approximately inner half-flip and C is D-
saturated. Then all unital *-homomorphisms of D into C are approximately
unitarily equivalent. If C is in addition countably quantifier-free saturated,
then all unital *-homomorphisms from D to C are in fact unitarily conjugate.

Proof. This is almost tautological. We include a proof for the reader’s con-
venience. Let Φ1 and Φ2 be unital *-homomorphisms of D into C. By
hypothesis, we can find a unital *-homomorphism Ψ from D into C whose
range commutes with ranges of Φ1 and Φ2. It suffices to prove that Ψ and
Φi are unitarily conjugate, i.e., to prove the assertion in case when Φ1 and
Φ2 have commuting ranges.

In this case, d1 ⊗ d2 7→ Φ1(d1)Φ2(d2) defines a map from Θ : D ⊗ D
to C. Let un, for n ∈ N, be a sequence of unitaries in D ⊗ D such that
limn Ad(un)(d ⊗ 1) = 1 ⊗ d. Then Θ(un), for n ∈ N, is a sequence of
unitaries in C which satisfy

lim
n

Ad(Θ(un))Φ1(d) = Φ2(d),

as required.
Now assume that C is countably quantifier-free saturated. Consider the

type t(x) consisting of the all the quantifier-free conditions ‖xx∗ − 1‖ = 0,
‖x∗x− 1‖ = 0, ‖xΦ2(d)x∗−Φ1(d)‖ = 0 for d ∈ D. Since Φ1,Φ2 are approx-
imately unitarily equivalent, any finite subset of this type is approximately
realized, so this type is consistent with Th(C). Therefore, since C is count-
ably quantifier-free saturated, the type is realized, i.e., there is a unitary
u ∈ C such that Ad(u) ◦ Φ2 = Φ1, as required. �

2.2. Proofs of Theorem 1 and Theorem 2. The next few results com-
plete the proof of Theorem 2.

Theorem 2.9. Assume C is potentially D-absorbing and countably satu-
rated and D has approximately inner half-flip. Then, fixing an embedding
of D in C, we have

D′ ∩ C ≺ C∗(D,D′ ∩ C) and C∗(D,D′ ∩ C) ≺ C.

Proof. Set A := D′ ∩C. In order to prove A ≺ C we verify the assumptions
of Lemma 1.6. Fix ā ∈ D′ ∩ C and b̄ ∈ C. Since C is potentially D-
absorbing we can fix a unital subalgebra D1 of C∗(D, ā, b̄)′ ∩ C isomorphic
to D. {ā}′∩C is D-saturated and countably quantifier-free saturated, so by
Lemma 2.8 there exists a unitary u ∈ {ā}′ ∩ C such that D1 = Ad(u)(D).
Set α := Ad(u) ∈ Aut(C), so that α(ā) = ā. By Lemma 1.6 the conclusion
follows.
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We now prove C∗(D,A) ≺ C. Let us write B := C∗(D,A). Since A ≺ C,
by Lemma 1.4 we need to show that for every m and every ā ∈ B we have

inf{dist(α(ā), Am) : α ∈ Aut(C), α � B ∈ Aut(B)} = 0.

Since B is generated by D and A, it suffices to consider the case when
ā = (d1, . . . , dk, c1, . . . , c`) where di ∈ D and ci ∈ A. Since C is D-saturated,
so is A. Therefore there is a unital copy D1 of D in A that commutes with
all ci. Since D has approximately inner half-flip, the flip automorphism of
C∗(D,D1) ∼= D ⊗ D1 is approximately inner, and the unitaries witnessing
this belong to C∗(D,D1) ⊆ B. Therefore for any ε > 0 we can find an inner
automorphism of B that moves all di to within ε of D1 and that does not
move any of the ci. This automorphism extends to an inner automorphism
of C as required.

Since A ≺ C and A ⊆ C∗(D,A) ≺ C, A ≺ C∗(D,A) follows. �

By [11] if B is countably saturated and A ⊆ B is separable then A′∩B is
countably quantifier-free saturated. In general, we don’t expect that A′ ∩B
is countably saturated, though we have the following.

Lemma 2.10. Assume D is countable, D ⊆ B, such that B is countably
saturated and D′ ∩B ≺ B. Then D′ ∩B is countably saturated.

Proof. Let p be a type in D′ ∩ B over a separable subalgebra A, let x̄ be
the tuple of variables occurring in this type. Consider the set of formulas
Σ with parameters in A ∪D, consisting of all φ(x̄, ā) ∈ p together with the
formula ‖[xi, d]‖ for each i and each d ∈ D. Let us show that Σ is consistent
with Th(B).

For this, let Σ0 be a finite subset of Σ and let ε > 0. Then, since p is
consistent, all formulas in Σ that are from p are ε-approximated in D′∩B by
some b̄ ∈ D′ ∩ B. Since D′ ∩ B ≺ B, these conditions are ε-approximately
realized by b̄ in B. For the formulas of the form ‖[xi, d]‖, we also have
‖[bi, d]‖ = 0 since b̄ ∈ D′. This concludes the proof that Σ is consistent with
Th(B), i.e., it is a type in the Th(B).

Since B is countably saturated, Σ is realized by some b̄ in B. The defini-
tion of Σ ensures that b̄ in D′ ∩B and that b̄ realizes p in B. Finally, since
D′ ∩B ≺ B, it follows that p is realized in D′ ∩B by b̄. �

Model-theorists will notice that the proof of Lemma 2.10 gives a more
general statement. If B is a countably saturated model and p is a 1-type
over a separable substructure of B such that the set C of realizations of p
is an elementary submodel of B, then C is countably saturated.

Corollary 2.11. Assume D has approximately inner half-flip and B is
countably saturated and potentially D-absorbing. Then D′ ∩ B is countably
saturated.

Proof. This is a consequence of Lemma 2.10 and Theorem 2.9. �
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Proof of Theorem 2. (1) is by Lemma 2.8, (2) is by Theorem 2.9, and (3) is
Corollary 2.11. �

We now turn to the proof of Theorem 1 – in fact, a strengthening of it.
We use a nonseparable variant on an intertwining argument.

Theorem 2.12 (cf. [32, Proposition 2.3.5]). Suppose A ⊆ B and that for
every separable set S ⊆ A and every b ∈ B there exists a unitary u ∈ S′ ∩B
such that ubu∗ ∈ A. Then

(1) A ≺ B,
(2) if B is countably saturated then so is A, and
(3) if B is countably saturated and of density character ω1 then A is

isomorphic to B and the inclusion A→ B is approximately unitarily
equivalent to an isomorphism.

Any infinite-dimensional C*-algebra is unstable by the main result of
[14] which implies that any countably saturated C*-algebra is of density
character continuum. So it follows that the assumptions of (3) above imply
the continuum hypothesis.

Proof. (1) follows from Lemma 1.6. Once we have (1), then, since B is
countably saturated, any type over a separable submodel C of A is realized
in B by some b. But then by assumption, there is a unitary u ∈ C ′ ∩ B
such that ubu∗ ∈ A and so the type is realized in A as well. In (3), the fact
that there is an isomorphism at all follows from Theorem 1.2. In order to
get approximate unitary equivalence, we do the following.

Enumerate dense subsets of A,B as (aλ)λ<ω1 and (bλ)λ<ω1 . By transfinite
induction we will show that there exists cλ ∈ A, dλ ∈ B and a unitary uλ ∈ B
for each λ < ω1, such that, for each µ < λ,

(1) uλbµu
∗
λ = cµ and uλdλu

∗
λ = aµ.

Note: at stage λ, we construct uλ and, when applicable, cλ−1 and dλ−1.
Let us describe stage λ, depending on whether λ is a successor or limit

ordinal.
If λ = λ′ + 1, we set S := {cµ, aµ | µ < λ} (which is countable), and use

the hypothesis to find a unitary v ∈ B ∩ S′ such that vuλ′bλ′uλ′v
∗ ∈ A. We

set uλ := vuλ′ and then set

cλ′ := uλbλ′u
∗
λ ∈ A, dλ′ := u∗λaλ′u

∗
λ.

For µ < λ, either µ = λ′ in which case clearly (1) holds, or else µ < λ′, in
which case (1) still holds since v commutes with S.

Now, suppose λ is a limit ordinal. Consider the set Σ of formulas in the
variable u, consisting of ‖u∗u−1‖, ‖uu∗−1‖, ‖ubµu∗−cµ‖ and ‖udµu∗−aµ‖,
for µ < λ. These formulas are over a countable set of parameters, since λ <
ω1, and the induction hypothesis shows that Σ is consistent. By countable
saturation, it follows that there exists a unitary uλ ∈ B realizing p; this says
that (1) holds.
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This concludes the construction (existence proof) of cλ, dλ and uλ.
We now define Φ : A→ B by Φ(aλ) = dλ. By construction Φ is approxi-

mately unitarily equivalent to the inclusion A→ B, and it follows that it is
an injective *-homomorphism. We need only show that it is surjective, and
to do this, we show that Φ(cλ) = bλ. Certainly, there exists µ > λ such that
aµ = cλ, and therefore,

Φ(cλ) = dµ = u∗µ+1aµuµ+1 = u∗µ+1cλuµ+1 = bλ.

�

Corollary 2.13. Suppose that D is a separable C*-algebra with approxi-
mately inner half-flip and C is countably saturated, potentially D-absorbing,
and D ⊂ C. Then

(1) C∗(D,D′ ∩ C) ⊗ 1 ≺ C ⊗ D and the inclusion is approximately
unitarily equivalent to an isomorphism between C∗(D,D′ ∩ C) and
(D′ ∩ C)⊗D,

(2) D′ ∩ C ≺ C, and
(3) if the continuum hypothesis holds and C has density character ω1

then this inclusion is approximately unitarily equivalent to an iso-
morphism.

In particular, if F is a filter on N such that `∞(A)/cF (A) is countably
saturated and A is potentially D-absorbing then

D′ ∩ `∞(A)/cF (A) ≺ AF ,

and if the continuum hypothesis holds then this embedding is approximately
unitarily equivalent to an isomorphism.

Proof. We prove (2) and (3) first. For D′ ∩ C and C, we will use Theorem
2.12. Therefore, let S ⊆ D′ ∩ C be separable and let b ∈ C. Let Ψ : D →
S′∩D′∩C be an embedding. S′∩C is D-saturated and countably quantifier-
free saturated, so by Lemma 2.8, there exists a unitary u ∈ S′∩C such that
u∗Du = Ψ(D). It follows that [ubu∗, D] = u[b, u∗Du]u∗ = u[b,Ψ(D)]u∗ = 0,
i.e., ubu∗ ∈ D′ ∩ C. This verifies the hypotheses of Theorem 2.12 and so
D′∩C ≺ C and since C is countably saturated, so is D′∩C. If C has density
character ω1 and the continuum hypothesis holds then inclusion D′∩C → C
is approximately unitarily equivalent to an isomorphism.

For C∗(D′ ∩ C,D)⊗ 1 and C ⊗D, note that since D has approximately
inner half-flip, the embedding C∗(D′∩C,D)⊗1D → C⊗D is approximately
unitarily equivalent, by unitaries in D ⊗ D ⊂ C ⊗ D, to an isomorphism
C∗(D′∩C,D)→ (D′∩C)⊗D. From the proof of (2), (D′∩C)⊗D ≺ C⊗D.
Composing these, the inclusion C∗(D′∩C,D)⊗1→ C⊗D is an elementary
map. �

The previous result can be somewhat refined. If A is a C*-algebra and B
is a C*-subalgebra, then we can consider the pair (A,B) as a model in
an appropriate expansion of the language of C*-algebras. To the standard
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language we add the unary predicate distB, the distance from a ∈ A to B.
This function is 1-Lipshitz and therefore can be added to the language.

Corollary 2.14. Assume D is a separable C*-algebra with approximately
inner half-flip, C is a C*-algebra that is countably saturated, potentially D-
absorbing, and that D ⊂ C. Then (C∗(D,D′∩C), D′∩C) can be elementarily
embedded into (C ⊗D,C ⊗ 1).

Proof. Looking at the proof of the previous corollary, we see that

((D′ ∩ C)⊗D, (D′ ∩ C)⊗ 1) ≺ (C ⊗D,C ⊗ 1)

We also have

(C∗(D′ ∩ C,D), D′ ∩ C) ∼= ((D′ ∩ C)⊗D, (D′ ∩ C)⊗ 1)

and so the conclusion follows. �

2.3. A model-theoretic characterization of strongly self-absorbing
algebras. The hyperfinite II1 factor is the only II1 factor with a separable
predual all of whose embeddings into its ultrapower are conjugate ([21]).
We give a similar characterization of strongly self-absorbing algebras.

Theorem 2.15. A C*-algebra D is strongly self-absorbing if and only if the
following hold.

(1) All unital *-homomorphisms of D into its ultrapower DU are uni-
tarily conjugate, and

(2) D ≡ D ⊗D.

Proof. Assume D is strongly self-absorbing Then D ∼= D⊗D and therefore
(2) holds, and (1) holds by Lemma 2.8.

Now assume (1) and (2). By (2), D ⊗ D embeds elementarily into DU

and by (1), D⊗1 is unitarily conjugate to the diagonal copy of D embedded
into DU so we may assume

D ≺ D ⊗D ≺ DU

where the first embedding is D → D⊗ 1. Now 1⊗D ⊆ D′ ∩DU and by (1),
D⊗ 1 and 1⊗D are unitarily conjugate so D has approximately inner half-
flip. So by Theorem 2.1, we have D ∼= D⊗D say by an isomorphism Φ. But
again by (1), Φ can be implemented by a unitary in DU . Since D⊗D ≺ DU ,
Φ is approximately unitarily equivalent to the map D → D ⊗ 1 and so D is
strongly self-absorbing. �

Unlike the case of II1 factors, the assumption that all unital *-homo-
morphisms of A into its ultrapower are unitarily conjugate alone does not
imply that A is strongly self-absorbing or even that it is self-absorbing (i.e.,
that A ⊗ A ∼= A). For example, every UHF algebra has this property so
it suffices to take a UHF algebra that is not of infinite type. There are
even algebras without approximately inner half-flip such that all of its *-
homomorphisms into its ultrapower are unitarily conjugate (one such algebra
is O3; see Example 3.11). If D has approximately inner half-flip then any
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two unital *-homomorphisms of D into DU are unitarily conjugate in DU⊗D
(by the proof of Lemma 2.8) but not necessarily in DU (Example 3.12).

2.4. Classification. Recall that a model D is prime if for every A ≡ D
there is an elementary embedding of D into A. For separable models this
is equivalent to being atomic (see [1]). In order to avoid confusion with
terminology established in C*-algebras (and since we are using the concept
only for separable algebras) we shall refer to prime models as atomic models.

Proposition 2.16. Every strongly self-absorbing algebra D is an atomic
model of its theory.

Proof. By the Downward Löwenheim–Skolem theorem, it will suffice to show
that D elementarily embeds into every separable A ≡ D. Fix such A. Then
since A ≡ D we have A is D-absorbing and we can assume that A ≺ DU .
But since A ∼= A ⊗ D, we also have an embedding of D into A. Since all
copies of D embedded in DU are conjugate to the diagonal embedding, any
embedding of D into A is elementary. �

It is well-known that elementarily equivalent separable atomic models are
isomorphic, but we shall show that in case of strongly self-absorbing algebras
a stronger result is true.

A quantifier-free formula ψ(x̄) is called an R+-formula if for all C*-
algebras A and all ā ∈ A, ψA(ā) ≥ 0. A sentence φ is universal if it is
of the form supx̄ ψ(x̄) for some quantifier-free R+ -formula ψ(x̄). The uni-
versal theory of a C*-algebra is

Th∀(A) = {φ : φA = 0 and φ is universal}.
This terminology is adopted in order to match discrete first order logic: for
a universal sentence φ = supx̄ ψ(x̄) and any C*-algebra A, φA = 0 if and
only if for all ā ∈ A,ψA(ā) = 0. If A is a subalgebra of B then clearly
Th∀(A) ⊇ Th∀(B). For separable A and countably saturated C, one has
that A embeds into C if and only if Th∀(A) ⊇ Th∀(C) ([15]).

The following result was announced in [10].

Theorem 2.17. Assume D and E are strongly self-absorbing

(1) D is E-absorbing if and only if Th∀(D) ⊆ Th∀(E).
(2) D ∼= E if and only if Th∀(D) = Th∀(E).

Proof. (1) Only the converse implication requires a proof. Assume Th∀(D) ⊆
Th∀(E). Since D ≡ D′ ∩ DU , we have Th∀(D) = Th∀(D

′ ∩ DU ). Since
D′ ∩ DU is countably saturated, E embeds into D′ ∩ DU and therefore
D ⊗ E ∼= D by Theorem 2.1.

(2) Again only the converse implication requires a proof. By using (1)
twice we have that D ∼= D ⊗ E ∼= E. �

We record a consequence on the classification problem for strongly self-
absorbing algebras (see [17] for the definitions). While the isomorphism
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relation for separable C*-algebras (and even separable AI algebras) is not
classifiable by countable structures ([18]), our result shows that the isomor-
phism relation for strongly self-absorbing algebras is much simpler. Since
the computation of a theory of a C*-algebra is given by a Borel function
([17]) the following is an immediate consequence of Theorem 2.17.

Corollary 2.18. The isomorphism relation of strongly self-absorbing alge-
bras is smooth. �

On the other hand, algebras with approximately inner half-flip behave
much differently: Elementarily equivalent separable algebras with approx-
imately inner half-flip are not necessarily isomorphic, the isomorphism re-
lation of these algebras is not smooth, and they are not necessarily atomic
models of their theories (Example 3.10).

3. Limiting examples

Examples promised earlier on are collected in this concluding section.
Most interesting examples involve nontrivial properties of Kirchberg algebras
reviewed in §3.1.

Examples 3.1 and 3.11 show two directions in which Theorem 2.15 cannot
be improved.

Example 3.1. A separable unital nuclear C*-algebra A such that A ∼= A⊗A
and the images of all unital *-homomorphisms of A into AU are conjugate by
an automorphism of AU , but A does not have approximately inner half-flip.

Take A to be C({0, 1}N), the C*-algebra of continuous functions on the
Cantor space. Then A ⊗ A ∼= A since {0, 1}N is homeomorphic to its own
square. Since the theory of A allows elimimation of quantifiers ([8]) every
embedding of A into a model of its theory is elementary and therefore the
standard back-and-forth argument shows that any two such embeddings into
a saturated model are conjugate.

If one considers A, a UHF algebra not of infinite type, then we have that
every unital *-homomorphism of A into AU is conjugate by a unitary but
A 6≡ A⊗A.

The following example is well-known but is included for completeness.

Example 3.2. A free filter F on N such that `∞(A)/cF (A) is not count-
ably quantifier-free saturated (and therefore fails Kirchberg’s ε-test, [24,
Lemma 3.1]) for any unital, simple C*-algebra A.

Recall that Z0 is the ideal of sets of asymptotic density zero,

Z0 := {X ⊆ N : lim
n
|X ∩ {0, . . . , n− 1}|/n = 0}.

Define the upper density on P(N) by

d(X) := lim sup
n
|X ∩ {0, . . . , n− 1}|/n.
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Then Z0 is the ideal of sets of asymptotic density zero and the dual filter is
equal to

F0 = {X : d(N \X) = 0}.
The following is an elaboration of the well-known fact that the quotient
Boolean algebra P(N)/Z0 is not countably saturated.

Let Xn = {j2n : j ∈ N}. Then d(Xn) = 2−n and Xn ⊇ Xn+1. If Y ⊆ N
is such that Y \ X ∈ Z0 then d(Y ) = 0 and therefore N \ Y ∈ F0. Let
pn be the projection in `∞(A)/cF (A) whose representing sequence satisfies
pn(j) = 1 if j ∈ Xn and pn(j) = 0 if j /∈ Xn. Then pn, for n ∈ N, is
a strictly decreasing sequence of projections in `∞(A)/cF (A) and the type
of a nonzero projection q such that q ≤ pn for all n is consistent, but not
realized, in `∞(A)/cF (A).

The argument in Example 3.2 shows that `∞(A)/cF (A) is not countably
degree-1 saturated (see [11]) and even not SAW* ([29]). No example of
an algebra which is countably quantifier free saturated but not countably
degree-1 saturated is known (see [8]). The Calkin algebra is an example
of an algebra that is countably degree-1 saturated but not quantifier-free
saturated ([11, §4]).

3.1. Kirchberg algebras. We review some facts on Kirchberg algebras.
More details, including an exposition of Kirchberg and Phillips’ classification
result, can be found in e.g., [32]. A separable, simple, purely infinite and
nuclear C*-algebra is called a Kirchberg algebra. Phillips and Kirchberg
have classified all Kirchberg algebras up to KK-theory, and unital Kirchberg
algebras in the so-called UCT class are classified by their K-groups together
with the position of the unit in K0. To each pair (G0, G1) of countable
abelian groups there is a Kirchberg algebra A in the UCT class withK0(A) ∼=
G0 and K1(A) ∼= G1.

The classification theorem contains the following fact (see [30, Theo-
rem 4.4.1] or [32, Theorem 8.2.1]) that we shall use. The last statement
of the theorem follows using [32, Remark 2.4.8].

Theorem 3.3 (Kirchberg, Phillips). If A and B are unital Kirchberg alge-
bras and if ϕ,ψ : A→ B are unital *-homomorphisms, then ϕ is asymptoti-
cally unitarily equivalent to ψ if and only if KK(ϕ) = KK(ψ) in KK(A,B).
If A and B are in the UCT class and with finitely generated K-groups, then
this, in turn, is equivalent to ϕ and ψ being approximately unitarily equiva-
lent.

A Kirchberg algebra A is said to be in standard form if A is unital and
[1A] = 0 in K0(A). Every Kirchberg algebra is Morita (or stably) equivalent
to a Kirchberg algebra in standard form, and the standard form is unique up
to isomorphism. Any C*-algebra which is Morita equivalent to a Kirchberg
algebra A and which is in standard form is isomorphic to p(A ⊗ K)p for
some projection p ∈ A⊗K with [p] = 0 in K0(A) (and such a projection p
always exists, in fact in A). The uniqueness of the standard from is deduced
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from the elementary fact that if p and q are non-zero projections in A⊗K
with [p] = [q] in K0(A), then p ∼ q.

It is a well-known fact that A is in standard form if and only if the Cuntz
algebra O2 embeds unitally into A. Indeed, “if” follows from the fact that
K0(O2) = 0. Conversely, if A is a Kirchberg algebra in standard form, then
2[1A] = [1A], which implies that 1A = p + q for some non-zero projections
p, q ∈ A with p ∼ q ∼ 1A (again using that [p] = [q] implies p ∼ q). Let
s1, s2 ∈ A be such that s∗1s1 = s∗2s2 = 1A, s1s

∗
1 = p and s2s

∗
2 = q. Then

C∗(s1, s2) is a unital sub-C*-algebra of A which is isomorphic to O2.

Lemma 3.4. Every Kirchberg algebra D in standard form has approximately
inner half-flip and satisfies D⊗∞ ∼= O2.

Proof. We must show that the *-homomorphisms α(d) = d⊗1D and β(d) =
1D ⊗ d, d ∈ D, from D to D ⊗ D are approximately unitarily equivalent.
Since D and D ⊗ D are Kirchberg algebras we can use the Kirchberg–
Phillips’ classification theorem (Theorem 3.3) whereby it suffices to show
that KK(α) = KK(β) in KK(D,D ⊗ D). Since D is in standard form
there is a unital embedding O2 → D. We can therefore factor α and β
through O2 as follows

D → D ⊗O2 → D ⊗D, D → O2 ⊗D → D ⊗D,
where we recall that D ⊗ O2

∼= O2 ⊗ D ∼= O2 by [23, Theorem 3.8]. As
KK(O2,O2) = 0, this implies that KK(α) = KK(β) = 0.

As for the second claim, arguing as above, we can write D⊗∞ as the
inductive limit of the sequence:

D → D ⊗O2 → D ⊗D → D ⊗D ⊗O2 → D ⊗D ⊗D → · · · .
Every other C*-algebra in this sequence is isomorphic to O2 (by [23, The-
orem 3.8]), whence D⊗∞ is an inductive limit of a sequence of copies of
O2; and the inductive limit of such a sequence is isomorphic to O2 (by the
Kirchberg-Phillips’ classification or by [31]). �

It is known that O2 and O∞ are strongly self-absorbing (see e.g., [32]),
so in particular they have approximately inner flip.

For the reader’s convenience we reproduce the following well-known result
due to Cuntz ([7]) and sketch its proof.

Proposition 3.5. The Cuntz algebras On do not have approximately inner
half-flip when 2 < n <∞.

Proof. Let α, β : On → On⊗On be the two canonical endomorphisms given
by α(d) = d ⊗ 1 and β(d) = 1 ⊗ d, d ∈ On. The interrelations between α
and β are encoded in the unitary

u =
∑n

j=1 α(sj)β(sj)
∗ =

∑n
j=1 sj ⊗ s∗j ∈ On ⊗On,

cf. [31], where s1, s2, . . . , sn are the canonical generators of On. It is well-
known that α and β are not unitarily equivalent if [u] /∈ (n−1)K1(On⊗On)
(see [31, Theorem 3.6]). We proceed to prove this fact.
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With B denoting the UHF algebra Mn∞ we can identify On with the
crossed product B oρ N where ρ(a) = s1as

∗
1 (see the proof of [32, Theo-

rem 4.2.2]). Therefore On ⊗ On is identified with (On ⊗ B) oρ′ N where
ρ′(a ⊗ b) := a ⊗ ρ(b). By stability and continuity of K-theory it is easy to
see that Kj(On⊗B) ∼= Kj(On)⊗K0(B) for j = 0, 1, and so K0(On⊗B) ∼=
Z/(n− 1)Z and K1(On ⊗ B) = 0. Therefore the Pimsner–Voiculescu exact
sequence ([3, Theorem 10.2.2]) for this crossed product becomes:

Z/(n− 1)Z Z/(n− 1)Z K0(On ⊗On)

K1(On ⊗On) 0 0

0 K0(ι)

δ1 δ0

(with ι : On⊗B → On⊗On denoting the inclusion map and δ1 denoting the
index map). By the exactness of this sequence at the bottom left corner we
see that K1(On⊗On) ∼= Z/(n− 1)Z. Since K0(On⊗B) is generated by the
class of the unit (as in the case of K0(On)), a (partial) unitary w ∈ On⊗On
is a generator for K1(On ⊗On) if and only if δ1([w]) = [1].

With u as above, v := u∗(1 ⊗ s∗1) =
∑n

j=1 s
∗
j ⊗ sjs∗1 is a co-isometry in

On ⊗ B, and u∗ = v(1 ⊗ s1). Thus, by the definition of the index map δ1

in the Pimsner–Voiculescu six term exact sequence above, one can conclude
that δ1([u∗]) = [1], whence [u] is a generator for K1(On⊗On). In particular,
[u] 6= 0 and On does not have approximately inner half-flip �

The following is a version of stability of KK:

Lemma 3.6. Let A and B be C*-algebras and let n ≥ 1 be an integer. It
follows that there is an isomorphism

ρ : KK(A,B)→ KK(A⊗Mn, B ⊗Mn)

such that ρ(KK(ϕ)) = KK(ϕ⊗ idn) for all *-homomorphisms ϕ : A→ B.

Proof. For each C*-algebra D, let ιD,n : D → D ⊗Mn denote the canonical
inclusion ιD,n(d) = d⊗ e11. Then KK(ιD,n) defines an invertible element of
KK(D,D ⊗Mn) by stability of KK-theory. Hence the map

ρ : KK(A,B)→ KK(A⊗Mn, B⊗Mn), x 7→ KK(ιA,n)−1 ·x ·KK(ιB,n),

where “·” denotes the Kasparov product, is an isomorphism. Inspection
shows that ιA,n ◦ ϕ = (ϕ⊗ idn) ◦ ιB,n for each *-homomorphism ϕ : A→ B,
which in particular implies that

KK(ιA,n) ·KK(ϕ) = KK(ϕ⊗ idn) ·KK(ιB,n).

This completes the proof. �

The identity element in the ring KK(D,D) is equal to KK(idD) and it
is denoted by 1D or just by 1.
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Lemma 3.7. Let A be a unital C*-algebra and denote the flip on A by σA.
Then KK(σMn(A)) = 1 for some n ≥ 1 if and only if KK(σMn(A)) = 1 for
all n ≥ 1.

Proof. Assume that KK(σMn(A)) = 1 for some n ≥ 1. We may identify
σMn(A) with σA ⊗ σMn . As the flip on Mn is inner it follows that σA ⊗ σMn

is unitarily equivalent to σA ⊗ idMn⊗Mn , so

1 = KK(σA ⊗ σMn) = KK(σA ⊗ idMn⊗Mn).

By Lemma 3.6 this implies that KK(σA) = 1, and it also implies that
KK(σA ⊗ σMn) = 1 for all n ≥ 1 if KK(σA) = 1. �

It is clear that if A has approximately inner flip then so does Mn(A) for
every n. The converse is sometimes true.

Lemma 3.8. Let A be a unital Kirchberg algebra in the UCT class with
finitely generated K-theory. If Mn(A) has an approximately inner flip for
some n ≥ 1 then so does A.

In particular, Mk(On) does not have approximately inner flip when 2 <
n <∞ and k ≥ 1.

Proof. Suppose the flip σA on A is not approximately inner. Then it is not
asymptotically inner and KK(σA) 6= 1 = KK(idA⊗A) by the Kirchberg-
Phillips classification theorem (Theorem 3.3). Therefore KK(σMn(A)) 6= 1
by Lemma 3.7. Since A has UCT and finitely generated K-theory, this im-
plies that σMn(A) is not approximately inner, which precisely says thatMn(A)
does not have approximately inner flip.

As On does not have approximately inner half-flip (Lemma 3.5), and
hence not approximately inner flip, when 2 < n <∞, and On is a Kirchberg
algebra in the UCT class with finitely generated K-theory, we conclude that
no matrix algebra over On has approximately inner flip. �

3.2. Limiting examples from Kirchberg algebras. It is well-known
that algebras with approximately inner flip need not be strongly self-absor-
bing For example, matrix algebras and UHF algebras not of infinite type
have this property.

Example 3.9. For every m ≥ 2 there exists a separable unital C∗-algebra
A such that A does not have approximately inner half-flip and Mm(A) has
approximately inner half-flip but not approximately inner flip.

Let n = m+ 1 and consider On. By Proposition 3.5 it does not have ap-
proximately inner half-flip. However, Mm(A) does not have approximately
inner flip by Lemma 3.8, but because it is in standard form it has approxi-
mately inner half-flip by Lemma 3.4.

Example 3.10. Not every separable unital C*-algebra with approximately
inner half-flip is an atomic model of its theory. Moreover there are ele-
mentarily equivalent separable algebras with approximately inner half-flip
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which are not isomorphic, and the isomorphism relation for separable alge-
bras with approximately inner half-flip is not smooth. (The examples here
are, in addition, simple.)

Lemma 3.4 implies that every Kirchberg algebra in standard form has ap-
proximately inner half-flip and therefore provides a large supply of Kirchberg
algebras with approximately inner half-flip. By [17], the map that associates
K0 and K1 to a separable C*-algebra is a Borel map from the Borel space
of separable C*-algebras to the Borel space of pairs of countable abelian
groups (in this context, the order is trivial and we ignore the K0-class of
the identity). By the Kirchberg–Phillips classification and corresponding
range of invariant theorem (see [32]) this map, restricted to the category of
Kirchberg algebras satisfying the UCT, is equivalence of categories. Since
the isomorphism of countable abelian groups is not a smooth equivalence
relation, there are elementarily equivalent but non-isomorphic UCT Kirch-
berg algebras in the standard form. Since elementarily equivalent separable
atomic models are isomorphic, some of these algebras are not atomic.

This proof shows that there are non-atomic algebras with approximately
inner half-flip with trivial K1 and torsion-free K0 of rank 2, since the iso-
morphism of torsion-free rank 2 groups is not smooth.

The argument in Example 3.10 is nonconstructive and very similar to the
proof that there are elementarily equivalent but nonisomorphic separable
AF algebras ([5, Theorem 3 (1)]). In both cases we don’t have an explicit
natural example of elementarily equivalent but nonisomorphic algebras. We
also do not know whether elementarily equivalent separable algebras with
approximately inner flip are necessarily isomorphic.

Example 3.11. A separable unital simple nuclear C*-algebra A such that
all unital *-homomorphisms of A into AU are unitarily conjugate but A does
not have approximately inner half-flip. (This differs from Example 3.1 in
that A is simple, A 6∼= A⊗ A, and that *-homomorphisms from the algebra
in Example 3.1 to its ultraproduct are not all unitarily conjugate.)

There are many examples; we take O3. By the Universal Coefficient
Theorem ([3, Theorem 23.1.1]), and since K1(O3) = 0, we have

KK(O3,O3) ∼= Hom(K0(O3),K0(O3)).

AsK0(O3) ∼= Z/2Z and [1] is a generator forK0(O3) it follows thatKK(ϕ) =
1 for all unital endomorphisms ϕ on O3. Hence, by the Kirchberg–Phillips
classification theorem (Theorem 3.3) any two unital endomorphisms of O3

are approximately unitarily equivalent.
Since O3 is semiprojective ([2]) every *-homomorphism Φ: O3 → OU3 lifts

to a *-homomorphism Φ̃: O3 → `∞(O3). Fix *-homomorphisms Φ1 and Φ2

of O3 into OU3 . By the above there is a sequence of unitaries un in `∞(O3)
whose images under the quotient map witness that Φ1 is approximately
unitarily equivalent to Φ2. By the countable saturation we can find a single
unitary u ∈ OU3 such that Φ2 = Adu ◦ Φ1, as required.
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Example 3.12. A separable algebra D with approximately inner flip such
that D ⊗ D ∼= D but there exists an automorphism φ of D that is not
approximately inner. In particular,

(1) not all unital *-homomorphisms of D into DU are unitarily conju-
gate,

(2) DU is not potentially D-absorbing,
(3) D does not embed into D′ ∩ DU (and therefore D does not satisfy

TD),
(4) D is not s.s.a, and
(5) although φ and idD are not approximately unitarily equivalent, their

compositions with the first-factor inclusion D → D⊗D are approx-
imately unitarily equivalent.

Let D be the standard form ofO∞, that is D = pO∞p where p is a projection
in O∞ with [p] = 0 in K0(O∞). Then D has approximately inner half-flip by
Lemma 3.4. One could show, using stability of KK as in Lemma 3.6, that
this algebra even has approximately inner flip. As D is stably isomorphic
to O∞ we see that D ⊗ D is stably isomorphic to O∞ ⊗ O∞ which again
is isomorphic to O∞. Moreover, D ⊗ D is in standard form (because D
and hence also D ⊗ D admit unital embeddings of O2). This entails that
D ⊗D ∼= D.

There is an automorphism of D which reverses K0. It cannot be approxi-
mately inner, because approximately inner maps agree with the identity on
K-theory.

Clause (2) now follows from Lemma 2.8 and then (3) follows from Propo-
sition 2.7. (4) follows from Theorem 2.1.

To see (5), note that [φ(p)⊗1D] = 0 = [d⊗1D] for all d ∈ D. Hence, these
two maps from D to D⊗D agree on K-theory. By the Universal Coefficient
Theorem and since K1(O∞) = 0,

KK(O∞,O∞) ∼= Hom(K0(O∞),K0(O∞)).

Hence, by the Kirchberg–Phillips classification theorem (Theorem 3.3), these
two maps are approximately unitarily equivalent.
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