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Abstract. We classify ∗-homomorphisms from nuclear C∗-algebras
into uniform tracial sequence algebras of nuclear Z-stable C∗-
algebras via tracial data.

Introduction

Over the last 10 years, the application of von Neumann techniques
has been a major theme in the structure theory of simple nuclear C∗-
algebras through the pioneering work of Matui and Sato [MS12, MS14].
A starting point for a number of these applications is the following
well-known consequence of Connes’ revolutionary work on the charac-
terisation of hyperfinite von Neumann algebras [Con76]: maps from a
separable nuclear C∗-algebra A into Rω (the ultrapower of the hyper-
finite II1 factor) are classified up to unitary equivalence by the trace
they induce on A (see for example [CGNN13, Proposition 2.1]). Most
recently, this result played a key role in Schafhauser’s breakthrough
new approach to the classification of monotracial separable nuclear
C∗-algebras which absorb the universal uniformly hyperfinite algebra
tensorially ([Sch18]).

For a nuclear C∗-algebra B with a unique trace, Connes’ theorem al-
lows us to view Rω as a tracial ultrapower of B. When B has multiple
traces a somewhat different reduced product construction is needed in
order to be able to handle them all uniformly. This led to the uniform
tracial ultrapower Bω, formalised in [CET+]. This, and its precur-
sor in terms of ultraproducts of W ∗-bundles ([BBS+15, Oza13]), has
been a crucial tool in recent developments. In particular, in our recent
joint work with Winter ([CET+]), we introduced a new tool — comple-
mented partitions of unity (CPoU) — for studying these ultraproducts,
and used this to show that Jiang–Su stability and finite nuclear dimen-
sion are equivalent in the Toms–Winter conjecture ([CET+, Theorem
A]).
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The principal purpose of this paper is to use the new techniques in
[CET+] to classify maps from separable nuclear C∗-algebras into uni-
form tracial sequence algebras of Z-stable nuclear C∗-algebras, anal-
ogous to the consequence of Connes’ result for maps into Rω. In the
theorem which follows, the uniform tracial sequence algebra B∞ as-
sociated to B is the C∗-algebra of bounded sequences in B, modulo
those converging to zero uniformly over all trace norms. So classifying
maps from A to B∞ up to unitary equivalence is a way of encoding a
classification of uniform trace norm approximately multiplicative maps
from A into B up to approximate unitary equivalence in uniform trace
norm.

Theorem A. Let A be a separable nuclear C∗-algebra and let B be
a separable nuclear Z-stable C∗-algebra with T (B) compact and non-
empty. Then for any continuous affine function α : T (B∞) → T (A),
there exists a ∗-homomorphism φ : A → B∞ which induces α. More-
over, φ is unique up to unitary equivalence.

Just as the classification of embeddings from separable nuclear C∗-
algebras into Rω is vital in [Sch18], Theorem A will form the starting
point of the forthcoming joint work of Carrión, Gabe, Schafhauser and
the last two named authors which will give an abstract approach to
the classification of simple separable unital nuclear Jiang–Su stable
C∗-algebras satisfying the UCT ([CGS+]). Our reason for setting up
Theorem A with the uniform trace norm sequence algebra B∞ as op-
posed to the uniform tracial ultrapower Bω is so it can be applied
exactly as written in [CGS+].1

The role of nuclearity and Z-stability of B in Theorem A is to obtain
CPoU from [CET+, Theorem I] — the main technical result of that
work. Although the defining property of CPoU is in the form of the
existence of certain partitions of unity for trace spaces, its principal
consequence is a local to global tracial type-satisfaction process for
B∞. In less fancy language, this means that if (suitable) properties hold
approximately in trace in each tracial GNS-representation of B∞, then
they hold exactly in B∞. This gives B∞ a von Neumann algebra-like
flavour (though it is certainly not a von Neumann algebra). Theorem A
is obtained in this fashion: we glue together the classification of maps
from separable nuclear C∗-algebras into finite von Neumann algebras
from Connes’ theorem over all traces using CPoU.

We also record in Proposition 2.1, another, somewhat easier, applica-
tion of CPoU for use in [CGS+], which showcases another von Neumann
algebra-like property: every unitary in B∞ is an exponential.

1One can obtain an ultrapower version of Theorem A by working with an ultra-
power Bω in place of the sequence algebra B∞ throughout the paper.
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1. Preliminaries

Let B be a C∗-algebra. We let T (B) denote the set of tracial states
(which we abbreviate as “traces”) on B. For τ ∈ T (B), we define the
associated 2-seminorm on B by

(1.1) ‖b‖2,τ :=
√
τ(|b|2).

We let πτ : B → B(Hτ ) be the GNS representation associated to τ ,
and continue to use ‖ · ‖2,τ to denote the induced 2-norm on πτ (B)′′.

Define the uniform tracial sequence algebra

(1.2) B∞ := `∞(B)/{(bn)∞n=1 : lim
n→∞

sup
τ∈T (B)

‖bn‖2,τ = 0}.

We will typically use representative sequences in `∞(B) to denote ele-
ments of B∞.

The ultraproduct versions of these sequence algebras are obtained
using a free ultrafilter ω ∈ βN\N in place of∞, and many of their basic
properties are the same. For example, when B is separable and T (B) is
non-empty and compact, B∞ is unital, with the unit represented by an
approximate unit (en)∞n=1 for B in just the same way as the ultrapower
version of this result ([CET+, Proposition 1.11]).

Given a sequence (τn)∞n=1 in T (B) and a free ultrafilter ω, define the
associated limit trace τ : B∞ → C by

(1.3) τ((bn)∞n=1) := lim
n→ω

τn(bn).

We let T∞(B) denote the set of all limit traces on B∞.
On B∞, one has a uniform 2-norm2 ‖ · ‖2,T∞(B) given by

(1.4) ‖b‖2,T∞(B) := sup
τ∈T∞(B)

‖b‖2,τ , b ∈ B∞.

More explicitly, for b = (bn)∞n=1 ∈ B∞, one has

(1.5) ‖b‖2,T∞(B) = lim sup
n

sup
τ∈T (B)

‖bn‖2,τ .

In this paper we will frequently use Kirchberg’s ε-test, which appears
as [Kir06, Lemma A.1]. However, we need a slightly different version,
as we work with “sequence algebras” rather than ultrapowers; we state
here the version we need, and remark that the proof is nearly identical
to that of [Kir06, Lemma A.1].

2To see it is a norm, use (1.5).
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Lemma 1.1 (Kirchberg’s ε-test, ([Kir06])). Let (Xn)∞n=1 be a sequence

of non-empty sets and for k, n ∈ N, let f
(k)
n : Xn → [0,∞] be a function.

Define functions f (k) : X1 ×X2 × · · · → [0,∞] by

(1.6) f (k)(x1, x2, . . . ) := lim sup
n

f (k)
n (xn).

If for every ε > 0 and k0 ∈ N there exists x ∈ X1 ×X2 × · · · such that
f (k)(x) < ε for k = 1, . . . , k0, then there exists y ∈ X1 ×X2 × · · · such
that f (k)(y) = 0 for all k ∈ N.

We next record a useful fact, which is a direct consequence of Cuntz
and Pedersen’s investigation of traces on C∗-algebras ([CP79, Propo-
sition 2.7]) and the fact that the weak∗-continuous functionals on the
dual of a Banach space correspond precisely to elements of the Banach
space.

Proposition 1.2 (Cuntz–Pedersen). Let A be a C∗-algebra and let
f : T (A) → R be a continuous affine function. Then there is a self-
adjoint element a ∈ A such that

(1.7) τ(a) = f(τ), τ ∈ T (A).

In this paper, we will be using CPoU as a property of the uniform
tracial sequence algebra B∞. In [CET+, Definition 3.1], CPoU was
originally defined as a property of the uniform tracial ultrapower Bω,
but standard methods allow it to be rephrased as a local property of B
instead: see [CET+, Proposition 3.2]. The same methods allow it to be
rephrased as a property of B∞, analogous to the original definition for
Bω, as recorded in the lemma below. For the purposes of this paper,
one can take this as the definition of CPoU.

Lemma 1.3. Let B be a separable C∗-algebra with T (B) non-empty
and compact. If B has CPoU, then for any ‖ · ‖2,T∞(B)-separable subset
S of B∞, any δ > 0, and any a1, . . . , ak ∈ (B∞)+ satisfying

(1.8) min{τ(a1), . . . , τ(ak)} < δ, τ ∈ T∞(B),

there exist orthogonal projections e1, . . . , ek ∈ B∞ ∩ S ′ which sum to
1B∞, such that

(1.9) τ(aiei) ≤ δτ(ei), i = 1, . . . , k, τ ∈ T∞(B).

We will access CPoU through one of the main technical results of
[CET+], which we recall below. Note that for unital C∗-algebras the
tracial state space T (B) is automatically compact.

Theorem 1.4. [CET+, Theorem I] Let B be a separable, nuclear, Z-
stable C∗-algebra with T (B) compact and non-empty. Then B has
CPoU.
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2. Results

We start by recording an application of CPoU regarding unitaries in
uniform tracial sequence algebras of Z-stable nuclear C∗-algebras for
use in [CGS+].

Proposition 2.1. Let B be a separable C∗-algebra with CPoU and
T (B) compact and non-empty. Let S be a ‖·‖2,T∞(B)-separable subset of
B∞ closed under taking adjoints. Then every unitary u ∈ B∞ ∩S ′ can
be written as an exponential u = eπih for some self-adjoint h ∈ B∞∩S ′
of norm at most 1. In particular this holds whenever B is separable,
unital, nuclear and Z-stable with T (B) 6= ∅.

Proof. The final sentence of the proposition follows from the rest by
Theorem 1.4. Fix ε > 0. By Kirchberg’s ε-test (Lemma 1.1),3 it suffices
to prove that there exists a self-adjoint h ∈ B∞ ∩ S ′ of norm at most
1 such that

(2.1) ‖u− eπih‖2,T∞(B) ≤ ε.

For each τ ∈ T (B∞), using Borel functional calculus, there exists a self-
adjoint x ∈ πτ (B∞∩S ′)′′ of norm at most 1 such that πτ (u) = eπix. By
the Kaplansky density theorem, we may approximate x by a self-adjoint
contraction in πτ (B

∞ ∩ S ′), which can then be lifted to a self-adjoint
contraction hτ ∈ B∞ ∩ S ′ such that

(2.2) ‖u− eπihτ‖2,τ < ε.

Set aτ := |u − eπihτ |2 ∈ (B∞)+, so that τ(aτ ) < ε2. By continuity
and compactness, there exist τ1, . . . , τk ∈ T (B∞) such that for every
τ ∈ T (B∞),

(2.3) min{τ(aτ1), . . . , τ(aτk)} < ε2.

Using CPoU as in Lemma 1.3, there exists a partition of unity consist-
ing of projections p1, . . . , pk ∈ B∞ ∩ {u, hτ1 , . . . , hτk}′ ∩ S ′ such that

(2.4) τ(pjaτj) ≤ ε2τ(pj), τ ∈ T∞(B), j = 1, . . . , k.

Set h :=
∑k

j=1 pjhτj ∈ B∞ ∩ S ′. Since the pi are orthogonal and
commute with the self-adjoint contractions hτj , this is a self-adjoint
contraction. We note that for j = 1, . . . , k,

(2.5) pje
πih = pje

πihτj .

3Since S is ‖·‖2,T∞(B)-separable, testing that a sequence (bn) ⊂ `∞(B) represents
an element of B∞∩S′ requires only countably many constraints. Indeed, B∞∩S′ =
B∞ ∩ S′0 for any countable ‖ · ‖2,T∞(B)-dense subset S0 ⊂ S, as multiplication is

jointly ‖ · ‖2,T∞(B)-continuous on ‖ · ‖-bounded sets.
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Using this, for τ ∈ T∞(B), we compute:

τ(|u− eπih|2) =
k∑
j=1

τ(pj|u− eπih|2)(2.6)

=
k∑
j=1

τ(pj|u− eπihτj |2)

=
k∑
j=1

τ(pjaj)

≤
k∑
j=1

ε2τ(pj) = ε2. �

We next turn to the uniqueness aspect of Theorem A. Recall the
by-now well-known consequence of Connes’ characterisation of hyper-
finiteness from [Con76], that if A is separable and nuclear and M is a
finite von Neumann algebra, then ∗-homomorphisms φ, ψ : A→M are
strong∗-approximately unitary equivalent if and only if τ ◦ φ = τ ◦ ψ
for all τ ∈ T (M) (see [CGNN13, Proposition 2.1], for example4).

Theorem 2.2. Let A be a separable nuclear C∗-algebra and let B be
a separable C∗-algebra with CPoU and with T (B) compact and non-
empty. If φ, ψ : A→ B∞ are ∗-homomorphisms such that τ ◦φ = τ ◦ψ
for all τ ∈ T (B∞) then φ and ψ are unitarily equivalent.

Proof. Fix ε > 0 and a finite set F ⊂ A. Since A is separable, by
using Kirchberg’s ε-test (Lemma 1.1), it suffices to prove that there is
a unitary u ∈ B∞ such that

(2.7) ‖φ(x)− u∗ψ(x)u‖2,T∞(B) ≤ ε, x ∈ F .

Set

(2.8) η :=
ε√
|F|

.

Fix, for the moment, a trace τ ∈ T (B∞), and recall that πτ : B∞ →
πτ (B

∞)′′ is the corresponding GNS representation. Then since A is nu-
clear and πτ ◦φ, πτ ◦ψ : A→ πτ (B

∞)′′ agree on the traces of πτ (B
∞)′′,

it follows that these maps are strong∗-approximately unitarily equiva-
lent. By Kaplansky’s density theorem, the unitaries implementing this
can be taken from πτ (B

∞) (as done in the proof of Proposition 2.1).

4In the statement of [CGNN13, Proposition 2.1], the codomain M is required
to be countably decomposable; however, this hypothesis is not needed in the proof.
It might also be noted that in our application, in the proof of Theorem 2.2, the
codomain πτ (B∞)′′ is countably decomposable as it has a faithful trace.
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Since the strong∗-topology is given by ‖·‖2,τ on bounded sets, it follows
that there exists a unitary uτ ∈ B∞ such that

(2.9) ‖φ(x)− u∗τψ(x)uτ‖2,τ < η, x ∈ F .
Set

(2.10) aτ :=
∑
x∈F

|φ(x)− u∗τψ(x)uτ |2 ∈ (B∞)+,

so that τ(aτ ) < |F|η2 = ε2.
By continuity and compactness, there exist τ1, . . . , τk ∈ T (B∞) such

that for every τ ∈ T (B∞),

(2.11) min{τ(aτ1), . . . , τ(aτk)} < ε2.

Using CPoU as in Lemma 1.3, there exist orthogonal projections e1, . . . , ek ∈
B∞ ∩ (ψ(F) ∪ φ(F) ∪ {uτ1 , . . . , uτk})′ which sum to 1B∞ such that

(2.12) τ(aτiei) ≤ ε2τ(ei), τ ∈ T∞(B).

Set

(2.13) u :=
k∑
i=1

eiuτi .

Since the ei are orthogonal projections summing to 1B∞ and using the
fact that they commute with the unitaries uτj , it follows that u is itself
a unitary. Moreover, for x ∈ F and τ ∈ T∞(B), using the fact that the
ei are orthogonal projections which commute with the uτi , and both
φ(x) and ψ(x), we have

(2.14) |φ(x)− u∗ψ(x)u| =
k∑
i=1

ei|φ(x)− u∗τiψ(x)uτi |.

Hence

‖φ(x)− u∗ψ(x)u‖22,τ
(2.14)
=

k∑
i=1

τ
(
ei|φ(x)− u∗τiψ(x)uτi |2

)
(2.10)

≤
k∑
i=1

τ(eiaτi)

(2.12)

≤
k∑
i=1

ε2τ(ei) = ε2.(2.15)

Taking the supremum over all τ ∈ T∞(B), (2.7) follows. �

In order to get our existence result into B∞, we begin with two
existence results into von Neumann algebras; these rely on the quasidi-
agonality of amenable traces on cones established in [BCW16], which
in turn builds on the earlier results of [SWW15, Gab17]. Recall that a
trace τ on A is amenable if given a finite subset F ⊂ A and ε > 0 there
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is a c.p.c. map φ : A → Mn for some n (φ can be taken to be unital
when A is unital) such that

(2.16) ‖φ(ab)− φ(a)φ(b)‖2,trMn < ε, a, b ∈ F ,
and

(2.17) |trMn(φ(a))− τ(a)| < ε, a ∈ F .
We write Tam(A) for the set of amenable traces on A. The trace τ is
said to be quasidiagonal if (2.16) can be strengthened to the operator
norm estimate ‖φ(ab)− φ(a)φ(b)‖ < ε for a ∈ F . We write Tqd(A) for
the set of quasidiagonal traces on A. See [Bro06] for details on these
approximation properties.

Lemma 2.3. Let A be a C∗-algebra, letM be a type II1 von Neumann
algebra, and let λ ∈ Tam(A). Then given a finite set F ⊂ A and ε > 0,
there exist a finite dimensional C∗-algebra F , a c.p.c. map θ : A→ F ,
and a unital ∗-homomorphism η : F →M such that:

‖θ(a)θ(b)‖ < ε for a, b ∈ F satisfying ab = 0, and(2.18)

|τ(η ◦ θ(a))− λ(a)| < ε for a ∈ F and τ ∈ T (M).(2.19)

Proof. Set G := {id(0,1] ⊗ a ∈ C0((0, 1]) ⊗ A : a ∈ F}. By [BCW16,
Proposition 3.2], the trace δ1 ⊗ λ is quasidiagonal on C0((0, 1]) ⊗ A,
where δ1 is the functional of evaluation at 1 on C0((0, 1]. Thus, there
exist a matrix algebra F and a c.p.c. map φ : C0((0, 1])⊗A→ F such
that

‖φ(x)φ(y)− φ(xy)‖ < ε, x, y ∈ G,
|trF ◦ φ(x)− (δ1 ⊗ λ)(x)| < ε, x ∈ G.(2.20)

Define θ : A → F by θ(a) := φ(id(0,1] ⊗ a), so that it immediately
follows that (2.18) is satisfied. As M is type II1, F can be embedded
unitally in M. Let η : F ↪→ M be any such embedding. By the
uniqueness of the trace on F , (2.19) is also satisfied. �

Lemma 2.4. Let A be a C∗-algebra, letM be a type II1 von Neumann
algebra and let α : T (M)→ Tam(A) be affine and continuous. Let F ⊂
Asa be a finite set. Then given ε > 0, there exist a finite dimensional
C∗-algebra F , a c.p.c. map θ : A → F , and a unital ∗-homomorphism
η : F →M such that

(2.21) ‖θ(a)θ(b)‖ < ε for a, b ∈ F satisfying ab = 0

and

(2.22) |τ(η ◦ θ(a))− α(τ)(a)| < ε, a ∈ F , τ ∈ T (M).

Moreover, if for each a ∈ F , we are given an element ca ∈ Msa satis-
fying

(2.23) τ(ca) = α(τ)(a), τ ∈ T (M),
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then for each a ∈ F there exist x
(a)
1 , . . . , x

(a)
10 , y

(a)
1 , . . . , y

(a)
10 ∈ M such

that

(2.24) ‖η ◦ θ(a)− ca −
10∑
i=1

[x
(a)
i , y

(a)
i ]‖ < ε.

If α(T (M)) ⊂ Tqd(A), then θ can be taken to satisfy

(2.25) ‖θ(a)θ(b)− θ(ab)‖ < ε for a, b ∈ F .

Proof. The idea is to glue maps from the previous lemma over the centre
Z(M) ofM, in a manner similar to the proof of [BCW16, Lemma 2.5].
As for a ∈ F , the elements ca satisfying (2.23) automatically exist by
Proposition 1.2, we shall use them throughout the proof. Suppose F =
{a1, . . . , an}. By the structure of commutative von Neumann algebras
([Bla06, Theorem III.1.5.18]), let (X,µ) be a locally finite measure
space such that Z(M) ∼= L∞(X,µ). Let E : M → L∞(X,µ) be the
centre-valued trace on M (see [Bla06, Theorem III.2.5.7]). Choose
natural numbers C ≥ 4 and k such that C > supa∈F ‖ca‖ and C/k < ε.
Set I := {−Ck + 1, . . . , Ck}n and for r = (r1, . . . , rn) ∈ I, let pr ∈
L∞(X,µ) be the characteristic function of the set

(2.26) {x ∈ X :
rj − 1

k
≤ E(caj)(x) <

rj
k
, j = 1, . . . , n}.

By construction, (pr)r∈I forms a partition of unity consisting of pro-
jections, and, as every trace onM factors though E ([Bla06, Theorem
III.2.5.7(iv)]),

(2.27) τ(caj) ≈1/k

∑
r∈I

rj
k
τ(pr), τ ∈ T (M).5

In particular, for any r ∈ I and j = 1, . . . , n, we have

(2.28) α(τ)(aj)
(2.23)
= τ(caj) ≈1/k

rj
k
, τ ∈ T (prM).

(Note that we implicitly extend τ to M, by setting it to be zero on
(1− pr)M, before we apply α in the previous equation.)

Let I0 := {r ∈ I : pr 6= 0}. For each r ∈ I0, fix σr ∈ T (prM) and
set λr := α(σr). By Lemma 2.3, applied to prM and λr, there exist a
finite dimensional algebra Fr, a c.p.c. map θr : A → Fr, and a unital
∗-homomorphism ηr : Fr → prM such that

(2.29) ‖θr(a)θr(b)‖ < ε

for a, b ∈ F satisfying ab = 0, and

(2.30) |τ(ηr ◦ θr(a))− λr(a)| < ε

2

5To improve the readability of this proof, we write z1 ≈η z2 as shorthand for
|z1 − z2| ≤ η.
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for a ∈ F and τ ∈ T (prM). Set F :=
⊕

r∈I0 Fr. Define θ : A → F by
θ(a) := ⊕r∈I0θr(a) and η : F →M by η((xr)r∈I0) :=

∑
r∈I0 ηr(xr). By

construction, η is a unital ∗-homomorphism and θ satisfies (2.21).
Note that if each λr is quasidiagonal, this can be used directly in

place of Lemma 2.3 in the previous paragraph enabling θr to be chosen
(F , ε)-approximately multiplicative. Therefore, if α(T (M)) ⊂ Tqd(A),
then θ can be taken to satisfy (2.25).

Fix τ ∈ T (M) for the moment. For each r ∈ I0, set τr := τ(pr ·)
τ(pr)

∈
T (prM),6 so τ can expressed as the convex combination

(2.31) τ =
∑
r∈I0

τ(pr)τr.

Thus

τ(η ◦ θ(a)) =
∑
r∈I0

τ(pr)τr(ηr ◦ θr(a))

(2.30)
≈ε/2

∑
r∈I0

τ(pr)λr(a)

(2.28)
≈2/k

∑
r∈I0

τ(pr)α(τr)(a)

= α(
∑
r∈I0

τ(pr)τr)(a)

(2.31)
= α(τ)(a)(2.32)

for all a ∈ F . Since 2
k
≤ C

2k
< ε

2
and τ ∈ T (M) was arbitrary, this

establishes (2.22).

Now fix a ∈ F for the moment and let us explain why x
(a)
i , y

(a)
i can be

found to satisfy (2.24). Set h := E(η ◦ θ(a)− ca) ∈ L∞(X,µ), which by
(2.22) satisfies ‖h‖ ≤ ε. Observe that E(η ◦ θ(a)− ca− h) = 0, so that

by [FdlH80, Theorem 3.2] there exist x
(a)
1 , . . . , x

(a)
10 , y

(a)
1 , . . . , y

(a)
10 ∈ M

such that7

(2.33) η ◦ θ(a)− ca − h =
10∑
i=1

[x
(a)
i , y

(a)
i ].

Hence,

�(2.34) ‖η ◦ θ(a)− ca −
10∑
i=1

[x
(a)
i , y

(a)
i ]‖ = ‖h‖ < ε.

We now turn to the existence component of Theorem A. For this we
will need a so-called ‘no silly traces’ result to show that the limit traces

6We can choose τr arbitrarily in case τ(pr) = 0.
7We can also arrange that max1≤i≤10 ‖x(a)i ‖‖y

(a)
i ‖ ≤ 12 · 12 · ‖η ◦ θ(a)− ca − h‖,

but we do not need to control the norms of these elements on this occasion.
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on B∞ generate all traces on B∞. For the purposes of Theorem A, we
could use (a sequence algebra version) of the original result of this type:
[Oza13, Theorem 8] for Z-stable exact C∗-algebras B. This gives a no
silly traces result for the C∗-algebra ultraproduct, from which it follows
that there are no silly traces on the uniform tracial ultraproduct (and
this is easily modified to sequence algebras).

However, in Theorem 2.6 below, we prefer not to impose the hy-
pothesis that B is Z-stable, and instead simply ask that it has CPoU.
Correspondingly, we first show how to obtain a no silly traces result
for the uniform tracial sequence algebra just assuming CPoU. While
CPoU is involved to handle possibly non-Z-stable C*-algebras, to some
extent the present result is easier than Ozawa’s [Oza13, Theorem 8] in
that we can use the uniform bounds on the number of commutators of
a self-adjoint operator in a finite von Neumann algebra which vanishes
in all traces from [FdlH80], rather than the more delicate growth rate
estimates used in [Oza13] which are required to eliminate silly traces
from the C∗-norm sequence algebra or ultrapower.

We note also that no silly traces for the tracial product B∞ does
not imply no silly traces for the norm product, as demonstrated by
the unique trace example by Robert (based on earlier examples by
Villadsen) in [Rob15, Theorem 1.4].8

Proposition 2.5. Let B be a separable C∗-algebra with T (B) compact
and non-empty and which has CPoU. Then the weak∗-closed convex
hull of T∞(B) is T (B∞).

Proof. Fix a self-adjoint contraction z ∈ B∞. Let δ := supτ∈T∞(B) |τ(z)|.
By [CET+, Lemma 4.4] (which is extracted from [Oza13, Theorem 8]),
it suffices to prove that supτ∈T (B∞) |τ(z)| = δ. This will be achieved
by producing a self-adjoint c ∈ B∞ with ‖c‖ ≤ δ and contractions
x(1), . . . , x(10), y(1), . . . , y(10) ∈ B∞ such that z − c = K

∑10
i=1[x

(i), y(i)],
where K := 12 · 12(1 + δ).

Choose a representative sequence (zn)∞n=1 of self-adjoint contractions
for z ∈ B∞. Then lim supn→∞ supτ∈T (B) |τ(zn)| ≤ δ, and so by rescal-
ing, we may assume supτ∈T (B) |τ(zn)| ≤ δ for each n.

Fix n ∈ N for the moment. For each τ ∈ T (B), let πτ be its GNS-
representation and Mτ := πτ (B)′′. Then supρ∈T (Mτ ) |ρ(πτ (zn))| ≤
δ. Letting c̃n,τ ∈ Mτ be the result of applying the centre-valued

8Let A be the C∗-algebra from [Rob15, Theorem 1.4] so that condition (iii)(a)
from [ART17, Theorem 3.24] fails for A. Then no norm ultraproduct of A can have
unique trace (by the equivalence of condition (iii)(a) and the uniqueness of trace on
an ultraproduct, which makes up the first part of the proof of (iii)⇔(ii) in [ART17,
Theorem 3.24]; see paragraph 3 of the proof, which notes this explicitly). Note that
A has the Diximer property needed to apply this result by [HZ84] as it is simple,
unital and has unique trace. Therefore the norm product A∞ of infinitely many
copies of A has traces which are not in the closed convex hull of the limit traces.
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trace in Mτ to πτ (zn), we have ‖c̃n,τ‖ ≤ δ. By [FdlH80, Theorem

3.2], there exist contractions x̃
(1)
n,τ , . . . , x̃

(10)
n,τ , ỹ

(1)
n,τ , . . . , ỹ

(10)
n,τ ∈ Mτ with

πτ (zn) − c̃n = K
∑10

i=1[x̃
(i)
n,τ , ỹ

(i)
n,τ ]. By Kaplansky’s density theorem,

there exists a self-adjoint cn,τ ∈ B with ‖cn,τ‖ ≤ δ and contractions

x
(1)
n,τ , . . . , x

(10)
n,τ , y

(1)
n,τ , . . . , y

(10)
n,τ ∈ B with

(2.35) ‖zn − cn,τ −K
10∑
i=1

[x(i)n,τ , y
(i)
n,τ ]‖2,τ < γn,

where γn <
1
n
.

Let an,τ := |zn − cn,τ −K
∑10

i=1[x
(i)
n,τ , y

(i)
n,τ ]|2. By compactness, there

exist τn,1, . . . , τn,kn such that minρ∈T (B){ρ(an,τn,1), . . . , ρ(an,τn,kn )} < γ2n.
As every trace in T∞(B) restricts to a trace on B, the same minimum
holds over ρ ∈ T∞(B). Let Sn ⊂ B∞ be the separable subalgebra
generated by zn together with cn,τn,1 , . . . , cn,τn,kn and the contractions

x
(1)
n,τn,1 , . . . , x

(10)
n,τn,kn and y

(1)
n,τn,1 , . . . , y

(10)
n,τn,kn .

By CPoU in the form of Lemma 1.3, there exist pairwise orthogo-
nal projections en,1, . . . , en,kn in B∞ ∩ S ′n which sum to 1B∞ and have
ρ(an,τn,jen,j) ≤ γ2nρ(en,j) for j = 1, . . . , kn and all ρ ∈ T∞(B).

Define c̃n :=
∑kn

j=1 cn,τn,jen,j ∈ B∞, x̃
(i)
n :=

∑kn
j=1 x

(i)
n,τn,jen,j ∈ B∞,

and ỹ
(i)
n :=

∑kn
j=1 y

(i)
n,τn,jen,j ∈ B∞. Then ‖c̃n‖ ≤ δ and all the x̃

(i)
n and

ỹ
(i)
n are contractions. Let ρ ∈ T∞(B). Using the properties of the en,j,

we have

‖zn − c̃n −K
10∑
i=1

[x̃(i)n , ỹ
(i)
n ]‖22,ρ = ρ(

kn∑
j=1

an,τn,jen,j) ≤ γ2n.(2.36)

Taking norm preserving lifts from B∞ to `∞(B) and then choos-

ing elements cn, x
(i)
n , y

(i)
n ∈ B sufficiently far down the representative

sequences for c̃n, x̃
(i)
n , ỹ

(i)
n ∈ B∞, we have

(2.37) sup
τ∈T (B)

‖zn − cn −K
10∑
i=1

[x(i)n , y
(i)
n ]‖2,τ ≤ γn

and ‖cn‖ ≤ δ. Assembling these into c := (cn)∞n=1, x
(i) := (x

(i)
n )∞n=1

and y(i) := (y
(i)
n )∞n=1 in B∞ provides the elements demanded in the first

paragraph of the proof. �

We can now give our more general version of the existence aspect of
Theorem A. The condition that A be nuclear is weakened to the con-
dition that the range of α is contained in the set Tam(A) of amenable
traces on A. The second part of the following theorem, regarding the
form of a representative sequence for φ, is not needed for Theorem A,
but we anticipate it playing a role in future nuclear dimension compu-
tations. Recall that a c.p. map φ : A → B is said to be order zero if
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φ(a)φ(b) = 0 for all a, b ∈ A+ with ab = 0; see [WZ09] for the structure
theory of these maps.

Theorem 2.6. Let A be a separable C∗-algebra and let B be a separable
C∗-algebra with T (B) compact and non-empty which has CPoU and no
finite dimensional representations. Given a continuous affine function
α : T (B∞) → Tam(A), there exists a ∗-homomorphism φ : A → B∞

such that

(2.38) τ ◦ φ = α(τ), τ ∈ T (B∞).

Moreover, φ can be represented by a sequence (φn)∞n=1 of c.p.c. maps
A → B each of which factorises as φn = ψn ◦ θn for a c.p.c. map
θn : A → Fn with Fn finite dimensional, and a c.p.c. order zero map
ψn : Fn → B. The maps θn can be taken to be approximately order
zero, and if the range of α lies in the quasidiagonal traces on A, the θn
can be taken to be approximately multiplicative.

Proof. We first note that any c.p.c. order zero map φ : A → B∞ sat-
isfying (2.38) is automatically a ∗-homomorphism. Indeed, let (en)∞n=1

be an increasing approximate unit for A. Then

(2.39) φ(a1)φ(a2) = lim
n→∞

φ(en)φ(a1a2), a1, a2 ∈ A,

as a consequence of [WZ09, Corollary 4.1]. It therefore suffices to prove
that limn→∞ φ(en) = 1B∞ in ‖ · ‖2,T∞(B). We compute that

‖1B∞ − φ(en)‖22,T∞(B) ≤ sup
τ∈T (B∞)

τ(|1B∞ − φ(en)|2)

≤ sup
τ∈T (B∞)

τ(1B∞ − φ(en))

≤ sup
τ∈T (B∞)

1− τ(φ(en))

= sup
τ∈T (B∞)

(1− α(τ)(en))→ 0,(2.40)

as by Dini’s Theorem, α(τ)(en) converges to 1 uniformly on T (B∞).
Notice that due to Proposition 2.5, it is enough to establish equation

(2.38) for limit traces. Fix ε > 0 and finite sets F ⊂ A and G ⊂ Asa.
We will prove that there is a finite dimensional C∗-algebra F , a c.p.c.
map θ : A→ F and a c.p.c. order zero map ψ : F → B∞ such that for
φ = ψ ◦ θ we have

‖θ(a)θ(b)‖ ≤ ε for a, b ∈ F satisfying ab = 0, and(2.41)

|τ(φ(a))− α(τ)(a)| ≤ ε for a ∈ G and τ ∈ T∞(B).(2.42)

In the special case that α(T (B∞)) ⊆ Tqd(A), we will show that we can
additionally replace (2.41) by the stronger condition

(2.43) ‖θ(a)θ(b)− θ(ab)‖ ≤ ε, a, b ∈ F .



14 J. CASTILLEJOS, S. EVINGTON, A. TIKUISIS, AND S. WHITE

Once this is achieved, an application of Kirchberg’s ε-test (in the form
of Lemma 1.1) can be used to obtain the required φ (and ψn, θn) in
a very similar fashion to [BBS+15, Lemma 7.4]. We set this out for
the passage from (2.41) and (2.42) to the required φ such that (θn)
are approximately order zero in the next paragraph. The passage from
(2.43) and (2.42) to obtaining a φ such that the maps (θn)∞n=1 are
approximately multiplicative is similar (and slightly easier).

For each n, let Xn denote the set of triples (Fn, θn, ψn), where Fn is a
finite dimensional C∗-algebra Fn, θn : A→ Fn is c.p.c. and ψn : Fn → B
is c.p.c. order zero.9 Fix a countable dense subset (xk)

∞
k=1 of Asa. Noting

that the collection of pairs (a, b) in A+ with ab = 0 is a subspace of
the separable metric space A × A, we may also fix a countable dense
subset (ak, bk)

∞
k=1 of these orthogonal pairs. Set X :=

∏∞
n=1Xn and

define functions f
(k)
n : Xn → [0,∞] by

f (k)
n (Fn, θn, ψn) := max

j≤k

(
‖θn(ajbj)‖

+ sup
τ∈T (B)

|τ(ψn(θn(xj)))− α(τ(xj))|
)
,(2.44)

for (Fn, θn, ψn) ∈ Xn. Given ε > 0 and k0 ∈ N, let F := {ak, bk :
k ≤ k0} and G := {xk : k ≤ k0} and take F, θ, ψ satisfying (2.41) and

(2.42). Then ψ lifts to a sequence (ψ̃n)∞n=1 of c.p.c. order zero maps
F → B by projectivity of c.p.c. order zero maps with finite dimensional
domains ([Win09, Proposition 1.2.4], which rephrases Loring’s work
[Lor93, Theorem 4.9] on projectivity of cones over finite dimensional

C∗-algebras to this setting). The sequence
(
F, θ, ψ̃n

)∞
n=1

in
∏∞

n=1Xn

satisfies

(2.45) lim sup
n

f (k)
n

(
F, θ, ψ̃n

)
≤ 2ε, k = 1, . . . , k0.

Applying the ε-test gives a sequence (Fn, θn, ψn) in
∏∞

n=1Xn with

(2.46) lim sup
n

f (k)
n (Fn, θn, ψn) = 0, k ∈ N.

Defining φn := ψn ◦ θn and φ : A → B∞ to be the map induced by
(φn)∞n=1 gives the required φ.

With the ε-test in place, we now commence the construction of maps
satisfying (2.41) and (2.42). By Proposition 1.2, for each a ∈ G, we
may choose a self-adjoint element ca ∈ B∞ such that

(2.47) τ(ca) = α(τ)(a), τ ∈ T (B∞).

Also, set

(2.48) δ :=
ε√
|G|

.

9Although all the Xn represent the same set, we use the subscript n for direct
comparison with the notation of the ε-test.
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We work with the weak∗-closure T∞(B) of T∞(B) which is weak∗-

compact. Fix τ ∈ T∞(B) for the moment. Consider the finite von
Neumann algebra Mτ := πτ (B

∞)′′.
We claim thatMτ is type II1. As T (B) is compact, any approximate

unit (en)∞n=1 for B satisfies infρ∈T (B) ρ(en) → 1 by Dini’s Theorem.
Then

(2.49) inf
ρ∈T∞(B)

ρ(en) = inf
ρ∈T∞(B)

ρ(en)→ 1,

and hence τ(en)→ 1. Thus ‖1Mτ−πτ (en)‖2,τ → 0 and πτ (en) converges
∗-strongly to 1Mτ . Suppose that Mτ has a non-zero type Ik summand
for some k ∈ N, with corresponding central projection p, so that pMτ

has a separating family of finite dimensional representations. Since
B has no non-zero finite dimensional representations, we must have
pπτ (B) = 0. On the other hand pπτ (en) 6= 0 for sufficiently large n.
This contradiction proves the claim.

Let T (πτ ) : T (Mτ )→ T (B∞) be the map induced by πτ . By Lemma
2.4 (applied to the map α ◦ T (πτ ) : T (Mτ ) → Tam(A)), there exist a
finite dimensional C∗-algebra Fτ , a c.p.c. map θτ : A→ Fτ and a unital
∗-homomorphism ητ : Fτ →Mτ as well as x

(a)
1 , . . . , x

(a)
10 , y

(a)
1 , . . . , y

(a)
10 ∈

Mτ for a ∈ G, such that

‖θτ (a)θτ (b)‖ < ε for a, b ∈ F satisfying ab = 0, and(2.50)

‖ητ ◦ θτ (a)− πτ (ca)−
10∑
i=1

[x
(a)
i , y

(a)
i ]‖ < δ for a ∈ G.(2.51)

By the Kaplansky density theorem, at the cost of replacing the
norm estimate in (2.51) by a ‖ · ‖2,τ -estimate, we may assume that

the elements x
(a)
i , y

(a)
i belong to πτ (B

∞), and thus lift to elements

x
(τ,a)
i , y

(τ,a)
i ∈ B∞. Using the order zero Kaplansky density theorem

([HKW12, Lemma 1.1]) we may approximate ητ in ‖ · ‖2,τ by an or-
der zero map Fτ → πτ (B

∞), and then this can be lifted to an order
zero map ψτ : Fτ → B∞ by [Win09, Proposition 1.2.4]. Starting from
(2.51), we can perform these approximations and lifts so that

(2.52) ‖ψτ (θτ (a))− ca −
10∑
i=1

[x
(a,τ)
i , y

(a,τ)
i ]‖2,τ < δ, a ∈ G.

Let us now set

(2.53) sτ :=
∑
a∈G

∣∣∣ψτ (θτ (a))− ca −
10∑
i=1

[x
(a,τ)
i , y

(a,τ)
i ]

∣∣∣2 ∈ (B∞)+,

so that by (2.52) we get τ(sτ ) < |G|δ2 = ε2.
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By continuity and compactness of T∞(B), there exist τ1, . . . , τk ∈
T∞(B) such that for every τ ∈ T∞(B),

(2.54) min{τ(sτ1), . . . , τ(sτk)} < ε2.

Set

S := ψτ1(Fτ1) ∪ · · · ∪ ψτk(Fτk) ∪ {ca : a ∈ G}

∪ {x(a,τi)j , y
(a,τi)
j : a ∈ G, i = 1, . . . , k, j = 1, . . . , 10},(2.55)

a separable subset of B∞. Using CPoU as in Lemma 1.3, there exist
orthogonal projections e1, . . . , ek ∈ B∞ ∩ S ′ which sum to 1B∞ such
that

(2.56) τ(sτiei) ≤ ε2τ(ei), τ ∈ T∞(B).

Set F :=
⊕k

i=1 Fτi , and define θ : A→ F and ψ : F → B∞ by

(2.57) θ(a) := (θτ1(a), . . . , θτk(a)), a ∈ A,
and

(2.58) ψ(x1, . . . , xk) :=
k∑
i=1

eiψτi(xi), (x1, . . . , xk) ∈ F.

Then (2.41) is an immediate consequence of (2.50). Since the ei are
orthogonal positive elements commuting with the images of the c.p.
order zero maps ψτi , it follows that ψ is c.p. and order zero. Moreover

ψ is contractive since ψ(1A) ≤
∑k

i=1 ei = 1B∞ .
Finally, for a ∈ G and τ ∈ T∞(B), writing φ = ψ ◦ θ, we compute

|τ(φ(a))− α(τ)(a)|2
(2.47)
= |τ(ψ(θ(a))− ca)|2

=
∣∣∣τ( k∑

i=1

ei

(
ψτi(θτi(a))− ca −

10∑
j=1

[x
(a,τi)
j , y

(a,τi)
j ]

))∣∣∣2
≤ τ

( k∑
i=1

ei

∣∣∣ψτi(θτi(a))− ca −
10∑
j=1

[x
(a,τi)
j , y

(a,τi)
j ]

∣∣∣2)

≤ τ
( k∑
i=1

eisτi

)
≤

k∑
i=1

ε2τ(ei) = ε2,(2.59)

where on the third line, we use the fact that the ei make up a pairwise
othogonal partition of unity of projections commuting with S. This
proves (2.42), and completes the proof with θn approximately order
zero.
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When α(T∞(B)) consists of quasidiagonal traces, (2.50) can be re-
placed by an (F , ε)-approximate multiplicativity condition using the
last clause of Lemma 2.4. The map θ, as defined in (2.57), will then
satisfy (2.43), and this completes the proof with θn approximately mul-
tiplicative. �

We end by recording how Theorem A follows as special cases of the
existence and uniqueness results of this section.

Proof of Theorem A. This is a consequence of Theorems 2.2 and 2.6.
The CPoU hypothesis on B needed in both these theorems is automatic
for separable nuclear Z-stable C∗-algebras by Theorem 1.4; moreover
Z-stability is an obstruction to having finite dimensional represen-
tations. The hypothesis in Theorem 2.6 that α takes values in the
amenable traces on A is automatic as all traces on a nuclear C∗-algebra
are amenable, essentially by Connes’ theorem.10 �
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