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Focusing of light following a 4-f pulse shaper: Considerations for quantum control
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The focusing of coherent light, modified by a spatial light modulator (SLM) based 4-f pulse shaper, is
discussed in the context of scalar diffraction theory. Diffractive effects (including space-time coupling) in
SLMs may alter the size and shape of a subsequent laser focus. A numerical approach is used to investigate the
effects of some common phase masks on the properties of the laser focus. The extreme case of an alternating
phase mask is considered in some detail, as it clearly illustrates the effects of space-time coupling. The results
are compared to a simple analytic model. The potential influence of SLM diffractive effects on multiphoton
quantum control studies is discussed and some approaches to minimizing undesirable diffractive effects are

suggested.
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I. INTRODUCTION

Shaped optical pulses have found great utility in control-
ling the evolution of quantum systems [1-7], in performing
spectroscopies [8], and in enhanced multiphoton mi-
croscopies [9]. The shaping of optical pulses is often (but not
always [10]) based upon the use of spatial light modulators
(SLM). Shapers work by spatially dispersing the colors com-
prising an ultrashort pulse, whereupon the phase and ampli-
tude [1,11], and polarization [12,13] of each spectral compo-
nent within the pulse can be individually articulated with an
electronically programmable device. Upon recombination of
the spectral components, an essentially arbitrary output pulse
can be created. The theory for ultrafast optical Fourier pro-
cessing is well developed [14,15]. These studies have dem-
onstrated, however, that the optical processing is not a purely
one-dimensional process where each spectral component is
modified independent of its spatial position in the beam. This
effect, known as space-time coupling, can have a dramatic
effect on the focusing of shaped pulses. The principal issue is
that the spectral content—and hence time evolution—at each
point within the focused output beam is not the same. The
modification of the focus has potential implications for mul-
tiphoton quantum control, pump-probe, and related experi-
ments, the effects of which are the main interest of this pa-
per. As well, programmable modification of the focus holds
some interesting opportunities for shaping foci and their as-
sociated nonlinear point spread functions.

A common SLM based 4-f pulse shaper design is depicted
in Fig. 1. A grating disperses the colors and, at the focal
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FIG. 1. (Color online) A typical spatial light modulator (SLM)
based 4-f pulse shaper with optical components separated by a dis-
tance f,. Following the SLM, the beam is propagated in free space
a distance L and then focused by lens L3.
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plane of a one-to-one telescope, an SLM [e.g., a liquid crys-
tal display (LCD)] is used to apply a phase and or amplitude
mask to the spatially dispersed spectrum. The origin of the
space-time coupling lies in the finite size of the optical ele-
ments and laser beam focus [14,15,11,16]. When the input
beam is dispersed by the first grating, an individual spectral
component is reflected into a particular direction and, due to
its finite spatial extent at the focus, this single spectral com-
ponent may straddle more than one LCD pixel. The extent of
the spatial dispersion is determined by the input beam size,
the lens focal length, and the geometric factors of the grat-
ing. The last two lenses (L2 and L3) act as a type of image
relay, effectively mapping the straddled pixels to the experi-
mental focus. Figure 2 illustrates the implications of space-
time coupling. Shown here is the special case of a pulse
composed of only two colors (red and blue), both of which
straddle pixels at the focus. A binary amplitude mask is ap-
plied, such that every second pixel has zero transmission.
The two colors are then propagated through lens L2, the
second grating, and then lens L3. As a result, the red and
blue pulses are relay imaged to the focus of lens L3, where it
can be seen that the two colors are not overlapping. This
particular diffractive effect would have serious implications
for interpreting any observable that depended on both colors
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FIG. 2. (Color online) The origins of space-time coupling. Con-
sider only two colors, red and blue, which are each focused onto the
SLM of Fig. 1. The case where each color straddles two pixels of a
binary amplitude mask is shown. The partially blocked colors are
relay imaged to the focus of L3. It can be seen that the two colors
do not overlap at the laser focus.
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being absorbed by the sample. Although this example may
be dramatic, it serves to show how diffractive effects due to
SLMs can modify the spatial overlap (at a focus) of the dif-
ferent colors comprising the pulses. In fact, the space-time
coupling due to SLMs has been previously discussed and
applied in various situations. For example, a phase only
mask has been used to achieve a combined phase and ampli-
tude modulator [17] and phase only masks have been used to
shape beam foci [18].

The paper is organized as follows. Section II details the
origin of the space-time coupling and its related Appendix A
derives the analytic result for the field at the experimental
focal plane following lens L3. The second related Appendix
B contains brief reviews of scalar diffraction theory and the
Fresnel approximation. A number of numerical examples of
diffraction situations are considered in Sec. III and compared
with analytical results. Although extreme, the case of an al-
ternating phase mask is considered in some detail to unam-
biguously illustrate the effects of space-time coupling at a
subsequent laser focus and to develop “rules of thumb” for
minimizing these effects in a given arrangement. Other types
of masks and their effects on space-time coupling are also
considered. In Sec. IV, in order to measure the potential im-
plications of space-time coupling for multiphoton experi-
ments, the propagation of the shaped pulse through the focal
plane is considered. To quantify these effects on multiphoton
branching ratios, we calculate and compare the spatial over-
lap integrals of different colors comprising the pulse, as well
as volume integrated multiphoton transitions probabilities for
different phase masks. Opportunities for shaping foci and
some suggestions for minimizing undesired diffractive ef-
fects are discussed in the conclusion. For convenience, the
notation used throughout is summarized in Table I.

II. SPACE-TIME COUPLING

The evolution of an ultrafast laser pulse through the SLM
based 4-f pulse shaper depicted in Fig. 1 can be understood
in terms of Fresnel optics (see Appendix A). By propagating
the pulse through each optical element (see Appendix B) the
focal field at the experimental focus can be derived in terms
of the input field space and time Fourier transform E{' and
the spatial mask (LCD) transfer function m,

Eltcocus(xsft) = Efri<_ ‘%)\O’ft)m(_ )\Of47ft - ﬁ;_ix> e_iﬂL/)\Ofixz'
(1)

The superscripts x and ¢ indicate a spatial or temporal Fourier
transform, respectively. The argument of m indicates that the
transverse position x at the experimental focus and the opti-
cal frequency f; are linearly related to the transverse position
on the mask

4

xmask:_)\m[zt’)’ft_ﬁf_x' (2)
Jr

If the process was one dimensional, each spectral element f,

would be associated with a single pixel or pixel position

(Xmask)- However, the finite spatial size effects introduce an
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TABLE 1. Abridged notation summary. The appended numerical
values are those used in the examples.

Variable
or function

Definition

e(x,z,1) Analytic electric field:
e(x,z,0)=E(x,z,1)e 2mz~/o)

E(x,z,1) Analytic electric field pulse envelope:
E(x,29,1)= o PIT =T

Ty, Ty ¢? intensity half-width: 7,=36 fs, 7,=1 mm

7, Spatial envelope width at experimental focus:
T.=f1No/ 7T,

a*(fy) Spatial Fourier transform of a(x):
a(f) = Zal)e ™ dx

a'(f,) Temporal Fourier transform of a(z):
d'(f)=Za()e ™ ds

F,F! Fast Fourier and its inverse

fx Spatial frequency

fi Temporal frequency

fosNo Central optical frequency and wavelength:
0.3747 fs~1, 800 nm

L Distance from SLM output to lens L3: 0 or 2 m

fa Focal length of lens in SLM: 15 cm

fr Focal length of lens following SLM: 6 cm

m, Transfer mask on pixel: {n|1,2,3,...,128}

w, Pixel width, 100 wm, for examples

B Grating parameter B=cos(6;,)/cos(by,)

y Grating parameter y=1/cos(6,.)fod

d Grating line spacing: 1/600 mm

Oins Gou Grating input and output angles: —0.2618, 0.8313,

cf. [16]
¢ Transverse position on SLM, as a phase:

d=NofsymI W, f,

additional dimension requiring the introduction of the the
second term B;—Zx, implying that a single color cannot be
associated with a single pixel. Depending on the nature of
the mask, this can introduce significant diffractive effects. At
the focal plane of the pulse shaper, where the SLM is lo-
cated, the lines of constant mask displacement (i.e., fixed
pixel number) are denoted by f,+x7}flf—L=const. As the fre-
quency is changed, so is the associated pixel. Additionally, as
the transverse focal position changes so does the associated
pixel.

The origin of (1) can also be understood in terms of ray
tracing. Due to its finite duration, an input beam is composed
of many optical frequencies f,=c/\. Likewise, due to its
finite spatial size, it is also composed of many spatial fre-
quencies f,. Each spatial frequency corresponds to a different
input angle 6, ~tan(6,,)=cf,/f;=\f,. The grating equation,

mh

R (3)

sin( @) + sin(6,,,) =

therefore implies that each input spatial frequency (or input
angle) and color will be dispersed to a particular angle 6,,,
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and pixel on the mask. The origin of the space-time coupling
is that the output angle, and hence pixel, depends not only on
the wavelength, but also on the input angle (which is varied
due to the finite beam size).

III. EXPERIMENTAL FOCUS ISSUES
A. Periodic phase masks

To emphasize the effects of space-time coupling, the case
of an alternating phase mask is considered. The extension to
other phase masks is discussed in the following sections. A
great deal of the experimental focal volume structure can be
understood by noting that the SLM produces an effective
grating at the focal plane, as illustrated by Fig. 2. The effec-
tive grating is a scaled mapping of the SLM mask to the
experimental focal plane. The mapping is noted in (1), which
gives the relationship between x (the transverse position at
the L3) and x,,,q (the transverse position at the SLM). At
distances far from the plane, the structure can be explained in
terms of the grating equation whereas in the near field, the
structure depends strongly on the transverse position of the
SLM, as will be shown. Note that x in the figures of this
section represents the transverse direction at the L3 focus
and due to geometric factors, like the relative focal lengths
and grating parameters, a pixel width of 100 um is mapped
to 28 um.

According to (1), at the experimental focus, each spectral
component of E { . (x,f,) is given by the input field Fourier
transform multiplied by a scaled version of the LCD mask.
The different spectral components are modified by a mask
that is displaced depending on optical frequency and spatial
position. For experiments where narrow linewidth excita-
tions are important, the spatial variation of the mask at the
focus is the main experimental concern, since the other fre-
quencies are not utilized. (However, for multiphoton experi-
ments, discussed below, the spatial overlap throughout the
focus of two different narrow bandwidth components can be
significantly altered by diffractive effects.) Therefore, some
general features of a periodic phase mask can be understood
by analytically considering a monochromatic Gaussian beam
incident upon various spatial masks. In particular, periodic
phase masks are typically used for creating time delayed
pulse replicas. Consider the case where the transfer mask m,,
on each pixel { njn=1,2,...,128} alternates by a phase shift
of r,

m,=e ™4 =1 1,1, 1,...]. (4)

The time delay between pulses is created by the periodic
modulation of the optical spectrum. The spatial period of the
modulations is ZWP which, via the first term on the right-
hand side of (2), corresponds to optical spectrum variations
with a period of 2W,/\qf,y. Hence the time spacing of the
pulses is given by 2 times the inverse of that spacing
Nofay/ W,=2.85 ps (see Table I for parameter values).

As a first step in discussing an alternating SLM phase
mask analytically, consider an exponential phase mask
m(x):exp(—izz—‘,’;]x). At the experimental L3 focus where z
=0, the electric field is given by
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FIG. 3. The spatial intensity distribution at the focus of L3 of a
Gaussian beam in the absence of a mask. In order to compare with
subsequent figures, the first-order grating caustics are shown in
white. The lower plot shows the mask function, m, applied to the
SLM. Positive values correspond to a phase of 0, while negative
correspond to a phase of 7.

2.
E()C,O,l) = e_leTx e_’277/2wpxmask_ (5)

The argument of the exponential can be rewritten, via (2), as

E(x,O,t) _ e—xz/q-;zei(wa/ﬂ(ﬁ)’ (6)

. . . . 2W, | .

where the spatial period is given as T:—BL ,% and since the

current concern is monochromatic beams, the frequency de-

pendent part has been absorbed into a phase that represents a
transverse translation across a pixel

m
b=N\of4 ’}/Wft' (7)
P

The phase corresponds to either a change in optical fre-
quency or a physical transverse translation of the SLM, not
an optical phase

The pulse may be analytically propagated using (A9) to
obtain

E()C,Z, I) — %e—xz/T(_Zq—iﬂ'(xl—Zx)/TqH(ﬁ, (8)
\

where we have defined
X1=77 (9)
and

q(z)=1+if, (10)
R

where zR=1T7')’(2/ \ is the Rayleigh range.
The corresponding intensity is given by (see Fig. 3).
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FIG. 4. The spatial intensity distribution at the focus of L3 fol-
lowing propagation through an SLM having a sinusoidal phase
mask. The first-order grating caustics are shown in white. As dis-
cussed in the text, the sinusoidal mask can be considered as the
lowest order Fourier expansion term of a square wave phase mask
pattern.

I(,2) = e 2= e (11)

lq]

The incident beam is diffracted, as if it traversed a grating.
The parameter x; is motivated from the transverse displace-
ment of a beam following normal incidence on a grating, the
geometry of which is given by (3) with the grating spacing
d=T, and the distance from the grating of z:

kN
X = z tan(6,y,,) = - (12)

The result (11) for an exponential phase mask can be ex-
tended to an alternating phase mask. An alternating phase
mask with m,; =1, m,;=-1 and period T can be written as
a sum of sinusoids,

. 27x
4 sm((2n+1)7>
m(x)= =2 : (13)

T =0 2n+1

As an approximation we consider only the first term,
2 . [ 2mx
E(x,z=0)=¢""" sin T+¢ . (14)

The pulse may be analytically propagated using (8) and its
complex conjugate or (A9) directly to obtain

1 . : . )
E(.X,Z) = — ”_(e—xz/'r;zq—z7T(x1—2x)/Tq+l¢ _ e—lefr;zq—lﬂ'(x1+2x)/Tq—l¢) )
2iNg

(15)

The corresponding intensity is given by
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FIG. 5. The spatial intensity distribution at the focus of L3 fol-
lowing propagation through an SLM having a square wave phase
mask. The first-order grating caustics are shown in white. The
higher order caustics appear as bands that progress outwards. Note
that x represents the transverse direction at the L3 focus, and due to
geometric factors such as the relative focal lengths and grating pa-
rameters, a pixel width of 100 wm is mapped to 28 um.

e
4lq]

+ e_z(szrx%)/qu;z[‘l sin2<_2ﬂz-x' + ¢) - 2} }
lq|’T

(16)

CN2,12.12 ) 2212
I(X,Z) — {e—Z(X—Al) /lq| 7';_ + 6—2(A+x1) /lq| T):

At large distances z, the first two terms in (16) dominate and
beam caustics follow peaks at £x; corresponding to the first-
order transmissions of a grating k= * 1 (Fig. 4): The alter-
nating SLM mask is equivalent to placing a scaled transmis-
sion grating at the experimental focus. Within Fresnel limits,
the hard edges of a true pixel would be represented by add-
ing a sum of higher frequency sinusoid terms to (14). The
higher frequency terms will diffract to higher order grating
modes, and display banding (Fig. 5).

At closer distances z, the third term of (16) dominates. In
this close regime, the structure and phase of the grating over-
shadows the ray interpretation of conventional grating orders
observed at larger z. The caustics begin at the peaks of the
sinusoid and move toward the asymptotes given by *x;. As
the grating size becomes smaller (which is equivalent to
longer wavelength, smaller SLM pixels, longer f,, or smaller
input beam size), the incident beam fills more grooves of the
effective grating and the field displays multislit interference.
This results in a very complicated structure close to the focus
(Fig. 6).

A transverse translation of the mask in the Fourier plane is
equivalent to a change in phase of the mask ¢. For example,
for a ray to be deflected one-fourth of a pixel (i.e., a phase
shift of ¢p=m/4) the corresponding change in optical fre-
quency would be f,=8.77X 1073 fs~!, or a wavelength shift
of 0.187 nm. Therefore, for well dispersed pulses, small
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FIG. 6. The spatial intensity distribution at the focus of L3 fol-
lowing propagation through an SLM having a square wave mask
with pixel size one-half that of Fig. 5. Equivalently, similar effects
will occur at longer wavelengths. The first-order grating caustics are
shown in white. The higher order caustics appear as bands that
progress outwards. The intricate structure is caused by the increase
from approximately two slits to four slits.

changes in frequency are equivalent to large pixel shifts on
the mask. This is illustrated in Fig. 7 for a sinusoidal mask
and in Fig. 8 for a square mask, which is a more accurate
representation of an SLM.

These results demonstrate the nature of the space-time
effects for particular frequencies. For ultrashort broad band-
width pulses, the superposition of frequencies results in dif-
ferent temporal pulse shapes at different transverse positions.

B. Beam relaying

Propagation of an optical beam in free space causes a
quadratic advancement of the phase front via (A9) As a re-

]|
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FIG. 7. The spatial intensity distribution at the focus of L3 fol-
lowing propagation through an SLM having a sinusoidal phase
mask that has been translated by ¢=m/4. The first-order grating
caustics are shown in white.
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FIG. 8. The spatial intensity distribution at the focus of L3 fol-
lowing propagation through an SLM having a square wave phase
mask that has been translated by ¢=m/4. The first-order grating
caustics are shown in white. The higher order caustics appear as
bands that progress outwards.

sult, a beam that is shaped and propagated a distance L be-
fore being focused by L3 may not have highest intensity at
the focal plane [16].

A Gaussian beam propagating in free space evolves ac-
cording to (8), with ¢=0 and T— . Rationalizing the expo-
nent as

1
E(7) = e 7lall1+(1-0)] (17)
\i

indicates that the phase-front advance is given by the qua-
dratic form [¢(z) - 1]x*/|g|>7%. Similarly, the effect of a thin
lens of focal length f; is to introduce a quadratic phase,

e—wif/(,jfix2. (1 8)

Therefore, the combination of field-free propagation and a
thin lens has the equivalent effect of changing the focal
length to an effective focal length,

Lélf’
<Lt
< L > r
-

FIG. 9. Two transversely separated rays cross at the focus f;.
However, due to advancement of the phase front during propagation
over distance L, the maximum peak intensity of each ray occurs
where the phase front is flat, at fS.
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FIG. 10. The intensity profile at the focus following free space
propagation through a distance L=2 m. The pulse replicas pass
through the same transverse position at x=0, however, their inten-
sity is higher at the effective focus (Fig. 11).

11 Mimlg(L)] (10)
L i 777'§|51 |

Thus, the effect of propagation is to delay, beyond the focal

plane, the point where the phase front is flat (Fig. 9).

For example, if an alternating phase mask is applied,
pulse replicas with a transverse separation (due to space-time
coupling) will be created. For pulses that propagated for L
=2 m before reaching lens L3, the effective focal length is
) eff—f,‘=373’ pmm beyond the focal length f;. Due to the
space-time coupling, the two pulse replicas are transversally
offset in space and propagate toward the focus at opposite
angles, crossing at the focus (Fig. 5). Pulse replicas that cross
at the focus (Fig. 10) do not reach their smallest size until the
effective focus (Fig. 11). As a result, experiments using
pulses with significant space-time coupling will have com-
plicated foci. This will result in complications for multibeam
experiments, particularly pump-probe experiments. In order
to avoid these propagation effects, optical image relaying of
the G2 grating output can be used for 4f-shaped pulses.

C. Pixelation-propagation effects

For a particular optical frequency, gratings behave, up to a
geometric scaling factor B, essentially as a mirror. Grating
G1 (Fig. 1) reflects an input optical frequency and L1 fo-
cuses it onto the LCD mask. Due to finite beam sizes, and
regardless of experimental geometry, there will always be
certain optical frequencies that straddle at least two pixels of
the mask after focusing by L1. Since G2 also behaves like a
mirror, lens L2 and L3 in combination act as an image relay
of the mask focus: The spatial variation of the mask is
mapped to the experimental focus. The discreetness of pixel
steps means that there will be abrupt transverse variations in
the phase at the L3 focus. As a result of the pixelation, there
will be interference as the beam propagates. The pixelation at
the focal plane is demonstrated in Fig. 12. It should be noted
that the interference is due, not to the pixelation alone, but
the spatial variation. The pixelation only serves to introduce
high frequency components into the interference structure.
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FIG. 11. The intensity profile at the effective focus fiﬁ following
free space propagation through a distance L=2 m. Note that while
the pulse replicas do not pass through the same transverse position,
they are more localized than at the focus (Fig. 10) and hence the
intensity is higher.

At the experimental focal plane of L3, the electric field
has discrete steps in the transverse direction. Each step cor-
responds to an SLM pixel that has been relayed to the focal
plane. For example, let the central step represent the field
relayed from the central pixel. It is a function that is finite in
the range x:[O,WP%) and zero elsewhere. Let the field
from this pixel be represented by the product of a modulus
and phase, A(x,0)e“®9  As this light propagates in z, it
evolves to A(x,z)e™*?. Another contribution from a neigh-
boring pixel which includes a phase shift ¢, is nonzero only
in the range x:[—Wp% ,0) and is given by B(x,z)e?9ei¥,
The total field is then given by

E(x,2) = A(x,2)e ™ + B(x,z)e?™el? (20)
and the intensity is given by
I(x,z) = A*+ B>+ 2AB cos(b—a + ¢)). (21)

The cross term represents the propagation interference and
its deviation from the case where /=0 is a measure of the
influence of the pixelized phase shift. To consider the inter-
ference, the cross term is rewritten using a trigonometric
identity,

2AB[cos(b — a)cos()) + sin(b — a)sin(¢)]. (22)

The first term is proportional to cos(#) and represents the
modification of the original interference that would be
present when =0. The second term (which vanishes for i
=0) represents a new interference structure not present in the
case when there is no phase shift. In order to minimize the
interference structures in the focal volume, both terms should
be small compared to the no phase shift case, which is to say
it is usually sufficient for the second term to be small,

Y<l. (23)

As discussed below more generally, nonresonant multipho-
ton transition probabilities (27) depend on the nth power of
the electric field. Consider only the fastest changing terms of
E",
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FIG. 12. (Color online) A graphical representation of the origin
of space-time coupling at the focus, as given by (1) for the case
when there is no free space propagation (L=0). The spatial structure
of a pulse focused by L3 will be the product of these two figures.
(Left-hand side) The spectral-spatial intensity of the focused input
pulse E (- .',XM ,f1)- (Right-hand side) The alternating mask m(
—)\Of4yf,—Bf—2x). The space-time coupling causes the pixel lines to
tilt in frequency, contradicting the expectation that each spectral
element in the pulse can be individually addressed by a single pixel.

En(d)) — Aneina + Bneinbeim//. (24)

In this case, the second cross term of the intensity is propor-
tional to sin(n). Therefore, in order to minimize pixelation-
propagation effects, it is sufficient to require that the phase
shifts between pixels, m; and my satisfy (modulo 2),

1
|| = |arg(m;) — arg(m,)| < . (25)

Typically m; and m, are neighboring pixels. However, if the
focal spot size on the LCD is large and covers numerous
pixels, then m; and m; must include all pixels that the beam
(for a particular color) illuminates.

IV. IMPLICATIONS FOR MULTIPHOTON EXPERIMENTS

The interference between multiphoton processes lies at
the heart of coherent control methods. Controlling the phase
of different pathways to a final state provides a means of
producing constructive or destructive interference for a given
product channel. The implications of the diffractive effects of
SLMs depends on the nature of the target system as well as
the geometry of the experiment. To quantify these effects,
two parameters are considered for various mask configura-
tions: (1) The spatial overlap integrals, within the focal vol-
ume, between different frequencies; (2) the relative strength
of multiphoton transition probabilities, integrated across the
focal volume. In the following configuration, we assume that
relay optics have been used between the 4-f pulse shaper
output and the experiment lens L3, in order to remove propa-
gation effects.

PHYSICAL REVIEW A 77, 043416 (2008)

Different frequencies will have different spatial structures
as they evolve through the focus along the propagation di-
rection. This will be important in experiments that rely on
the nonlinear interaction of multiple frequencies. Figure 13
displays the electric field intensities of three different neigh-
boring wavelengths A;=800, 800.3, and 800.6 nm. Longer
wavelength shifts display a similar variation. As a measure
of the spatial variation of different colors through the focus,
we use the normalized overlap integrals,

f Ixilxjdxdz

0}\1'}\]' = 1/2°
Iy dxdz | Iy dxdz
i J

where I)\i(x,z) represents the field intensity for a particular
wavelength. The values of the overlap integrals OM» may
vary considerably. A value of 1 indicates that two colors have
complete overlap throughout the focal volume. Variations be-
low 1 are significant because it implies that any multiphoton
experiments that rely on the spatial overlap of several dis-
tinct colors will be affected by space-time coupling. Note, in
Fig. 13, how the spatial structure varies rapidly with wave-
length and that different frequencies do not overlap well. If
the focal spot size at the SLM is decreased by a factor of 2
(from 38 um to 19 wm), much of the structure still remains,
since there will always be some frequencies that overlap
pixel edges (Fig. 14)

The probability for a vertical n-photon transition having
no intermediate resonances is given by the nth-order power
spectrum, determined from conventional time-dependent per-
turbation theory [19]:

(26)

2

P,(frx,2) = f e"(t,x,z)e >t

—o0

= |FLEMx,2)] gy ) 27

At first order, the transition is determined by the Fourier
transform P;(f,,x,z) = |e'(f,,x,z)[> of the perturbation and
the modulus removes any dependence on the phase of the
electric field. At higher orders, however, the modulus is per-
formed after the nth power is taken and the phase becomes
the key element that influences the transition. All n-tuples of
frequencies that add to the final frequency f, are coherently
summed and their spectral interference produces control.

In a system without space-time coupling, the transition
probability (without intermediate resonances) is proportional
to the peak intensity / at a point

P, I (28)

Therefore, the ratio between the nth- and mth-order multi-
photon transitions

P,/P"™ (29)

should be constant if only the peak intensity—and not the
spectral content—at a spatial point is altered. In a space-time
coupled system, however, the spectral content at each point
changes throughout the focus. This result is illustrated in Fig.
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FIG. 13. Intensity plots at the focus, showing different spatial
structures for different frequencies. From the left-hand side to the
right-hand side the wavelengths are (1) 800 nm, (2) 800.3 nm, and
(3) 800.6 nm. The normalized overlap integrals are O;,=0.49,
0,3=0.66, and 0, 3=0.60, showing how diffractive effects can sig-
nificantly modify the spatial overlap of different colors within the
focus.

15, where the ratios P2/P% and P3/Pg/ 2 are plotted, normal-
ized with respect to the zero-space-time coupling result. It
can be seen that diffractive effects significantly modify the
spatial distribution of multiphoton transition probabilities be-
yond that expected from intensity considerations alone.

In order to quantify the effects of these deviations across
the focal volume, the multiphoton branching ratios from (29)
are normalized with respect to their non-space-time coupled
values and their differences are integrated as

2 3/2
P,/P] PP,
3 1.5
-800
-600 2.5
-400
F2 F1
-200
£ o s & g
N N N
200
1 F40.5
400
600 05
800
-20 0 20 0 0
X (um)

400
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FIG. 14. Intensity plots at the focus, showing different spatial
structures for different frequencies, but for a focal spot one-half the
size of that in Fig. 13. From the left-hand side to the right-hand side
the wavelengths are (1) 800 nm, (2) 800.3 nm, and (3) 800.6 nm.
The normalized overlap integrals in this case are 0;,=0.59, O3
=0.54, and 0, 3=0.94. Note that the reduced spot size at the SLM
does not eliminate space-time coupling. (cf. Fig. 13)

f |P,/P""™ — 1|dxdz

J dxdz

The results are displayed in Table II. In the absence of space-
time coupling, these values would be zero. However, since
the spectral content at each point is modified, the ratios from

(30)

rnm

P,
1
0.9
FIG. 15. (Color online) Nor-
0.8 malized ratios of multiphoton
transition  probabilities plotted
F410.7 through the focus of a laser pulse
from an SLM based 4-f pulse
L 106 shaper with an alternating phase
mask. As discussed in the text,
these ratios are constructed to be
r10.5 . .. .
intensity independent. Any devia-
tion from 1 indicates that the spa-
04 tial distribution of the spectral
content has been altered by the
0.3 space-time coupling. The right-
most figure displays the intensity
0.2 of the beam, which has been in-
cluded for comparison.
0.1
-20 0 20 0
X (um
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TABLE II. Focal volume integrated multiphoton transition prob-
ability ratio deviations (per unit area). In a system without space-
time coupling, the ratios in (29) of multiphoton transition probabili-
ties should be constant. However, the spectral change due to space-
time coupling alters the ratios. Below, the deviation from 0 is due to
the spatial change in spectrum caused by the space-time
coupling. The ranges for the spatial integrals are z:zRayleigh[—l 1],
x=\27[-1,1].

Mask ) r3n
Transparent m=exp(i7{0,0,0,...]) 0 0
Alternating phase m=exp(i=[1,0,1,0,...]) 0.76  0.23

Small alternating phase 0.046 0.0036
m=exp(imy2/3[1,-1,1,-1,...])
Double alternating phase m=exp(i#{1,1,0,0,...]) 0.89 0.24

Random phase m=exp(i27{rand]) 0.44  0.12

(29) are not constant and their deviation from 1 can be con-
siderable, as shown in Fig. 15. The transparent mask pro-
duces no space-time coupling and the deviation is zero. An
alternating phase mask displays a considerable deviation.
Doubling the period of the alternating mask does not reduce
the deviation. That is, binning pixels together does not re-
duce the coupling. However, reducing the size of the pixel-
to-pixel phase shift from 7 to V2/3=0.47 [a fraction of
constraint (25)] begins to satisfy (25), and therefore reduces
space-time coupling. As an extreme case, a random phase
mask was applied to each pixel [20]. The random mask is
extremely efficient at reducing the higher order transition
probabilities and shows considerable deviation from the non-
space-time coupled case.

V. CONCLUSION

Spatial light modulators are an important tool for engi-
neering optical wave forms and controlling quantum pro-
cesses. Spatial modulation in a 4-f pulse shaper leads to both
temporal and spatial changes in the propagated pulse. Due to
space-time coupling, different spatial locations within the fo-
cus may experience different electric fields. The influence of
space-time coupling on focused beams from SLM based 4-f
pulse shapers can potentially have significant effects on ex-
periments. Unfortunately, there are no simple rules for avoid-
ing these effects and it is worthwhile to consider some lim-
iting cases or to undertake simulations. The space-time
coupling can usually be reduced by choosing parameters
such that the spot size at the SLM for a single color is much
smaller than the pixel size, i.e.,

ey o
T,
This constraint suggests as compact a pulse shaper as pos-
sible. Using smaller spot sizes at the SLM minimizes the
multiplexing effects, depicted in Fig. 6, which occur when a
spectral component straddles several pixels. However, even
if this condition is met, there is still the possibility some of
the optical frequencies of interest sit on pixel edges. For
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example, in a narrow resonance system, if the central fre-
quency is dispersed about a pixel edge where neighboring
pixels introduce different phases, there will be pixel-
propagation diffractive effects and it may be useful to
slightly translate the mask to center the optical frequency of
interest to within a pixel. In general, the phase shift change
per pixel should be kept sufficiently small via (25) in order to
avoid the pixelation-propagation effects.

Strong space-time coupling can present challenges for the
interpretation of quantum control measurements relying on
SLM based 4-f pulse shaping. Because the applied field can
vary across the focus, different target molecules may experi-
ence quite different electric fields. This means that the con-
trol mechanism will be averaged out or the relevant focal
volume altered or shifted with respect to an independent
probe laser. For the same reasons, inverting the results of
control experiments in order to obtain information about
atomic and molecular systems [21] will be more difficult if
space-time coupling is significant.

An effective way to avoid space-time coupling is to use
spatial filtering after the 4-f pulse shaper. The downside, of
course, is extensive energy loss. For amplified laser systems,
implementing the pulse shaper before the amplifier may re-
duce this coupling, since the amplifier modes themselves are
usually much smaller than the seed laser mode and therefore
can act as the spatial filter, in this case without any energy
loss. Even in the absence of space-time coupling, the ratio of
competing P" to P™ processes will always scale as I"™"(x,z),
so spatially selective probing within the focus (for example,
by using a smaller probe laser focus) is always preferred.

APPENDIX A: FRESNEL PROPAGATION

Consider the analytic signal for a two-dimensional mono-
chromatic plane wave traveling in the z direction,

e(x,z,1) = E(x,z)e>™0'. (A1)
The wave equation is given by [22]
[V2+ 2mfy/c)’)E(x.2) =0. (A2)

The envelope E(x,z) may be written as a Fourier transform

E(x,z)=f EX(f o f)e* ™ qf, df. (A3)

and inserted into the wave equation to produce the dispersion
relationship

foc=fi+f? (A4)

and specify
X. X —_ f
E(fuof)=E (fx§20)5(fz FINI=ELUfG) (AS)

where E*(f,;z,) is the one-dimensional Fourier transform at
a specific transverse displacement z,

o0

E(x,z)e*> ™ dx.

—o0

Ex(fx ;ZO) = (A6)

So that
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E()C,Z) — J Ex(fx;zo)eifo/cv'l—czf f/f %(Z_ZO)Jrsz*xdfx.

(A7)

The sign of the root is a convention based on the direction of
a traveling wave. Here the negative root is chosen. The gen-
eralization to three-dimensional space follows a similar path
to that shown.

In the Fresnel limit, spatial frequencies are assumed to be
small compared to the optical frequency, and the exponent is
approximated as

o [y LG _fo_eh o
L= N = = e

The term fy/c, the net phase due to exp(2mifyz/c), can be
dropped unless phase comparisons are done between differ-
ent paths. The evolution is then given by

(A8B)

o2 .
EX(fy32) = ¢ HE0ME(f320) (A9)
and the propagator is written as
-2
UFresnel(fx) = e—mfx(z—zO)C/fO' (AIO)

This propagation can also be rewritten as a convolution, by
using

f a(y)b(x - y)dy = f a*(FIb (f)e > ™ df,. (All)

Taking a*(f)=E"(f.;z), and b*(f)=e TRE=0  the
propagation can be written as

E(X,Z) — “;eiﬂ:fo/c(z—zo)xz
Vikg(z — zp)

XJ E(xr,Zo)eiﬂ'fo/c(z—zo)x’ze—2wixx'f0/(z—zo)cdxr

(A12)

which, owing to the fact that phases evolve slowly for large
z—2g, is useful for large distance numeric propagations.

For extreme variations in space—i.e., variations on the
order of the wavelength—the Fresnel approximation is not
valid as cf,~ f,. Instead the complete exponent is used with
the linear phase subtracted forming the complete scalar
propagator

U(fx) — eZm‘\cs(fo/c)z—(ﬁr)z(z—zo)—zm'zfo/c. (A13)

APPENDIX B: PROPAGATION THROUGH AN SLM
BASED 4-f PULSE SHAPER

The effects of pulse propagation through a pulse shaper
has been carefully detailed previously [14,15]. Here, the re-
sults are summarized and the focal field is derived. For the
shaper in Fig. 1, there are 12 different steps from input beam
to focal field, as enumerated below.

(1) An input beam E(x,¢) is dispersed by the input grating
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E'(x,f,) — \',@E( Bx.f,—fo) 2N fo)

(2) The beam is Fresnel propagated a distance f, via (A9).
(3) A thin lens introduces a quadratic spatial phase

(B1)

E'(x.f) = E'(x.f) Usens(fa). (B2)
where the lens propagator is
Ulens(fél) = e—#ifo/t‘f4x2' (BS)

(4) The beam is Fresnel propagated a distance f, via (A9).
(5) The spatial mask is applied via multiplication

E'(x.f) — E'(x.f)m(x).

(6) The beam is Fresnel propagated a distance f, via (A9).

(7) A second, identical lens Uy, (f4) is applied.

(8) The beam is Fresnel propagated a distance f, via (A9).

(9) The second grating is applied in the inverted geom-
etry:

(B4)

1 NP
El(x,f,) _ _/IEE(_ xIB.f, _fo)ezmy(ff—fo). (B5)
\
(10) The beam is relayed a distance L via (A9) to the
experimental lens.
(I1) A thin lens of focal length f; is applied using
Ulens(fL)-
(12) The beam is then Fresnel propagated to the focal
plane.
The result is that the beam at the experimental focal plane
is given by

x A "
Eéocus(x’ff) = Efrtl<_ _7ft>m<— Nofayfi— ﬁﬂix)e—mL/)\Ofo .
fiho 11

(B6)

The argument of m indicates that the transverse position x at
the focus is linearly related to the transverse position on the
mask

xmaskz_)\ﬂfél}yft_ﬁéx' (B7)
L

f
At the focal plane the lines of constant displacement (or
fixed pixel) are denoted by f,+x7)\%=const. As the fre-
quency is changed, so is the applicable pixel. Additionally,
however, as the position changes so does the applicable
pixel. It is important to note that (B6) relies on the Fresnel
approximation (A9) and grating approximations [23]. The
implications are that the above formalism does not include
high spatial frequencies (e.g., the hard edges of the pixels)
nor is it applicable for very large bandwidths or beam sizes.

APPENDIX C: NUMERICAL METHODS

The numeric propagation of pulses is efficiently achieved
using the fast Fourier transform (FFT) and its inverse (IFFT),
for transforming between coordinate space to frequency
space. The propagation from longitudinal position z; to z can
be done, using either (A9) or the convolution form from
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(A12) and is simply a multiplication in frequency space,
which can be written, respectively, as

E(x,2) = Fle ™0 P E(,z)]ep )p v (CL)
ei wfolec(z—zo)
Vi)\(Z - Z())

X FLE(x,z,) eiwfoxz/c(z—z())]

E(x,z) =

(C2)

x—xf/c(z=z) *

Care should be taken to assure that sampling is done cor-
rectly. Whereas complex data phase is only stored modulo
241, the maximum variation J&,,, in the exponent phase of
(C1) must be kept small (Nyquist theorem [24]),

Smax(Tfaf 3|z = 2olle) < m— |z = 20| < 2. = ndx’clfy,
(C3)

where dx is the spatial grid step size, n, is the number of
spatial grid points, max(f,)=1/2dx, df,=1/n,dx. The in-
verse inequality |z—zy| >z, holds for (C2), making it appro-

PHYSICAL REVIEW A 77, 043416 (2008)

priate for large distances, although, this requires resampling
of the spatial grid.

The number of temporal frequency points is reduced by
sampling the pulse envelope instead of the instantaneous
field e(r)=E(r)e>™ o,

e(n)= J e'(f)e*mdf,

=627Tifotf E’(f,)eZWi’df,. (C4)

For products like (1) it is useful to note that multiplications
in the frequency domain can be performed on the envelope
transforms:

h(r) = f et(ft)gt(ft)esz'ldft
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