EXAMEN MI-SESSION #3: CHM1711B

Principes de chimie

Professeur: Alain St-Amant

date: 2 décembre 2013, 11h30 - 12h50

INSTRUCTIONS

- vérifiez que vous avez toutes les 7 pages de l'examen (incluant cette page)
- il y a 50 points sur l'examen
- répondez à toutes les questions, dans les espaces fournis
- vos réponses finales doivent avoir les bonnes unités et les bons nombres de chiffres significatifs
- vous pouvez écrire vos réponses à l'endos d'une feuille s'il est nécessaire
- les formules et le tableau périodique sont sur la page à part

– n'oubliez pas d'écrire votre nom e	et numéro d'étudiant:	
NOM.	-11.	

10 points

- (a) (5 points) Pour une réaction d'ordre un, la concentration du réactif A est 0.477 M après 100.0 s et 0.377 après 200.0 s. Quelle était la concentration originale? Quelle sera la concentration 100.0 s plus tard (c'est à dire, 300.0 s après le début de la réaction)?
- (b) (5 points) Pour la réaction

$$2 A + B + 2 C \rightarrow 2 D + 3 E$$

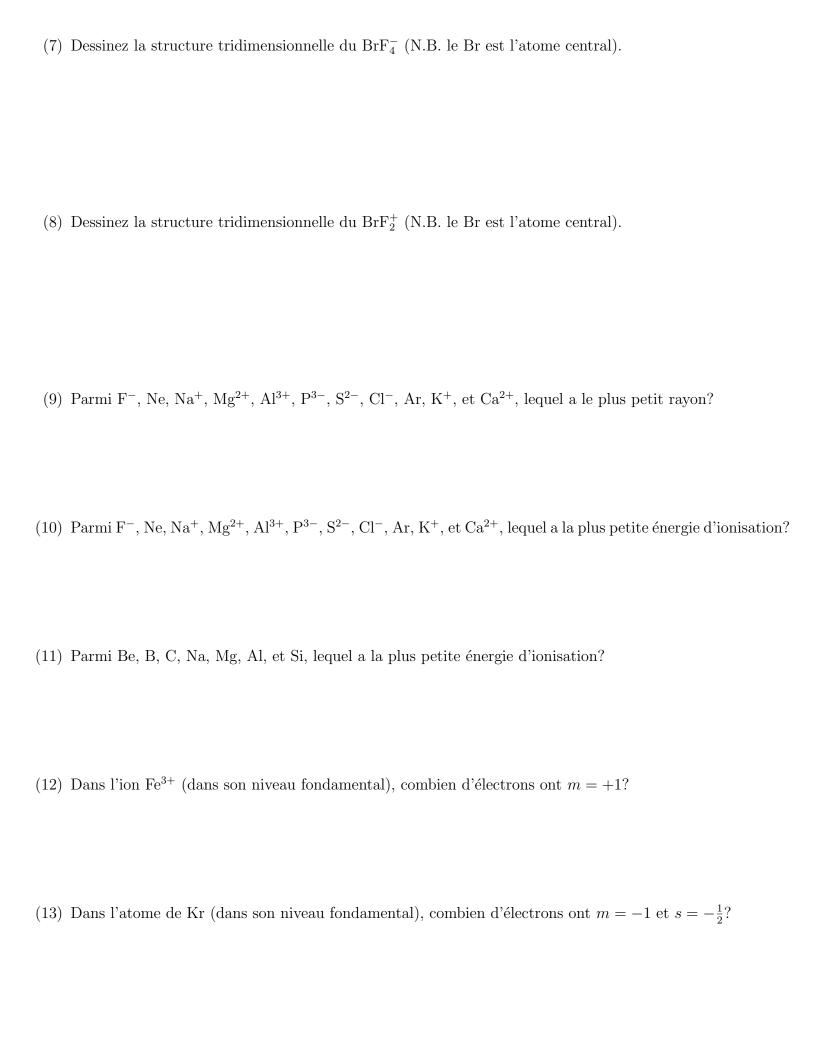
on obtient le data suivant:

$[A]_{\circ}$ (M)	$[B]_{\circ}$ (M)	$[C]_{\circ}$ (M)	vitesse initiale, v_{\circ} (M s ⁻¹)
0.25	0.20	0.20	0.20
0.25	0.40	0.20	0.20
0.25	0.40	0.40	0.80
0.50	0.40	0.40	0.80
0.50	0.80	0.40	0.80
1.00	0.80	1.00	5.00

Quelle est la loi de vitesse pour cette réaction (SVP calculez la valeur de k aussi)? Dans quelques mots, qu'est-ce-qu'on peut dire à propos de l'étape lente dans le mécanisme de cette réaction?

10 points

- (a) (5 points) Une solution aqueuse de $\rm CH_3OH$ a une fraction molaire de 0.150 pour le $\rm CH_3OH$. La masse volumique de cette solution est 0.947 g/mL. Calculez la molalité de cette solution.
- (b) (5 points) Le produit de solubilité de $Mg_3(PO_4)_2$ est 1.0×10^{-24} . Calculez la solubilité (en g/L) dans l'eau pure.


10 points

- (a) (5 points) HA est un acide faible avec une constante de dissociation, K_a , de 5.0×10^{-5} . On mélange 500.0 mL d'une solution 0.234 M en NaOH avec 500.0 mL d'une solution 0.618 M en HA. Calculez le pH de la solution produite.
- (b) (5 points) La constante de formation, K_f , de $Zn(OH)_4^{2-}$

$$\operatorname{Zn}^{2+}(\operatorname{aq}) + 4 \operatorname{OH}^{-}(\operatorname{aq}) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_{4}^{2-}(\operatorname{aq})$$

est 2.0×10^{20} . On dissout 4.44 g de $Zn(NO_3)_2$ dans 1.000 L d'une solution de NaOH(aq) qui possède un pH de 13.80. Faites l'approximation que le volume reste fixe à 1.000 L. Quelle est la concentration de Zn^{2+} (aq) à l'équilibre? Quel est le nouveau pH?

20 points Chacune des questions sur les deux pages suivantes sont pour 1 point.
(1) Donnez une structure de Lewis raisonnable pour le XeO_2F_2 , incluant les charges formelles (N.B. le Xe est l'atome central).
(2) Donnez une structure de Lewis raisonnable pour le ClO_3^- , incluant les charges formelles (N.B. le Cl est l'atome central).
(3) Donnez une structure de Lewis raisonnable pour le ${\rm O}_2^-,$ incluant les charges formelles.
(4) Donnez une structure de Lewis raisonnable pour le N_3^- , incluant les charges formelles (N.B. cette molécule n'est pas cyclique).
(5) Dessinez la structure tridimensionnelle du ${\rm XeO_3}$ (N.B. le ${\rm Xe}$ est l'atome central).
(6) Dessinez la structure tridimensionnelle du BrF ₄ ⁺ (N.B. le Br est l'atome central).

(14)	Dans l'atome d'As (dans son niveau fondamental), combien d'électrons ont $m=0$?
(15)	Quel est l'état d'oxydation du N (l'atome central) dans le ONC ⁻ ?
(16)	Quelle est l'hybridation du Xe central dans le ${\rm XeO_3?}$
(17)	Quelle est l'hybridation du N central dans le $\mathrm{NO}_2^-?$
(18)	Quelle est l'hybridation du I central dans le $\mathrm{IF}_3?$
(19)	Il y a combien de liaisons σ et π dans le H_2CO (le C est l'atome central) (SVP fournir les deux valeurs, dans le bon ordre: σ et ensuite π)?
(20)	Qu'est ce qui est particulier à propos du point triple dans le diagramme de phase de ${\rm CO_2}$ (SVP le dire en quatre ou cinq mots)?