- (a) (5 points) Pour une réaction d'ordre un, la concentration du réactif A est 0.477 M après 100.0 s et 0.377 après 200.0 s. Quelle était la concentration originale? Quelle sera la concentration 100.0 s plus tard (c'est à dire, 300.0 s après le début de la réaction)?
- (b) (5 points) Pour la réaction

$$2 A + B + 2 C \rightarrow 2 D + 3 E$$

on obtient le data suivant:

$[A]_{\circ}$ (M)	$[B]_{\circ} (M)$	$[C]_{\circ}$ (M)	vitesse initiale, $v_o (M s^{-1})$
0.25	0.20	0.20	0.20
0.25	0.40	0.20	0.20
0.25	0.40	0.40	0.80
0.50	0.40	0.40	0.80
0.50	0.80	0.40	0.80
1.00	0.80	1.00	5.00

Quelle est la loi de vitesse pour cette réaction (SVP calculez la valeur de k aussi)? Dans quelques mots, qu'est-ce-qu'on peut dire à propos de l'étape lente dans le mécanisme de cette réaction?

a) déclarez
$$t=100$$
 s comme $t=0$ et $t=200$ comme $t=100$ s
$$h\left(\frac{(Alo)}{(Al)}\right) = ht \implies k = \frac{h\left(\frac{(Alo)}{(Al)}\right)}{t} = \frac{h\left(\frac{0.477}{0.377}\right)}{100}$$

$$= 0.0023527 5^{-1}$$
on put maintenant utiliser le début de la réaction comme $t=0$

$$[A] = [A]_0 e^{-kt} \implies [A]_0 = \frac{[A]}{e^{-kt}} = \frac{0.477}{e^{-(0.0023527)(100)}}$$

$$= \frac{0.604M}{e^{-(0.0023527)(300)}}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)}$$

$$\stackrel{?}{a} t = 300 \text{ s}, [A] = [A]_0 e^{-kt} = (0.604) e^{-(0.0023527)(300)$$

- (a) (5 points) Une solution aqueuse de CH₃OH a une fraction molaire de 0.150 pour le CH₃OH. La masse volumique de cette solution est 0.947 g/mL. Calculez la molalité de cette solution.
- (b) (5 points) Le produit de solubilité de $Mg_3(PO_4)_2$ est 1.0×10^{-24} . Calculez la solubilité (en g/L) dans l'eau

=> 15.0 moles de
$$CH_3$$
 OH
=> 85.0 moles de H_20 => $\times 18.016$ g/mol = 1531.36 g
1.53136 kg

$$molalite = 15.0 moles = 9.80 m$$
 $1.53136 kg$

b)
$$M_{93}(P0_{4})_{2}(s) = 3M_{9}^{2+}(a_{9})_{+} 2P0_{9}^{3-}(a_{9})_{-}$$

 $i: +3\chi +2\chi$

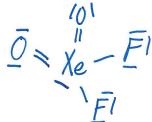
$$e:$$
 $3x$ $2x$

$$K_s = [Mg^{2+}]^3 [P0_4^{3-}]^2 \Rightarrow 1.0 \times 10^{-24} = (3\chi)^3 (2\chi)^2 = 108\chi^5$$

$$\chi = \sqrt{1.0 \times 10^{-24} 108} = 6.213 \times 10^{-6}$$
MM Mg3 (PO₄)₂

$$=\frac{1.6\times10^{-3}g/L}{}$$

- (a) (5 points) HA est un acide faible avec une constante de dissociation, K_a , de 5.0×10^{-5} . On mélange 500.0 mL d'une solution 0.234 M en NaOH avec 500.0 mL d'une solution 0.618 M en HA. Calculez le pH de la solution produite.
- (b) (5 points) La constante de formation, K_f , de $Zn(OH)_4^{2-}$


$$\operatorname{Zn^{2+}}(\operatorname{aq}) + 4 \operatorname{OH^{-}}(\operatorname{aq}) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_{4}^{2-}(\operatorname{aq})$$

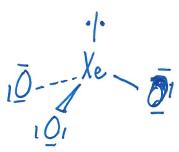
est 2.0×10^{20} . On dissout 4.44 g de $Zn(NO_3)_2$ dans 1.000 L d'une solution de NaOH(aq) qui possède un pH de 13.80. Faites l'approximation que le volume reste fixe à 1.000 L. Quelle est la concentration de $Z_{12}^{2+}(x,y) \geq \frac{12}{3}(x,y) \geq \frac{12}{3}(x,y$

$$\frac{2.0 \times 10^{20}}{[2n^{2+1}][0H^{-7}]^4} \Rightarrow [2n^{2+1}] = \frac{0.0234}{(2.0 \times 10^{20})(0.537)^4} = \frac{1.4 \times 10^{-21} M}{(2.0 \times 10^{20})(0.537)^4}$$

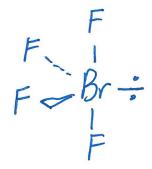
Chacune des questions sur les deux pages suivantes sont pour 1 point.

(1) Donnez une structure de Lewis raisonnable pour le XeO₂F₂, incluant les charges formelles (N.B. le Xe est l'atome central).

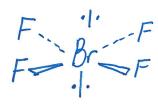
(2) Donnez une structure de Lewis raisonnable pour le ClO₃⁻, incluant les charges formelles (N.B. le Cl est l'atome central).

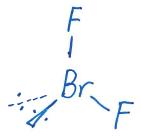

$$\bar{Q} = \mathcal{Q} = \bar{Q}$$

(3) Donnez une structure de Lewis raisonnable pour le O_2^- , incluant les charges formelles.


(4) Donnez une structure de Lewis raisonnable pour le N₃⁻, incluant les charges formelles (N.B. cette molécule n'est pas cyclique).

$$\Theta \overline{N} = N = \overline{N} \Theta$$


(5) Dessinez la structure tridimensionnelle du XeO₃ (N.B. le Xe est l'atome central).


(6) Dessinez la structure tridimensionnelle du BrF₄ (N.B. le Br est l'atome central).

(7) Dessinez la structure tridimensionnelle du BrF_4^- (N.B. le Br est l'atome central).

(8) Dessinez la structure tridimensionnelle du BrF_2^+ (N.B. le Br est l'atome central).

 $(9) \ \ Parmi \ F^-, \ Ne, \ Na^+, \ Mg^{2+}, \ Al^{3+}, \ P^{3-}, \ S^{2-}, \ Cl^-, \ Ar, \ K^+, \ et \ Ca^{2+}, \ lequel \ a \ le \ plus \ petit \ rayon?$

 $(10)\ \ Parmi\ F^-,\ Ne,\ Na^+,\ Mg^{2+},\ Al^{3+},\ P^{3-},\ S^{2-},\ Cl^-,\ Ar,\ K^+,\ et\ Ca^{2+},\ lequel\ a\ la\ plus\ petite\ \'energie\ d'ionisation?$

(11) Parmi Be, B, C, Na, Mg, Al, et Si, lequel a la plus petite énergie d'ionisation?

(12) Dans l'ion Fe³⁺ (dans son niveau fondamental), combien d'électrons ont m=+1?

(13) Dans l'atome de Kr (dans son niveau fondamental), combien d'électrons ont m=-1 et $s=-\frac{1}{2}$?

((14)	Dans l'atome d'As	(dans son	niveau	fondamental).	. combien	d'électrons	ont n	a = 0	?
- 1	T-I	Dans I adding a Ms	(dams som	mvcau	ionidamicman).	, COLLIDICIL	d Cicculons	OTTO 11	$\iota - 0$	٠

(15) Quel est l'état d'oxydation du N (l'atome central) dans le ONC⁻?

ma faute, réponse ambigue ... dépend de la structure de Lewis choisie ... on a accepté -1, +1, +3

(16) Quelle est l'hybridation du Xe central dans le XeO₃?

Sp 3

(17) Quelle est l'hybridation du N central dans le NO_2^- ?

5p

(18) Quelle est l'hybridation du I central dans le IF₃?

 sp^3d

(19) Il y a combien de liaisons σ et π dans le H₂CO (le C est l'atome central) (SVP fournir les deux valeurs, dans le bon ordre: σ et ensuite π)?

3 et 1

(20) Qu'est ce qui est particulier à propos du point triple dans le diagramme de phase de CO₂ (SVP le dire en quatre ou cinq mots)?

pression > 1.00 alm