EXAMEN MI-SESSION #3: CHM1701/CHM1711A

Principes de chimie

D C	A 1 •	α	A .
Professeur:	Δ lain	\sim t $_{-}$	Amant
T TOTOSSCUL.	4 XIAIII	~ U-	4 1111 61110

date: 30 novembre 2012, 8h30 - 9h50

INSTRUCTIONS

	/ · · · ·		, , 1	0	1 11	/· 1 .	1.1	\	
_	verifiez gue	vous aver	z toutes les	s 8 pages	de l'examen	(incluant	cette	paget	
						(F O - /	

- -il y a 50 points sur l'examen
- répondez à toutes les questions, dans les espaces fournis
- vos réponses finales doivent avoir les bonnes unités et les bons nombres de chiffres significatifs
- vous pouvez écrire vos réponses à l'endos d'une feuille s'il est nécessaire
- les formules et le tableau périodique sont sur la page à part

– n'oubliez pas d'écrire votre nom e	t numéro d'étudiant:	
NOM.	<i>u</i> .	

- (a) (4 points) Pour une réaction d'ordre un, la concentration du réactif A tombe de 0.577 M à 0.344 M dans les premiers 225 s. Quelle est la demie-vie de cette réaction?
- (b) (4 points) Pour la réaction

$$2 A + B + 2 C \rightarrow 2 D + 3 E$$

on obtient le data suivant:

$[A]_{\circ}$ (M)	$[B]_{\circ}$ (M)	$[C]_{\circ}$ (M)	vitesse initiale, $v_o (M s^{-1})$
0.25	0.20	0.20	0.20
0.25	0.40	0.20	0.20
0.25	0.40	0.40	0.80
0.50	0.40	0.40	0.80
0.50	0.80	0.40	0.80
1.00	0.80	1.00	5.00

Quelle est la loi de vitesse pour cette réaction? Quelle est la vitesse de la réaction lorsque la concentration de chaque réactif est $0.50~\mathrm{M}$? La température est 25.0°C.

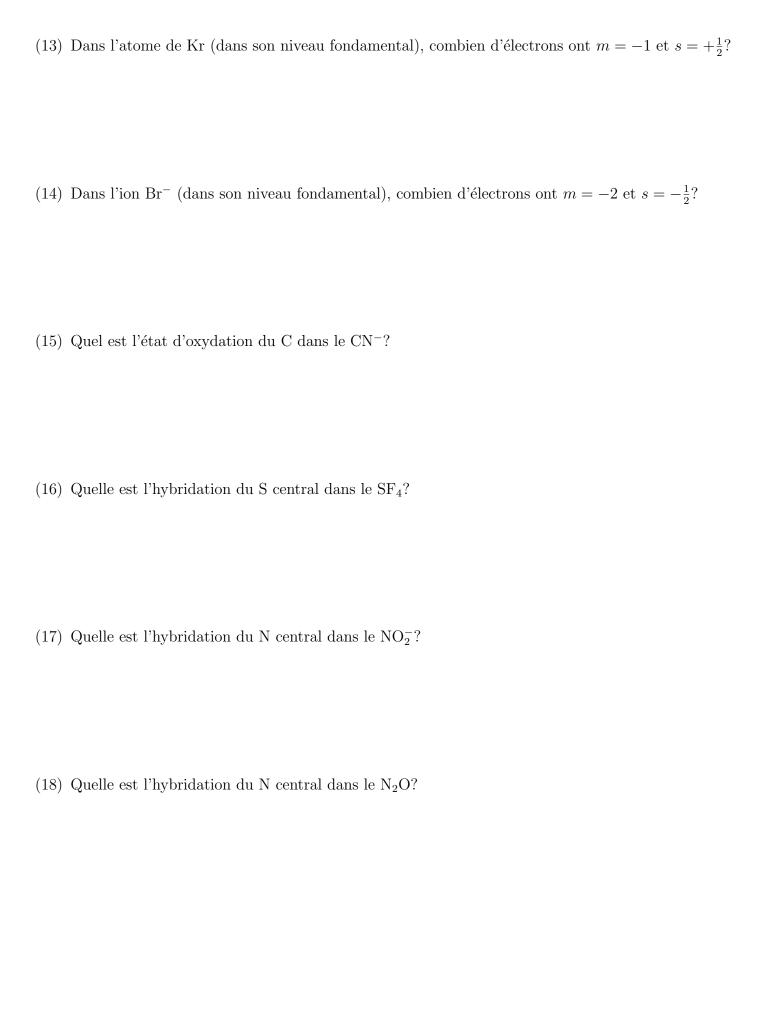
 $\overline{\text{Pour la r\'eaction d'ordre un, A(aq)}} \rightarrow \text{B(aq)}$, la demie-vie est 344 s à 25.0°C et l'énergie d'activation est 30.0 kJ/mol.

- (a) Calculez le temps nécessaire pour que la concentration de A(aq) tombe de 0.444 M à 0.333 M à 50.0°C.
- (b) La demie-vie de cette réaction serait 200 s à quelle température?

 $\frac{\text{8 points}}{\text{Le produit de solubilité pour le } Mg_3(PO_4)_2 \text{ est } 1.0 \times 10^{-24}. \text{ Calculez la solubilité (en g/L) du } Mg_3(PO_4)_2 \text{ dans}}$

- (a) l'eau pure
- (b) une solution 0.30 M en ${\rm Mg(NO_3)_2}$

 $\overline{\text{La const}}$ ante de formation, K_f , de $Ag(CN)_2^-$


$$Ag^{+}(aq) + 2 CN^{-}(aq) \rightleftharpoons Ag(CN)_{2}^{-}(aq)$$

est 3.0×10^{20} . On dissout 6.66 g de AgNO₃ dans 1.000 L d'une solution 0.800 M en CN⁻(aq). Faites l'approximation que le volume reste fixe à 1.000 L. Quelles sont les concentrations de Ag⁺(aq), CN⁻(aq), et Ag(CN)₂⁻(aq) à l'équilibre?

Chacune des questions sur les deux pages suivantes sont pour 1 point.	
(1) Donnoz una atructura da Lawia raigonnable nour la NO- incluent les charges formelles (N.B.	lo N o

(1) Donnez une structure de Lewis raisonnable pour le NO₃, incluant les charges formelles (N.B. le N est l'atome central). (2) Donnez une structure de Lewis raisonnable pour le NO, incluant les charges formelles. (3) Donnez une structure de Lewis raisonnable pour le N_3^- , incluant les charges formelles (N.B. la molécule n'est pas cyclique). (4) Donnez une structure de Lewis raisonnable pour le O₃, incluant les charges formelles (N.B. la molécule n'est pas cyclique). (5) Dessinez la structure tridimensionnelle du IF₅ (N.B. le I est l'atome central). (6) Dessinez la structure tridimensionnelle du IF₄ (N.B. le I est l'atome central).

(7)	Dessinez la structure tridimensionnelle du IF_2^- (N.B. le I est l'atome central).
(8)	Dessinez la structure tridimensionnelle du IF_2^+ (N.B. le I est l'atome central).
(9)	Parmi F ⁻ , Ne, Na ⁺ , Mg ²⁺ , Al ³⁺ , S ²⁻ , Cl ⁻ , Ar, K ⁺ , et Ca ²⁺ , lequel a la plus grande énergie d'ionisation?
(10)	Parmi F ⁻ , Ne, Na ⁺ , Mg ²⁺ , Al ³⁺ , S ²⁻ , Cl ⁻ , Ar, K ⁺ , et Ca ²⁺ , lequel a le plus grand rayon?
(11)	Parmi Be, B, C, Mg, Al, et Si, lequel a la plus petite énergie d'ionisation?
(12)	Dans l'ion Zn²+ (dans son niveau fondamental), combien d'électrons ont $m=+1$?

