EXAMEN MI-SESSION #2: CHM1701/CHM1711A

Principes de chimie

Professeur: Alain St-Amant

date: 2 novembre 2011, 8h30 - 9h50

INSTRUCTIONS

– verifiez que vous avez	toutes les 6 pages de .	l'examen (incluant	cette page)
--------------------------	-------------------------	--------------------	-------------

- il y a 50 points sur l'examen
- répondez à toutes les questions, dans les espaces fournis
- vos réponses finales doivent avoir les bonnes unités et les bons nombres de chiffres significatifs
- vous pouvez écrire vos réponses à l'endos d'une feuille s'il est nécessaire
- les formules et les tableaux sont sur la page à part

- n'oubliez pas d'écrire votre nom et numéro d'étudiant:				
NOM:	<i>-</i> #•			

 $\frac{-P}{\text{Donnez}}$ l'état d'oxydation du P dans le HPO_4^{2-} .

 $\frac{\mathbf{9 \ points}}{\text{Pour la réaction}}$

$$A(aq) + B(aq) \rightleftharpoons 2 C(aq)$$

la constante d'équilibre est 70.3 à 25°C et 57.7 à 50°C. Faisant l'approximation que ΔH° et ΔS° ne varient pas avec la température, calculez les valeurs de ΔH° , ΔS° , et la constante d'équilibre, K, à 75°C.

 $\overline{\text{Donnez}}$ l'acide conjugué de HPO_4^{2-} .

9 points

On dissout 1.933 g de HA(s) dans assez d'eau pour produire 25.0 mL de solution. Le pK_a de HA(aq) est 4.55. Pour neutraliser cette solution de HA(aq), on a besoin de 35.2 mL d'une solution 0.112 M en Ca(OH)₂(aq). La température de la solution est 25°C.

- (a) Calculez la valeur de la masse molaire de HA.
- (b) Quelle est la valeur du pH lorsqu'on est à mi-chemin dans le titrage (c'est à dire, après l'ajout de 17.6 mL de la solution $Ca(OH)_2(aq)$)?
- (c) Calculez la valeur du pH au point d'équivalence.

 $\overline{\text{Donnez}}$ la base conjuguée de HPO_4^{2-} .

9 points

Pour la réaction

$$2 A(aq) \rightleftharpoons B(aq) + C(aq)$$

les concentrations de A(aq), B(aq), et C(aq) à l'équilibre sont 0.444 M, 0.333 M, et 0.222 M. La température est 25°C. Calculez la valeur de ΔG° (à 25°C). Si les concentrations de B(aq) et C(aq) étaient chacune 0.100 M, quelle concentration de A(aq) serait nécessaire pour avoir une valeur de $\Delta G = -5.00$ kJ pour cette réaction (la température est toujours 25°C)?

 $\frac{\textbf{1 point}}{\text{Pour la réaction endothermique, 3 O}_2(g) \rightleftharpoons 2 \text{ O}_3(g), \text{ la valeur de } \Delta S \text{ pour cette réaction est positive, nulle,}$ ou négative?

9 points

Équlibrez la réaction oxydoréduction suivante (en milieu basique):

$$\mathrm{MnO_4^-(aq)} + \mathrm{C_3H_7OH(aq)} \rightarrow \mathrm{MnO_2(s)} + \mathrm{CO_2(g)}$$

Pour la réaction endothermique, $3 O_2(g) \rightleftharpoons 2 O_3(g)$, la valeur de la constante d'équilibre diminue, reste constante, ou augmente lorsqu'on diminue la température?

9 points

On prépare une solution tampon en ajoutant 9.77 g de HCl à 1.000 L d'une solution 0.455 M en NaCH₃COO(aq) (l'acétate de sodium). La constante de dissociation de CH₃COOH(aq) (l'acide acétique) est 1.8×10^{-5} . Faites l'approximation que le volume demeure fixe à 1.000 L. La température de la solution est 25°C.

- (a) Calculez le pH de la solution avant l'ajout du HCl.
- (b) Calculez le pH de la solution après l'ajout du HCl.
- (c) On ajoute 0.020 moles de NaOH(s) après l'ajout du HCl (partie b). Calculez le nouveau pH de la solution.