TEST #2a: CHM1710

Principes de chimie

Professeur: Alain St-Amant

date: jeudi le 1 novembre 2001

temps: 10:00 - 11:20

AUCUN MATERIEL SUPPLEMENTAIRE PERMIS

CALCULATRICES PERMISES

INSTRUCTIONS

- :	il y a	un t	total de 5	60 poi	nts											
	pour	les q	uestions	d'un	point,	SVP	juste	fournir	la	bonne	réponse	en	un	ou	deux	mots

- répondez à toutes les questions
- écrivez vos réponses sur le questionnaire-même, dans les espaces fournis
- soyez certains que vos réponses finales ont les bonnes unités et les bons nombres de chiffres significatives
- si vous avez besoin, vous pouvez écrire vos réponses sur le dos d'une feuille
- traitez tous les gaz comme des gaz parfaits
- les règles, formules et constantes fondamentales nécessaires sont fournies
- n'oubliez pas d'écrire votre nom et numéro d'étudiant:

NOM:	 #:	

Parmi NH₃, PH₃, AsH₃, et SbH₃, lequel a le plus bas point d'ébullition?

7 points

Un composé solide, A(s), décompose pour produire deux composés gazeux, B(g) et C(g)

$$2 A(s) \rightleftharpoons B(g) + 2 C(g)$$

On commence avec seulement le solide A(s) dans un contenant vide. A l'équilibre, la pression totale est 1.20 atm. Le contenant contient seulement A(s), B(g) et C(g). La température est 25°C. Le volume du contenant est 1.00 L. Quelle est la valeur de la constante d'équilibre pour cette réaction à 25°C?

Quel est l'état d'oxydation du S dans le HSO₃-?

8 points

Quel volume d'une solution 0.277 M en acide acétique, CH_3COOH , est nécesaire pour neutraliser 28.0 mL d'une solution 0.348 M en $\text{Ba}(\text{OH})_2$? $\text{Ba}(\text{OH})_2$ est une base forte et l'acide acétique est un acide faible avec un p K_a de 4.74. Quel est le pH de la solution au point d'équivalence?

 $\frac{1 \ point}{Quel \ est} \ l'état \ d'oxydation \ du \ C \ dans \ le \ H_2CO?$

7 points

Quelle est la solubilité (en grammes par litre) de $Mg(OH)_2$ dans une solution aqueuse qui est déjà 0.30 M en NaOH? Le produit de solubilité de $Mg(OH)_2$ est 1.2×10^{-11} .

Si l'enthalpie de vaporisation d'une mole d'eau est 41 kJ et l'enthalpie de sublimation d'une mole de glace est 47 kJ, quelle est l'enthalpie de fusion d'une mole de glace?

8 points

Le AgCl est très peu soluble dans l'eau. Le produit de solubilité, K_s , du AgCl est 1.6×10^{-10} . Quelle masse de NaCl doit-on ajouter à 1.00 L d'une solution 0.377 M en AgNO₃ si on veut réduire la concentration de Ag⁺ en solution à 1.0×10^{-9} M? Quelle masse de AgCl(s) est produit? Considérez qu'il n'y a aucune variation de volume lors de l'addition du NaCl.

Quelles forces intermoléculaires dominent dans l'azote liquide, i.e., N₂(l)?

7 points

Quelle masse de NH₄Cl doit-on ajouter à 1.000 L d'une solution 0.115 M en NH₃ afin d'avoir une solution tampon avec un pH de 9.85? Considérez qu'il n'y a aucune variation de volume lors de l'addition du NH₄Cl. La valeur de K_b pour le NH₃ est 1.8×10^{-5} .

On dissout 3.5 g de ZnCl₂ dans 1.00 L d'une solution 0.50 M en NH₃ pour produire une solution où le volume est toujours de 1.00 L. La constante d'équlibre pour la réaction

$$\operatorname{Zn}^{2+}(\operatorname{aq}) + 4 \operatorname{NH}_3(\operatorname{aq}) \rightleftharpoons \operatorname{Zn}(\operatorname{NH}_3)_4^{2+}(\operatorname{aq})$$

est 2.9×10^9 . Quelles sont les concentrations de $\rm Zn^{2+}(aq), \, NH_3(aq)$ et $\rm Zn(NH_3)_4(aq)$ à l'équilibre?