RATIONAL EQUIVARIANT FORMS

ABDELKRIM ELBASRAOI AND ABDELLAH SEBBAR

Abstract. We investigate the notion of equivariant forms as functions on the upper half-plane commuting with the action of a discrete group. We put an emphasis on the rational equivariant forms for a modular subgroup that are parameterized by generalized modular forms. Furthermore, we study this parametrization when the modular subgroup is of genus zero as well as their behavior under the effect of the Schwarz derivative.

1. Introduction

In this paper we introduce and study the notion of equivariant forms for a modular subgroup. These are meromorphic functions on \mathbb{H}, the upper-half of the complex plane \mathbb{C}, which commute with the action of a discrete subgroup Γ of $\text{SL}_2(\mathbb{R})$, the group of 2 by 2 matrices with real entries and determinant 1. More precisely, a meromorphic function h on \mathbb{H} is called an equivariant form for Γ if it satisfies

$$h(\alpha \cdot z) = \alpha \cdot h(z) \quad \text{for all } z \in \mathbb{H} \text{ and } \alpha \in \Gamma,$$

in addition to some precise conditions at the cusps of Γ, and where $\alpha \cdot z$ denotes the usual action:

$$\alpha \cdot z = \frac{az + b}{cz + d} \quad \text{if } \alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

These functions appeared first in the works by Brady [1] and Heins [3] as quotients of pseudo-periods of the Weierstrass elliptic ζ functions. More recently, these type of functions also appeared in [7] in connection with modular forms and where the terminology of equivariant forms was first coined. Moreover, a wide class of functions known as the rational equivariant forms were provided for the modular group $\text{SL}_2(\mathbb{Z})$ that are parameterized by modular forms yielding various interesting applications to modular differential equations and the analysis of the critical points of modular forms for $\text{SL}_2(\mathbb{Z})$. This study, however, was limited to the modular group alone and the proper definition of the equivariant form was not available for an arbitrary subgroup of $\text{SL}_2(\mathbb{Z})$.

In this paper, we undertake the task of generalizing the theory of equivariant forms to all the finite index subgroups of $\text{SL}_2(\mathbb{Z})$. Beside providing the rigorous definitions for an arbitrary subgroup Γ of $\text{SL}_2(\mathbb{Z})$, we construct infinitely many equivariant forms that are parameterized by the so-called generalized modular forms for Γ. These were introduced by Knopp and Mason in [4] as a generalization of classical
modular forms and are defined as follows: A generalized modular form for Γ of weight $k \in \mathbb{Z}$ and character $\mu : \Gamma \rightarrow \mathbb{C}^\times$ is a meromorphic function f on \mathbb{H} satisfying

$$f(\alpha \cdot z) = \mu(\alpha) (cz + d)^k f(z), \quad \alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \quad z \in \mathbb{H},$$

in addition to specific growth conditions at the cusps. The character μ is not necessary unitary, and when it is trivial, we refer to f as a modular form. If f is a nonconstant generalized modular form, then the function

$$h(z) = z + k \frac{f(z)}{f'(z)} \quad (\ast)$$

is an equivariant form for Γ.

One of the principal results in this paper is that an equivariant form h is attached to a generalized modular form f as in (\ast) if and only if the poles of $1/[h(z) - z]$ in $\mathbb{H} \cup \{\text{cusps}\}$ are simple with rational residues. We refer to such equivariant forms as the rational equivariant forms. It turns out that when Γ is of genus zero, and the rationality condition holds, then the associated character of f has a finite order and f may be replaced by a modular form. Furthermore, we provide a wide class of equivariant forms that are not rational in the above sense.

These new and fascinating objects turn out to be very natural and very rich. They are closely related to modular forms and can also be associated to other algebraic and topological theories such as intertwining operators, equivariant K-theory and the theory of concomitants in projective differential geometry. What is more fascinating is that the equivariant forms can be viewed as geometric objects. More precisely, in a forthcoming work, [2], it is shown that the equivariant forms are sections of the canonical line bundle of the modular curve of the underlying modular subgroup. Moreover, the set of equivariant forms for a given modular subgroup is endowed with the structure of an infinite dimensional affine space.

The paper is organized as follows: In Section 2 we provide some necessary preliminaries about subgroups of the modular group as well as modular forms. In Section 3, we introduce the notion of equivariant forms for a subgroup of SL$_2(\mathbb{Z})$ together with a special slash operator that allows us to define the meromorphy at the cusps. In Section 4 we show that each generalized modular form yields an equivariant form as in (\ast) above that we refer to as the rational equivariant forms. In the meantime, we provide infinitely many examples of equivariant forms which do not arise in this way. The main result of Section 5 is a theorem stating the necessary and sufficient conditions for an equivariant form to be rational. In section 6, we restrict ourselves to the genus zero modular subgroups in which case the generalized modular forms can be replaced by modular forms. Finally, in Section 7, a second connection with modular forms lies in the fact that the Schwarz derivative of an equivariant form is a weight 4 modular form.

2. Preliminaries

The main references for this section are [9] and [6]. Let SL$_2(\mathbb{R})$ be the group of 2x2 matrices with real entries and determinant 1. It acts on the upper half of the
complex plane
$$\mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$$

by linear fractional transformations
$$\alpha \cdot z = \frac{az + b}{cz + d}, \quad z \in \mathbb{H}, \quad \alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R}).$$

The Möbius group $\text{PSL}_2(\mathbb{R}) = \text{SL}_2(\mathbb{R})/\{\pm I\}$ is the full automorphism group of \mathbb{H}. For α as above, $z \in \mathbb{H}$, set $j_\alpha(z) = cz + d$. Then for a meromorphic function f defined on \mathbb{H} and a nonnegative integer k, we define the slash operator on f by

\begin{equation}
(2.1) \quad f|_k[\alpha](z) = j_\alpha(z)^{-k}f(\alpha \cdot z).
\end{equation}

The map $j : \text{SL}_2(\mathbb{R}) \times \mathbb{H} \to \mathbb{C}^*$ defines what is called an automorphy factor and satisfies the cocycle relation
$$j_{\alpha\beta}(z) = j_\alpha(\beta \cdot z)j_\beta(z)$$
for all $\alpha, \beta \in \text{SL}_2(\mathbb{R})$.

We notice that, since $-\alpha \cdot z = \alpha \cdot z$, $j_{-\alpha}(z)^k = -j_\alpha(z)^k$ when k is odd, so that $f|_k[-\alpha](z) = -f|_k[\alpha](z)$.

In this paper, we will mainly be concerned with the modular group $\text{SL}_2(\mathbb{Z})$ of matrices in $\text{SL}_2(\mathbb{R})$ with integer entries as well as its subgroups of finite index to which we refer as the modular subgroup.

A modular subgroup Γ is called a congruence group of level N if it contains the principal congruence group $\Gamma(N)$ defined by
$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid a \equiv d \equiv 1 \pmod{N}, \ b \equiv c \equiv 0 \pmod{N} \right\}$$
and N is the smallest positive integer such that $\Gamma(N) \subseteq \Gamma$.

Let k be a positive integer. A function f on \mathbb{H} is called a meromorphic modular form or simply a modular form of weight k for a modular subgroup Γ of $\text{SL}_2(\mathbb{Z})$ if

\begin{enumerate}
\item f is meromorphic on $\mathbb{H},$
\item for all $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathbb{H}$, we have $f|_k[\alpha](z) = f(z),$
\item f is meromorphic at the cusps.
\end{enumerate}

The last condition means the following. Let $s \in \mathbb{Q} \cup \{\infty\}$ be a cusp of Γ. Let $\gamma \in \text{SL}_2(\mathbb{Z})$ such that $\gamma \cdot s = \infty$ and set $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then, the function $f|_k[\gamma^{-1}](z)$ is invariant under $\gamma \Gamma_s \gamma^{-1} = < T^{l_s} >$, l_s being the cusp width at s and Γ_s the isotropy group of s inside Γ. Hence, it has a Fourier expansion in the local parameter at infinity $q_s := e^{2\pi i l_s z}$ if k is even and $q_s = e^{\pi i z l_s}$ if k is odd. The meromorphy condition means we have the Fourier series expansion
$$f|_k[\gamma^{-1}](z) = \sum_{n = n_s}^{\infty} a_n^s q_n^s$$
with the integer n_s being finite. If $n_s \geq 0$ for every cusp s and if f is holomorphic on \mathbb{H} then f is called a holomorphic modular form. A holomorphic modular form is called a cusp form if it vanishes at all cusps, in other words $n_s > 0$ for all cusps s. When $k = 0$ the modular form is called a modular function.

There is also the notion of generalized modular forms due to M. Knopp and G. Mason, [4], and which will play a major role in this paper. A meromorphic function f on \mathbb{H} is called a generalized modular form of weight k for a modular subgroup Γ of $\text{SL}_2(\mathbb{Z})$ if

1. f is meromorphic on \mathbb{H},
2. for all $\alpha \in \Gamma$ and $z \in \mathbb{H}$, we have

 $$f|_k[\alpha](z) = \mu(\alpha) f(z),$$

 where $\mu : \Gamma \rightarrow \mathbb{C}^\times$ is a character.
3. f is meromorphic at the cusps.

The analysis at the cusps is similar to the above case of modular forms with a slight modification. The generalized modular forms look like classical modular forms with a multiplier system except for the fact that the character μ need not be unitary. It can easily be shown that for s, γ and l_s as above

$$f|_k[\gamma^{-1}T^{l_s}] = e^{2\pi i s_\kappa} f|_{k[\gamma^{-1}]}(z),$$

for some $\kappa_s \in \mathbb{C}$.

In other words, $\mu(T^{l_s}) = e^{2\pi i s_\kappa}$. Hence the function $\tilde{f}_{\gamma^{-1}}(z) := e^{2\pi i s_\kappa} f|_{k[\gamma^{-1}]}(z)$ is l_s-periodic, and therefore has a q_s-expansion. The meromorphy is then interpreted in a similar manner as for classical modular forms. If the character μ is trivial, then the generalized modular form becomes a modular form for Γ. For the motivation behind the generalized modular forms, their properties and applications, we refer to [4].

The examples of classical modular forms that will be used in this paper are the Eisenstein series:

$$E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n)q^n,$$

$$E_6(z) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n)q^n,$$

where $\sigma_k(n)$ is the sum of the k-th powers of the positive divisors of n. The Eisenstein series E_4 and E_6 are modular forms for $\text{SL}_2(\mathbb{Z})$ of weight 4 and 6 respectively. The weight 12 cusp form for $\text{SL}_2(\mathbb{Z})$ is given by

$$\Delta(z) = q \prod_{n \geq 1} (1 - q^n)^{24}.$$

We also introduce the Eisenstein series E_2 given by

$$E_2(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n)q^n,$$
which is not a modular form but it is rather referred to as a quasimodular form of weight 2 and depth 1. Moreover, E_2 satisfies
\[
E_2(z) = \frac{1}{2\pi i} \Delta'(z),
\]

3. Equivariant forms

The systematic treatment of equivariant forms has been initiated in [7] in connection with the study of certain Schwarz differential equation involving modular forms. They appeared as meromorphic functions on the upper half-plane \mathbb{H} commuting with the action of a discrete subgroup of $\text{SL}_2(\mathbb{R})$. This notion also appeared previously in the work of M. Heins in [3] and M. Brady in [1] in connection with elliptic functions. More precisely, for a lattice $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ with $z = \omega_2/\omega_1 \in \mathbb{H}$, the Weierstrass ζ-function is defined by $\zeta' = -\wp$ where \wp is the Weierstrass elliptic \wp-function. If η_1 and η_2 are the pseudo-periods of ζ, then
\[
h_0 = \omega_1 \eta_2
\]
depends only on z and satisfies $h_0(\alpha \cdot z) = \alpha \cdot h_0(z)$, for $\alpha \in \text{SL}_2(\mathbb{Z})$. In this paper, we will not pursue this elliptic point of view but rather we will be interested in the modular point of view as was initiated in [7].

We begin with the definition of an equivariant form for $\Gamma = \text{SL}_2(\mathbb{Z})$ following [7]. A meromorphic function h on \mathbb{H} is called an equivariant form if it satisfies
\[
(1) \quad h(\gamma \cdot z) = \gamma \cdot h(z) \text{ for all } z \in \mathbb{H} \text{ and all } \gamma \in \text{SL}_2(\mathbb{Z}),
\]
\[
(2) \quad h(z) - z \text{ is meromorphic at } \infty.
\]

Here $\gamma \cdot h(z)$ is obtained by extending the action of $\text{SL}_2(\mathbb{Z})$ to all of \mathbb{C}. Furthermore, since $h(z) - z$ is 1-periodic, it has a Fourier expansion in $q = \exp(2\pi iz)$. To say that $h(z) - z$ is meromorphic means that this Fourier expansion has finitely many negative powers of q
\[
h(z) - z = \sum_{n \geq n_0} a_n q^n.
\]

A trivial example of an equivariant form is the identity $h_0(z) = z$. For the rest of this paper, if h is not the identity, we set
\[
\widehat{h}(z) = \frac{1}{h(z) - z},
\]
and it will be more convenient to consider the meromorphy of \widehat{h} rather than that of $h(z) - z$, once $\text{SL}_2(\mathbb{Z})$ is replaced by a modular subgroup Γ. To define the equivariant forms for such subgroups, one needs to make precise the meromorphy of \widehat{h} at every cusp of Γ. We start by defining a certain ”double-slash” operator. If f is a meromorphic function on \mathbb{H} and $\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \text{SL}_2(\mathbb{R})$, let
\[
f||[\gamma](z) = j_\gamma(z)^{-2} f(\gamma \cdot z) - r j_\gamma(z)^{-1},
\]
(3.1)
where again \(j_{\gamma}(z) = rz + s \). This defines an action of \(\text{SL}_2(\mathbb{R}) \) on the space of meromorphic functions on \(\mathbb{H} \). Indeed, for elements \(\beta = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) and \(\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \) in \(\text{SL}_2(\mathbb{R}) \), we have, on one hand,

\[
f \| [\beta \gamma] (z) = j_{\beta \gamma}(z)^{-2} f(\beta \gamma \cdot z) - (cp + dr) j_{\beta \gamma}(z)^{-1}.
\]

On the other hand,

\[
(f \| [\beta]) \| [\gamma] (z) = j_{\gamma}(z)^{-2} f(\beta \gamma \cdot z) - r j_{\gamma}(z)^{-1} = j_{\gamma}(z)^{-2} (j_{\beta}(\gamma \cdot z)^{-2} f(\beta \gamma \cdot z) - cj_{\beta}(\gamma \cdot z)^{-1}) - r j_{\gamma}(z)^{-1} = j_{\beta \gamma}(z)^{-2} f(\beta \gamma \cdot z) - cj_{\beta}(\gamma \cdot z)^{-2} j_{\beta}(\gamma \cdot z)^{-1} - r j_{\gamma}(z)^{-1}.
\]

One easily checks that

\[
 cj_{\gamma}(z)^{-2} j_{\beta}(\gamma \cdot z)^{-1} + r j_{\gamma}(z)^{-1} = (cp + dr) j_{\beta \gamma}(z)^{-1},
\]

which yields

\[
f \| [\beta \gamma] (z) = (f \| [\beta]) \| [\gamma](z),
\]

Proposition 3.1. Let \(h \) be a meromorphic function on \(\mathbb{H} \) and let \(\Gamma \) be a modular subgroup. If \(\gamma \in \Gamma \) and \(z \in \mathbb{H} \), then

\[
h(\gamma \cdot z) = \gamma \cdot h(z) \quad \text{if and only if} \quad \hat{h} \| [\gamma] (z) = \hat{h}(z).
\]

Proof. For \(\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \Gamma \) we have

\[
h(\gamma \cdot z) = \gamma \cdot h(z) \quad \Leftrightarrow \quad \hat{h}(\gamma \cdot z) = j_{\gamma}(z) j_{\gamma}(h(z)) \hat{h}(z) \quad \Leftrightarrow \quad j_{\gamma}(z)^{-2} \hat{h}(\gamma \cdot z) = \frac{j_{\gamma}(h(z))}{j_{\gamma}(z)} \hat{h}(z).
\]

However, \(j_{\gamma}(h(z)) = r(h(z) - z) + j_{\gamma}(z) \) so that

\[
\frac{j_{\gamma}(h(z))}{j_{\gamma}(z)} \hat{h}(z) = \hat{h}(z) + r j_{\gamma}(z)^{-1}.
\]

The proposition follows. \(\square \)

Notice that if \(\Gamma \) contains \(-1_2\) and since \(j_{-\gamma}(w) = -j_{\gamma}(w) \) we have

\[
\hat{h} \| [-\gamma] (z) = \hat{h} \| [\gamma] (z).
\]

If \(-1_2 \notin \Gamma\), then we would have two types of cusps: the regular and the irregular cusps. When \(s \) is regular, \(\Gamma_s \) is conjugate to \(\langle T^{is} \rangle \) so that the function \(\hat{h} \| [\gamma^{-1}] \) is \(l_s \)-periodic with \(\gamma \in \text{SL}_2(\mathbb{Z}) \) such that \(\gamma \cdot s = \infty \). In the second case where \(s \) is irregular, the isotropy group \(\Gamma_s \) is conjugate to \(\langle -T^{is} \rangle \). An easy computation shows, however, that, as \(h \) is equivariant for \(\Gamma \),

\[
\hat{h} \| [\gamma^{-1}] \| [I^{is}] = \hat{h} \| [\alpha(\gamma^{-1})] = \hat{h} \| [-\gamma^{-1}],
\]

for some \(\alpha \in \Gamma \). It follows from the definition of the slash operator \(\| \) and the fact that \(j_{-\gamma^{-1}} = -j_{\gamma^{-1}} \) that

\[
\hat{h} \| [\gamma^{-1}] \| [I^{is}] = \hat{h} \| [\gamma^{-1}],
\]

that is \(\hat{h} \| [\gamma^{-1}] \) is also \(l_s \)-periodic.
We now proceed to define the notion of an equivariant form for a modular subgroup Γ. Let s be a cusp of Γ, that is s is in $\mathbb{Q} \cup \{\infty\}$, and choose $\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$ such that $\gamma \cdot s = \infty$. Then the isotropy group of s, $\Gamma_s = \{ \alpha \in \Gamma \mid \alpha \cdot s = s \}$, is conjugate by γ to the infinite cyclic group generated by T^l_s, with $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and l_s is a positive integer known as the cusp width of Γ at the cusp s.

If h is a meromorphic function on \mathbb{H} which commutes with the action of Γ on \mathbb{H}, then $\hat{h}[\gamma^{-1}](z)$ is invariant under $\gamma \Gamma_s \gamma^{-1} = \langle T^l_s \rangle$ and hence it is l_s-periodic. Therefore, it has a Fourier expansion in the local parameter $q_s = \exp(2\pi iz/l_s)$ of the form

$$\hat{h}[\gamma^{-1}](z) = \sum_{m \geq m_s} a_m q_s^m.$$

We say that h is meromorphic at s if $\hat{h}[\gamma^{-1}](z)$ is meromorphic at ∞ in the sense that the integer m_s is finite. It is important to note that if this holds at a cusp s, then it also holds at any cusp that is Γ-equivalent to s.

Definition 3.1. An equivariant form for Γ is a meromorphic function on \mathbb{H} which commutes with the action of Γ and which is meromorphic at every cusp of Γ.

The rest of this paper is devoted to study these objects which turn out to be very rich in structure.

Proposition 3.2. Let Γ_1, Γ_2 be two modular subgroups. Suppose that Γ_1 and Γ_2 are conjugate, that is $\Gamma_1 = \alpha \Gamma_2 \alpha^{-1}$ for some $\alpha \in \text{SL}_2(\mathbb{Z})$. If h_1 is an equivariant form for Γ_1, then

$$h_2(z) = \alpha^{-1} \circ h_1 \circ \alpha(z)$$

is an equivariant form for Γ_2.

Proof. The commuting of h_2 with the action of Γ_2 follows easily from that of h_1 with the action of Γ_1. A straightforward computation shows that

$$\hat{h}_2(z) = \hat{h}_1[\alpha](z).$$

Therefore, h_2 is also meromorphic at the cusps. \qed

4. Rational equivariant forms

In this section, we construct a wide class of equivariant forms that arise from generalized modular forms. We also focus on the effect of the geometry of the modular subgroup on the analytic properties of the equivariant forms.

Theorem 4.1. Let Γ be a modular subgroup and let f be a generalized modular form for Γ of weight k and character μ. Then the function

$$h_f(z) = z + k \frac{f(z)}{f'(z)}$$

is an equivariant form for Γ.

Theorem 4.1. Let Γ be a modular subgroup and let f be a generalized modular form for Γ of weight k and character μ. Then the function

$$(4.1) \quad h_f(z) = z + k \frac{f(z)}{f'(z)}$$

is an equivariant form for Γ.

Proof. Set \(h(z) = h_f(z) \) where \(f \) be a generalized modular form for \(\Gamma \) with associated character \(\mu \). Let \(\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \). We have

\[
h(\alpha \cdot z) = \frac{az + b}{cz + d} + \frac{k(cz + d)^k \mu(\alpha)f(z)}{ck(cz + d)^{k+1}\mu(\alpha)f(z) + (cz + d)^{k+2}\mu(\alpha)f'(z)}
\]

\[
= \frac{(az + b)(ckf(z) + (cz + d)f'(z)) + kf(z)}{(cz + d)(ckf(z) + (cz + d)f'(z))}
\]

\[
= \frac{akf(z) + (az + b)f'(z)}{ckf(z) + (cz + d)f'(z)}.
\]

Meanwhile, we have

\[
\alpha \cdot h(z) = \frac{ah(z) + b}{ch(z) + d}
\]

\[
= \frac{(az + b)f'(z) + akf(z)}{(cz + d)f'(z) + ckf}.
\]

Therefore \(h \) commutes with the action of \(\Gamma \). Furthermore, it is clear that \(h(z) \) is meromorphic on \(\mathbb{H} \). Let \(s \) be a cusp of \(\Gamma \) and choose \(\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \) such that \(\gamma \cdot s = \infty \). We have

\[
\hat{h}||[\gamma^{-1}](z) = j_{\gamma^{-1}}(z)^{-2}\hat{h}(\gamma^{-1} \cdot z) + rj_{\gamma^{-1}}(z)^{-1}
\]

\[
= \frac{j_{\gamma^{-1}}(z)^{-2}f(\gamma^{-1} \cdot z)}{kf(\gamma^{-1} \cdot z)} + rj_{\gamma^{-1}}(z)^{-1}
\]

\[
= \frac{j_{\gamma^{-1}}(z)^{-2}f(\gamma^{-1} \cdot z) + rkJ_{\gamma^{-1}}(z)^{-1}f(\gamma^{-1} \cdot z)}{kf(\gamma^{-1} \cdot z)}.
\]

Recall that

\[
f|_k[\gamma^{-1}](z) = j_{\gamma^{-1}}(z)^{-k}f(\gamma^{-1} \cdot z),
\]

so that

\[
(f|_k[\gamma^{-1}](z))' = j_{\gamma^{-1}}(z)^{-k-2}f'(\gamma^{-1} \cdot z) + rkJ_{\gamma^{-1}}(z)^{-k-1}f(\gamma^{-1} \cdot z).
\]

It follows that

\[
(4.2) \quad \hat{h}||[\gamma^{-1}](z) = \left(\frac{f|_k[\gamma^{-1}](z))'}{k f|_k[\gamma^{-1}](z)}\right).
\]

Since \(f \) is meromorphic at the cusp \(s \) as a generalized modular form, it follows that \(\hat{h}||[\gamma^{-1}](z) \) has a meromorphic \(q_s \)-expansion at \(\infty \) where \(q_s = e^{2\pi i z/l_s} \), \(l_s \) being the cusp width at \(s \). In other words, the meromorphy of \(h_f \) at the cusps as an
equivariant form is a consequence of the meromorphy of f as a generalized modular form. Therefore, h is an equivariant form.

\textbf{Remark 4.2.} For the case of a modular form, the fact that $h_f(z)$ commutes with the action of Γ has already appeared in [10].

The above theorem makes explicit how to construct equivariant forms from generalized modular forms. We also have

\textbf{Proposition 4.3.} Let f be a generalized modular form of weight k and character μ for a modular subgroup Γ. If c is a non-zero constant and n is a positive integer, then f, cf and f^n yield the same equivariant form, that is

\[h_f = h_{cf} = h_{f^n}. \]

\textbf{Proof.} This is straightforward noting that the weight of f^n is nk. \hfill \Box

If f is a weight k generalized modular form, and $h = h_f$ is the corresponding equivariant form, then $z_0 \in \mathbb{H}$ is a pole of \hat{h} if and only if it is a zero of f. In fact if n is the multiplicity of f at z_0, then z_0 is a simple pole of \hat{h} with residue n/k; a rational number. We will see in the next section that if \hat{h} has only simple poles with rational residues, in addition to some rationality conditions at the cusps, then the equivariant form h arises from a generalized modular form, that is, $h = h_f$ as in Theorem 4.1. Thus an equivariant form $h = h_f$ for some generalized modular form f is referred to as a \textit{rational equivariant form}. Notice that the trivial equivariant form $h_0(z) = z$ is also rational since it corresponds to the modular functions (of weight 0).

In view of Proposition 3.2, if h_f is a rational equivariant form for Γ associated with a generalized modular form f on Γ, then for all $\gamma \in SL_2(\mathbb{Z})$, $h_\gamma := \gamma^{-1} \circ h_f \circ \gamma$ is an equivariant form for $\gamma^{-1}\Gamma\gamma$. As we have

\[\hat{h}_\gamma(z) = \hat{h}_{\mu\gamma}(z) \]
and hence

\[h_\gamma(z) = z + \frac{kf_{\mu\gamma}(z)}{(f_{\mu\gamma}(z))^\gamma}, \]
we conclude

\textbf{Proposition 4.4.} Let h_f be a rational equivariant form corresponding to a weight k modular form f on Γ. Then for all $\gamma \in SL_2(\mathbb{Z})$, the equivariant form $\gamma^{-1} \circ h_f \circ \gamma$ is a rational equivariant form corresponding to the weight k modular form $f|_{\mu\gamma}$ on $\gamma^{-1}\Gamma\gamma$.

It turns out that the rational equivariant forms account only for a small class of equivariant forms. Indeed, we have Theorem 4.1 can be generalized as follows.

\textbf{Theorem 4.5.} Let Γ be a modular subgroup and let f and g be generalized modular forms of weights k and $k+2$ respectively and having the same character, then

\[h(z) = z + k \frac{f(z)}{f'(z) + g(z)}. \]
is an equivariant form for Γ.

Proof. The proof is similar to that of Theorem 4.1

This generalizes Theorem 4.1 in the sense that (4.1) is obtained from (4.3) by taking $g = 0$. Theorem 4.5 can be used to produce non-rational equivariant forms. Indeed, Let $f = E_4$ and $g = E_6$, then the equivariant form

$$h(z) = z + 4 \frac{E_4(z)}{E'_4(z) + E_6(z)}$$

is not rational. To see this, one can easily see that the cube root of unity ρ is a simple pole of b_h with a residue equal to $1 + 2\pi i/3$.

A fundamental example of an equivariant form that will play a crucial role in the rest of this paper is obtained when we take $f = \Delta$, the weight 12 cusp form (the modular discriminant). We thus obtain the equivariant form for $SL_2(\mathbb{Z})$ or any modular subgroup Γ:

$$(4.4)\quad h_1(z) = z + 12 \frac{\Delta(z)}{\Delta'(z)} = z + \frac{6}{\pi i E_2(z)}.$$

It is worth mentioning that $h_1(z)$ can also be obtained via Theorem 4.5. Indeed, if f is a modular form of weight k, then one can show that

$$(4.5)\quad \delta_k f(z) = \frac{6}{i \pi} \frac{f'(z)}{f(z)} - k E_2(z) f(z)$$

is modular form of weight $k + 2$. Taking $g = -\frac{16}{6} \delta_k f$ in (4.3) yields $h(z) = h_1(z)$.

We end this section with the behavior of equivariant forms at the elliptic fixed points.

Proposition 4.6. Let h be an equivariant form for a modular subgroup Γ. If z_0 is an elliptic fixed point, then $h(z_0) = z_0$ or $h(z_0) = \bar{z}_0$.

Proof. If γ fixes $z_0 \in \mathbb{H}$, then it also fixes $h(z_0)$.

5. The criteria for rationality

We saw in the previous section that if $h = h_f$ is a rational equivariant form for a modular subgroup Γ, then \hat{h} has simple zeros in \mathbb{H} with rational residues. Moreover, for a cusp s of Γ and $\gamma \in SL_2(\mathbb{Z})$ such that $\gamma \cdot s = \infty$, one can see from (4.2) that

$$\frac{1}{2i \pi} \lim_{z \to \infty} \hat{h}\|\gamma^{-1}\| \in \mathbb{Q},$$

where k is the weight of the generalized modular form f, n is the order of infinity in the q_s-expansion of $f|k|\gamma^{-1}(z)$ and l_s is the cusp width at s of Γ.

The goal of this section is to show that these conditions are also sufficient for an equivariant form to be rational.
Lemma 5.1. Let Γ be a modular subgroup, and let h be an equivariant form for Γ. Then \hat{h} has only a finite number of poles in the closure of a fundamental domain of Γ.

Proof. If D is the closure of a fundamental domain, then it has only a finite number of cusps. By definition, \hat{h} is meromorphic at these cusps and thus, if a cusp is pole of \hat{h} then it is an isolated pole. Therefore, every cusp that is a pole has a neighborhood in D made of the intersection of D with the interior of a horocycle, that is a circle in \mathbb{H} tangent to the real line at the rational cusp or a horizontal line if the cusp is at infinity, and which does not contain a pole other than the cusp itself. Excluding these neighborhoods yields a compact polygon inside \mathbb{H} that must contains only a finite number of poles of \hat{h}. The lemma follows.

Lemma 5.2. Suppose that h is equivariant for a modular subgroup Γ such that $\hat{b}h$ has only simple poles in \mathbb{H}. Then the set of the residues at these poles is finite.

Proof. Let z_0 be a simple pole of \hat{h}. Then in particular $h(z_0) = z_0$. Therefore

$$\text{Res}_{z_0} \hat{h}(z) = \lim_{z \to z_0} \frac{z - z_0}{h(z) - z} = \lim_{z \to z_0} \frac{1}{\frac{h(z) - h(z_0)}{z - z_0} - 1} = \frac{1}{h'(z_0) - 1}.$$

On the other hand, even though h does not take the same value at the Γ-orbit of z_0, the derivative h' does. Indeed, differentiating $h(\gamma \cdot z) = \gamma \cdot h(z)$ for $\gamma \in \Gamma$ yields

$$\frac{h'(\gamma \cdot z)}{j_\gamma(z)^2} = \frac{h'(z)}{j_\gamma(h(z))^2}.$$

Hence, if $z = z_0$ then $h'(\gamma \cdot z_0) = h'(z_0)$. It follows that the set of values of $h'(z_0)$ where z_0 is a simple pole of \hat{h} is the same as the set of values restricted to a single fundamental domain. Now, according to Lemma 5.1, this set is finite.

We now state the criteria for an equivariant form to be rational.

Theorem 5.3. Let Γ be a modular subgroup and let h be an equivariant form for Γ. Then h is rational if and only if

1. The poles of \hat{h} in \mathbb{H} are all simple with rational residues.
2. For each cusp s of Γ and $\gamma \in \text{SL}_2(\mathbb{Z})$ with $\gamma \cdot s = \infty$, we have

$$\frac{1}{2i\pi} \lim_{z \to \infty} \hat{h}||[\gamma^{-1}](z) \in \mathbb{Q}.$$

Proof. From the discussion at the beginning of this section, it is clear that conditions 1. and 2. are necessary. We will show that they are also sufficient. Let h be an
equivariant form for a modular subgroup Γ as in the theorem. Conditions 1. and 2. provide us with a finite number of rational numbers, namely the values of the residues of \hat{h} which are in finite number according to Lemma 5.2, and the values of the limits (5.1) for the finite number of cusps that are inequivalent relative to Γ. Notice that these limits are the same at equivalent cusps according to the formula (4.2). Let k be a positive integer that is a multiple of the denominators of all these rational numbers. Fix $z_0 \in \mathbb{H}$ that is not a pole of $\hat{h}(z)$ and define a function f by

$$f(z) = \exp \left(\int_{z_0}^{z} \hat{h}(u) du \right),$$

where the path of integration lies in $\mathbb{H} \setminus S$ with S being the set of poles of \hat{h}. This function is well defined as the integral is independent of the path of integration. Indeed, let Σ_1, Σ_2 be two paths in $\mathbb{H} \setminus S$ joining z_0 and z. Then

$$\int_{\Sigma_1 \cup -\Sigma_2} \hat{h}(u) du = 2\pi ki \sum \text{Res}(\hat{h}(z), z) \in 2\pi i \mathbb{Z},$$

where the sum is over the poles of $\hat{h}(z)$ interior to $\Sigma_1 \cup -\Sigma_2$ which we orient positively. Thus,

$$\int_{\Sigma_1} \hat{h}(u) du = \int_{\Sigma_2} \hat{h}(u) du + 2\pi mi$$

for some $m \in \mathbb{Z}$, and so f is well-defined. We extend f to a meromorphic function on the set S of poles of $\hat{h}(z)$ in the following way. Let r (an integer) be the residue of $k\hat{h}(z)$ at a pole z_1. If $r > 0$ we define $f(z_1) = 0$ to make f holomorphic at z_1 and the order of f at z_1 is r. If $r < 0$ then z_1 is a pole of f of order $-r$. Thus f is a well-defined meromorphic function on \mathbb{H} satisfying

$$h(z) = z + \frac{k f(z)}{f'(z)}.$$

We now proceed to study the modular properties of f. For $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, we have

$$f(\alpha \cdot z) = g_\alpha(z) f(z),$$

where

$$g_\alpha(z) = \exp \left(\int_{z}^{\alpha \cdot z} \hat{h}(u) du \right).$$

Taking the logarithmic derivative of g_α yields

$$\frac{g'_\alpha(z)}{g_\alpha(z)} = \frac{d}{dz}(\alpha \cdot z)\hat{h}(\alpha \cdot z) - \hat{h}(z).$$

Since h is equivariant and $\frac{d}{dz}(\alpha \cdot z) = (j_\alpha(z))^{-2}$, one shows that

$$\frac{g'_\alpha(z)}{g_\alpha(z)} = k \frac{c}{j_\alpha(z)}.$$

Therefore,

$$g_\alpha(z) = \mu(\alpha) j_\alpha^k$$

for some $\mu(\alpha) \in \mathbb{C}^\times$.

In fact, this defines a group character \(\mu : \Gamma \rightarrow \mathbb{C}^\times \). Indeed, for \(\alpha, \beta \in \Gamma \) we have
\[
g_{\alpha \beta}(z) = \mu(\alpha \beta)(j_{\alpha \beta}(z))^k
\]
\[
= \exp \left(\int_{\gamma}^{\alpha \beta z} \hat{h}(u) du \right)
\]
\[
= \exp \left(\int_{\gamma}^{\alpha \beta z} \hat{h}(u) du \right) \exp \left(\int_{\gamma}^{\beta z} \hat{h}(u) du \right)
\]
\[
= g_{\alpha}(\beta \cdot z) g_{\beta}(z),
\]
which implies that
\[
\mu(\alpha \beta) j_{\alpha \beta}(z)^k = \mu(\alpha) j_{\alpha}(\beta \cdot z)^k \mu(\beta) j_{\beta}(z)^k.
\]
In the meantime, \(j_{\alpha \beta}(z) = j_{\alpha}(\beta \cdot z) j_{\beta}(z) \) as \(j \) is an automorphy factor. Therefore,
\[
\mu(\alpha \beta) = \mu(\alpha) \mu(\beta).
\]
As for the meromorphy of \(f \) at the cusps, let \(s \in \mathbb{Q} \cup \{\infty\} \) and \(\gamma \in \text{SL}_2(\mathbb{Z}) \) such that \(\gamma \cdot s = \infty \). An easy computation shows that \(f|_k[\gamma^{-1}](z) \) is \(k \)-periodic, that is
\[
f|_k[\gamma^{-1}](z) = \sum_{n=n_s}^{\infty} b_n q_s^n, \quad q_s = e^{2\pi i z/l_s},
\]
\(l_s \) being the cusp width of \(\Gamma \) at \(s \). To prove that \(n_s \) is finite it suffices to show that \(f|_k[\gamma^{-1}](z) \) is meromorphic at infinity. Indeed, we have
\[
f(z)|_k[\gamma^{-1}] = j_{\gamma^{-1}}(z)^{-k} f(\gamma^{-1} \cdot z)
\]
\[
= j_{\gamma^{-1}}(z)^{-k} \exp \left(\int_{\gamma z_0}^{\gamma^{-1} z} \hat{h}(u) du \right)
\]
\[
= j_{\gamma^{-1}}(z)^{-k} \exp \left(\int_{\gamma z_0}^{\gamma^{-1}} \int_{\gamma^{-1}}^\gamma (\gamma^{-1} \cdot w) kdw \right)
\]
\[
= j_{\gamma^{-1}}(z)^{-k} \exp \left(\int_{\gamma z_0}^{\gamma^{-1}} \left(\hat{h}|[\gamma^{-1}](w) - r j_{\gamma^{-1}}(z)^{-1} kdw \right) \right)
\]
\[
= j_{\gamma^{-1}}(\gamma \cdot z_0)^{-k} \exp \left(\int_{\gamma z_0}^{z} \left(a_0 + \sum_{n \geq 1} a_n \exp(2\pi i n w/l_s) kdw \right) \right)
\]
\[
= j_{\gamma}(z_0)^k \exp(k a_0 (z - \alpha \cdot z_0)) \exp \left(\sum_{n \geq 1} \int_{\gamma z_0}^{z} a_n \exp(2\pi i n w/l_s) kdw \right)
\]
\[
= \exp(k a_0 z) \cdot \text{holomorphic factor at infinity},
\]
where we have used the fact the series converges normally for \(\Im z > y_0 > 0 \) and the fact that since \(z_0 \) is not a fixed point of \(h \) then neither are the images \(\gamma \cdot z_0 \) for all \(\gamma \in \Gamma \). Furthermore, since \(k a_s = 2\pi i k m_s \in 2\pi i \mathbb{Z} \) using (5.1), we have
\[
f(z)|_k[\gamma^{-1}] = q_s^{m_s} \cdot \text{holomorphic factor at infinity}.
\]
Thus $f(z)|_k[\gamma^{-1}]$ is meromorphic at infinity. Therefore f is a generalized modular form for Γ of weight k and character μ. \hfill \Box

6. THE GENUS ZERO CONDITION

Theorem 5.3 gives the necessary and sufficient conditions for an equivariant form h to be rational, meaning that $h = h_f$ where f is a generalized modular form. The following theorem provides us with a sufficient condition under which f can actually be replaced by a modular form (with trivial character).

Theorem 6.1. Let Γ be a genus zero modular subgroup and let h be an equivariant form on Γ. Suppose that

1. the poles of \hat{h} in \mathbb{H} are all simple with rational residues,
2. for each cusp s of Γ and $\gamma \in SL_2(\mathbb{Z})$ with $\gamma \cdot s = \infty$, we have

\begin{equation}
\frac{1}{2\pi i} \lim_{z \to i \infty} \hat{h}([\gamma^{-1}](z)) \in \mathbb{Q},
\end{equation}

then $h = h_f$ is rational with f being a modular form for Γ.

Proof. According to Theorem 5.3, if conditions 1. and 2. hold, then $h = h_f$ with f being a generalized modular form of weight k and character μ. We may suppose that k is even, otherwise we replace f by f^2 which does not change h. We will show that the character μ is trivial on the parabolic elements of Γ: Let α be such a parabolic element, and let s be a cusp with $\alpha \cdot s = s$. Choose $\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in SL_2(\mathbb{Z})$ so that $\gamma \cdot s = \infty$. Since $\gamma \alpha \gamma^{-1} \infty = \infty$ we have $\gamma \alpha \gamma^{-1} = T^{m_s}$ for an integer m_s divisible by the cusp width l_s at s. Making the substitution $u = \gamma^{-1} \cdot w = \begin{pmatrix} s-q \\ -r & p \end{pmatrix} \cdot w$ in the expression of $g_\alpha(z)$ for $z \in \mathbb{H}$ as in the proof of Theorem 5.3 yields

\begin{align*}
g_\alpha(z) &= \exp \left(\int_{\gamma \cdot z}^{\gamma \alpha \cdot z} (\int_{\gamma \cdot z} \cdot j_{\gamma^{-1}}(w)^{-2} \hat{h}([\gamma^{-1}](w)) kdw) \right) \\
&= \exp \left(\int_{\gamma \cdot z}^{\gamma \alpha \cdot z} (\int_{\gamma \cdot z} \cdot j_{\gamma^{-1}}(w)^{-1} + \hat{h}([\gamma^{-1}](w)) \right) kdw) \\
&= j_{\gamma^{-1}}(\gamma \alpha \cdot z)^k j_{\gamma^{-1}}(\gamma \cdot z)^{-k} \exp \left(\int_{\gamma \cdot z}^{\gamma \alpha \cdot z} \hat{h}([\gamma^{-1}](w)) kdw \right) \\
&= j_{\gamma}(\alpha \cdot z)^{-k} j_{\gamma}(z)^k \exp \left(\int_{\gamma \cdot z}^{T^{m_s} \gamma \cdot z} \left(a_0 + \sum_{n \geq 1} a_n \exp(2\pi i nw/l_s) \right) kdw \right) \\
&= j_{\gamma}(\alpha \cdot z)^{-k} j_{\gamma}(z)^k \exp \left(\int_{\gamma \cdot z}^{\gamma \cdot z + m_s} \left(a_0 + \sum_{n \geq 1} a_n \exp(2\pi i nw/l_s) \right) kdw \right),
\end{align*}

where a_n, $n \geq 1$, are integers determined by the expression of $g_\alpha(z)$.
since \(j_{\gamma^{-1}}(\gamma \cdot z)j_{\gamma}(z) = 1 \) and by assumption (6.1)

\[
\hat{h} | [\gamma^{-1}] (z) = a_0 + \sum_{n \geq 1} a_n q^n, \quad q^a = e^{2\pi in/\ell_a}.
\]

Hence,

\[
g_\alpha(z) = j_\gamma(\alpha \cdot z)^{-k} j_\gamma(z)^k \exp (ka_0 m_s) = j_\gamma(\alpha \cdot z)^{-k} j_\gamma(z)^k,
\]

as \(ka_0 \in 2\pi i \mathbb{Z} \) by assumption and that the function \(z \mapsto \exp(2\pi iz/\ell_s) \) is \(\ell_s \)-periodic with \(\ell_s \) dividing \(m_s \). Recall that

\[
g_\alpha(z) = j(\alpha \cdot z)^k.
\]

Hence

\[
\mu(\alpha) = (j_\alpha(z)j_\gamma(\alpha \cdot z))^{-k} j_\gamma(z)^k.
\]

Taking the limit as \(z \) tends to \(s \) and since \(\alpha \cdot s = s \), we get

\[
\mu(\alpha) = (j_\alpha(s)j_\gamma(\alpha \cdot s))^{-k} j_\gamma(s)^k = j_\alpha(s).
\]

If \(s = \infty \) then \(j_\alpha(s) = 1 \), otherwise the fixed point of \(\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is \(s = (a - d)/2c \) and therefore

\[
j_\alpha(s) = \frac{a + d}{2} = \pm 1
\]

as \(\alpha \) is parabolic with a trace equal to \(\pm 2 \). Since \(k \) has been chosen to be even, we have \(\mu(\alpha) = 1 \). Therefore, the character \(\mu \) is trivial on all the parabolic elements of \(\Gamma \).

If \(\Gamma \) has genus 0, then it can be generated by a finite set of parabolic and elliptic elements only, and on the latter, the character \(\mu \) takes values which are roots of unity. Therefore \(\mu^n = 1 \) for some integer \(n \geq 0 \), so that \(f^n \) is a true modular form.

Since \(h_f = h_{f^n} \) by Proposition 4.3, the theorem follows.

7. Effect of the Schwarz derivative

In [7], the main motivation behind the introduction of the equivariant forms was the so-called Schwarz derivative. It is defined for a meromorphic function on a domain of \(\mathbb{C} \) by

\[
\{f, z\} = 2 \left(\frac{f''}{f'} \right)' - \left(\frac{f''}{f'} \right)^2 = 2\frac{f'''}{f'} - 3\frac{f''^2}{f'^2}.
\]

One can check that it satisfies the following rules:

- Chain rule: If \(w \) is a function of \(z \) then

\[
\{f, z\} = \left(\frac{dw}{dz} \right)^2 \{f, w\} + \{w, z\}.
\]

- \(f \) is a linear fractional transform of \(z \) if and only if \(\{f, z\} = 0 \).

The Schwarz derivative has been an extremely useful tool in complex analysis, differential equations, projective geometry, dynamical systems among other fields. In the work [5], it was shown that the Schwarz derivative can have an important role in the theory of modular forms as well. For instance, we have the following
Proposition 7.1. [5] We have

i. If f is a modular function for a discrete group G, then $\{f, z\}$ is a weight 4 modular form for G.

ii. If G is of genus 0 and f is a Hauptmodul for G, then $\{f, z\}$ is weight 4 modular form for the normalizer of G inside $SL_2(\mathbb{R})$.

The first statement is an immediate consequence of the chain rule and the following fact:

Let $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$. Then

\[
\{w, z\} = \frac{\det \alpha}{(cz + d)^4} \{w, \alpha \cdot z\}.
\]

(7.1)

The second statement is, however, less trivial.

One of the questions that [7] tried to answer is about the converse to the second statement that one can formulate as follows:

Given a meromorphic function f on \mathbb{H} such that its Schwarz derivative $\{f, z\}$ is a weight 4 modular form for a discrete group Γ (or simply for a modular subgroup). Is f a modular function (of weight 0) for a subgroup of G? While the answer depends on many factors involving the geometry of G or the analytic properties of f, it turns out that there are examples of functions f which are not invariant under any non-trivial element of G but their Schwarz derivatives are weight 4 modular forms. Among these are the equivariant forms. Indeed, if h is an equivariant form for a modular subgroup Γ, then h is by definition not invariant under any non-identity element of Γ, however, we have:

Theorem 7.2. If h is an equivariant form for a modular subgroup Γ, then $\{h, z\}$ is a weight 4 modular form for Γ.

Proof. Set $H(z) = \{h, z\}$ and let $\gamma \in \Gamma$. Then we have

\[
H(\gamma \cdot z) = \{h(\gamma \cdot z), \gamma \cdot z\} = \{\gamma \cdot h(z), \gamma \cdot z\} = \{h(z), \gamma \cdot z\} = j_\gamma(z)^4 H(z) \text{ using (7.1)}.
\]

The meromorphy of $\{h, z\}$ follows from that of $h(z)$ as an equivariant form. \qed

Remark 7.3. One should keep in mind the following fact: The meromorphy of $h(z) - z$ at the cusps suggest that $h(z) = z + a$ a meromorphic part at the cusp with z representing a logarithmic singularity at the cusp. However, in the expression of $\{h, z\}$, only h', h'' and h''' intervenes so that it becomes meromorphic too without the logarithmic singularity.

In addition to the rational equivariant forms that arise from modular forms, this theorem provides a second connection between equivariant forms and modular forms. It would be interesting to connect the two points of view. Indeed, suppose we are
given a modular form f of weight k for a modular subgroup Γ and let h_f be the associated equivariant form

$$h_f(z) = z + k \frac{f(z)}{f'(z)}.$$

This yields a modular form of weight 4 for Γ given by the Schwarz derivative \(\{ h_f, z \} \).

One can see from the expression of \(\{ h_f, z \} \) that it has a double pole at the critical points of h_f as well as at the poles of h_f that are at least of order 2, and it is holomorphic elsewhere, see also [5].

Define the following sequence of modular forms for Γ:

$$f_0(z) = f(z)$$

$$f_{n+1}(z) = \{ h_{f_n}, z \}, \quad n \geq 0.$$

For integers $n \geq 1$, the modular form f_n has weight 4. The behavior of this sequence is not easy to study given an initial modular form f_0, however, we have the following

Proposition 7.4. Let $f_0 = E_4$, the weight 4 Eisenstein series, then for all $n \geq 1$ we have

$$f_n(z) = 4\pi^2 E_4(z).$$

Proof. We have

$$h'_{E_4}(z) = \frac{5E_4'^2 - 4E_4E_4''}{E_4'^2}.$$

One can show that the numerator $5E_4'^2 - 4E_4E_4''$ is a weight 12 modular form which is holomorphic and vanishes at ∞. In fact, using the q-expansion of E_4, we have

$$5E_4'^2 - 4E_4E_4'' = 2^8 \cdot 3 \cdot 5 \cdot \pi^2 \Delta.$$

Therefore, $h'_{E_4}(z)$ does not vanish in \mathbb{H}, that is, h_{E_4} has no critical points. Furthermore, $h_{E_4}(z)$ has only simple poles in \mathbb{H}. Therefore, the Schwarz derivative \(\{ h_{E_4}, z \} \) is a weight 4 modular form that is holomorphic on \mathbb{H}. An analysis of its q-expansion at ∞ yields

$$\{ h_{E_4}, z \} = 4\pi^2 + O(q),$$

and in particular it is holomorphic at ∞. In the meantime, the space of weight 4 holomorphic modular forms is 1-dimensional generated by E_4. Thus, we have

$$f_1(z) = \{ h_{E_4}, z \} = 4\pi^2 E_4(z).$$

We now proceed by induction. Suppose that $f_n = 4\pi^2 E_4$, then

$$h_{f_n} = h_{4\pi^2 E_4} = h_{E_4} \quad \text{(using Proposition 4.3)}.$$

Hence

$$f_{n+1} = \{ h_{f_n}, z \} = \{ h_{E_4}, z \} = f_1 = 4\pi^2 E_4(z).$$

The proposition follows.
REFERENCES

E-mail address: elbasrao@crm.umontreal.ca

CENTRE DE RECHERCHES MATHEMATIQUES, UNIVERSITE DE MONTRÉAL, C.P. 6128, SUCCURSALE CENTRE VILLE, MONTRÉAL, QUÉBEC H3C 3J7, AND CICMA, CONCORDIA UNIVERSITY, MONTRÉAL, QUÉBEC H3G 1M8, CANADA

E-mail address: asebbar@uottawa.ca

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF OTTAWA, OTTAWA ONTARIO K1N 6N5 CANADA