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Stochastic and Deterministic Resonances for Excitable Systems
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The dependence of four firing statistics in neuronal excitable systems is studied as a function of
noise intensity and sinusoidal forcing period. For a range of biologically relevant frequencies, we find
that the noise amplitude optimizing these statistics depends on the forcing periodT , and that stochastic
resonance with time-scale matching occurs. Results are explained by the interplay of generic static an
dynamic threshold properties of excitable systems. [S0031-9007(98)07562-0]

PACS numbers: 87.22.Jb, 05.40.+ j
re
,2],
r
h

e

te
t
g
in
g

ri-
d
ted

en
in-
:0

kes
a

n
ns
ble
s

tor
Excitable dynamics underlie the behavior of many sy
tems ranging from Josephson junctions, to chemical re
tions to cardiac and nerve cells [1,2]. In these system
a large perturbation can elicit a large amplitude spike
“firing,” followed by a quick return to a globally attract-
ing fixed point. The dynamical response of these syste
to periodic deterministic forcing has been extensively d
scribed in both experimental and model studies. Perio
responses includen:m phase locking patterns withm fir-
ings for n forcing cycles [3]. In the space of forcing pa
rameters, the generic arrangement of isoperiodic regio
has received particular attention [2,4].

Forcing these systems with sufficiently small per
odic perturbations yields trivial 1:0 steady state respons
having no “spikes.” This deterministically uninterestin
“subthreshold” regime has received much recent attent
in the context of noise-induced oscillations in neuron
networks (see, e.g., [5] and references therein) and of s
chastic resonance (SR) in neurons [6]. Recent theoret
work [7–9] on SR in excitable systems has focused
the regime in which the system simply behaves as a sta
threshold element. For example, in “aperiodic SR” [8
signal fluctuations are slower than all system time scal
the noise intensityD optimizing the linear correlation be-
tween signal and firing rate is then independent of sign
frequencies.

However, many systems are driven by higher frequen
signals, and do not fully recover their resting state betwe
firings. The effect of this recovery time scale, which by in
teracting with the signal time scale produces determinis
phase locking patterns, is poorly understood in the cont
of SR. Further, SR in its restricted sense is described
a match between signal period and an “interevent” tim
scale due to noise alone, and assessed by the optimiza
of some signal-firing correlation for someD . 0 [6,10].
Here we show that, for a large range of biologically rele
vant frequencies, the optimization of many firing statistic
used in the SR context closely follows such a time-sca
matching notion. Our approach focuses on the tim
averaged phase locking that results from forcing with bo
subthreshold periodic signals and additive noise. We u
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the Fitzhugh-Nagumo neuron model, but our results a
relevant to general noise-perturbed excitable systems [1
in particular to their sensitivity and tuning properties fo
arbitrary signals [11]. The Fitzhugh-Nagumo model wit
additive periodic and stochastic forcing is [8,9,12]:

e
dy

dt
­ ysy 2 0.5d s1 2 yd

2 w 1 A sinbt 1 I 1 hstd , (1)

dw
dt

­ y 2 w 2 b , (2)

dh

dt
­ 2lh 1 ljstd . (3)

The variabley is the fast voltagelike variable,w is the
slowrecovery variable,jstd is a zero-mean Gaussian whit
noise of intensityD, andh is an Ornstein-Uhlenbeck (OU)
noise with variances2 ­ Dl and correlation timetc ­
l21 [13]. After a firing, recovery produces an absolu
refractory timeTR during which a second firing canno
occur, followed by a longer relative refractory time durin
which firing requires stronger perturbations. Thus,
contrast with conventional bistable systems [6], the firin
threshold or “barrier height”DU depends on the time since
the previous firing.

Figure 1 shows the organization of steady-state pe
odic firing patterns in the usual forcing amplitude-perio
subspace. The curves depict the numerically compu
boundaries betweenn:m locking patterns. Only three
curves are shown for clarity, since the space betwe
the 1:1 and 1:0 curves is populated by patterns with
termediate ratios [2]. The shaded region below the 1
curve corresponds to parameter values for which no spi
occur deterministically. The amplitude threshold for
given n:m firing is seen to depend on signal periodT ­
2pyb, and is smallest at the “best period” of the neuro
Tp ø 1.5. Similar resonances are found in real neuro
(see, e.g., [14]); here, it arises due to the single sta
“focus”-type fixed point of the two-dimensional dynamic
Eqs. (1)–(3) (eigenvaluess6 ­ 213.1 6 i7.31). Noise
alone [15] turns the system into a stochastic oscilla
© 1998 The American Physical Society
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FIG. 1. Amplitude-period subspace for the periodically force
excitable system, Eqs. (1)–(3)without noise.

generating “spontaneous” firings. The mean interspike i
terval (ISI) (i.e., mean escape time to threshold) with nois
only kISIlA­0 always decreases with increasingD, a behav-
ior well approximated bykISIl ø expsDUys2d for low D
[8,16] and a power law for higherD. The “noise-induced
firing” behavior is computed numerically and plotted in
Fig. 2a.

With noise and a periodic signal, the response patter
depend on the interaction of two time scales: the endog
nous noise-induced mean intervalkISIlA­0 and the period
of the deterministic forcing. Under these conditions, pha
locking curves as in Fig. 1 need to be reinterpreted as co
responding to different time-averaged phase locking ratio
as in [17]. Thus, ann:1 pattern means anaperiodic firing
patternwith one spike forn stimulus cycles on average.
Figure 2b shows the location of the 1:1 stochastic pha
locking curves (SPLC’s) in theD-T subspace for three
values ofA. If A is subthreshold for deterministic 1:1 re-
gardless ofT (A , 0.019; see Fig. 1), then theD value
which produces an average 1:1 decreases monotonica
with increasingT . The system no longer has a best pe
riod from this point of view. Naturally,D falls to zero
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FIG. 2. (a) Mean interspike interval versus noise intensityD
for Eqs. (1)–(3)without periodic forcing. (b) Stochastic1:1
curves in the noise intensity-stimulus period subspace. F
each sinusoidal forcing period, the noise intensityD yielding on
average one firing per forcing cycle is computed. The actu
values ofD plotted in (b) are averages from three searche
each of which uses 100 forcing cycle realizations. Stochas
numerical integration [9] uses a time step of 0.001 sec fo
signal periodsT , 1.5 sec and 0.0025 sec otherwise.
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at those periods for which the signal is deterministicall
suprathreshold. This is seen betweenT ø 1 andT ø 2.5
for the 1:1 SPLC withA ­ 0.03, and over larger period
ranges for the 2:1, 3:1 . . . SPLC’s whenA ­ 0.015 or 0.03
(not shown). Also, by definition, the 1:1 SPLC must con
verge to the curve in Fig. 2a asA ! 0. This is seen in
Fig. 2b (see also Fig. 3a), where curves move to the rig
for decreasingA, implying that the average ISI with or
without signal become the same.

These results set the stage for analyzing the depende
of firing statistics used in conventional SR studies onD
and T and determining whether “optimal” statistics are
organized according to the time-scale matching notion
SR [6,10]. The idea is to use, for each statistic studie
the same axis to plot the two time scales to be matche
the zero-signal “mean escape time” and the signal peri
T . Thus, theD vs kISIlA­0 curve in Fig. 2a is replotted
(with axes interchanged) in each panel of Fig. 3, alongsi
optimal firing statistics curves in the presence of bot
signal (A ­ 0.01) and noise.

1:1 SPLC.—Figure 3a plots the noise-induced firing
curve alongside the 1:1 SPLC (Fig. 2b,A ­ 0.01). This
clearly shows the (trivial) matching between the spont
neous (i.e., zero signal) firing and the average 1:1 firin
for small signals. We now investigate whether other st
tistics display similar matching.
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FIG. 3. Dependence on forcing periodT (with A ­ 0.01)
of the noise intensityDopt (31026) which optimizes firing
statistics (filled symbols). The data forkISIl versusD without
forcing (Fig. 2a: open circles) are plotted in each pane
(a) Stochastic phase locking curves showing, as a function ofT ,
the valueDopt producing on average one firing per cycle (1:1
and per two cycles (2:1). (b)Dopt here yields maximal power
at the forcing frequency1yT in the spike train power spectrum.
For T , 0.9, points correspond to a secondary power pea
at 1yT . (c) Dopt yields a maximum number of intervals of
duration øT (first peak) andø2T (second peak). (d)Dopt
yields the maximum linear correlationC between the forcing
and the firing probability. ForT , 0.9, Dopt follows another
branch. In (b)–(d), dynamical refractory effects occur fo
T , 3, and statistics with signal parallel the zero-signal mea
interval. Dopt is independent ofT in the static regimeT . 3.
Symbols are approximately two standard deviations wide.
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Power spectral density.—Figure 3b compares sponta-
neous firing to the power spectral density at frequen
f ­ 1yT contained in the sequence of firing times. Fo
eachT , Fig. 3b plots the valueD ­ Dopt that maximizes
this power. This curve flattens forT . 3 where the two
curves crossover (note that the zero-signal curve alwa
decreases). However, forT , 3, Dopt lies under, yet par-
allels the spontaneous firing curve. ForT , 1, we find
more than one local maximum for a givenT (see also [18]
in the bistable system context). In fact, due to tight pha
locking, the local maxima associated with the points plo
ted for T , 0.8 have higher power than those lying on
the extension of the main curve (filled circles) off scal
into unrealistic noise levels. This stochastic phase loc
ing structure will be detailed elsewhere [19].

Interspike interval histograms (ISIH’s).—The equiva-
lent to escape time distributions are the ISIH’s (Figs. 4
4c). A local maximum around the forcing periodT implies
that the escape process is synchronized to this forcing. A
cordingly, Fig. 3c is based on the number of intervals ne
integer multiples ofT [12,20,21], which is also the rele-
vant statistic to quantifybona fideSR in bistable systems
[10]. Histogram peaks at multiples ofT occur typically for
Eqs. (1)–(3) ifT is small, but also for anyT providedD is
small [9]. For eachT , we estimateDopt for which the num-
ber of intervals close toT is maximal. The curveDopt vs
T shown in Fig. 3c again closely parallels the spontaneo
curve and the 1:1 SPLC over the range of forcing per
ods for which interval histograms indeed have a peak atT .

Intuitively, the value ofD producing a maximal number
of interspike intervals of duration close toT should be
close to the value ofD producing on average one spike
per cycle. Likewise, this value ofD should also be close
to that which maximizes the spectral power at frequen
1yT . For largerT the estimation ofDopt for the ISIH

FIG. 4. Interspike interval histograms [(a),(c)] (200 bins) an
cycle histograms [(b),(d)] (100 bins) forT ­ 1 sec (phase
locking) and T ­ 10 sec (rate modulation).D ­ 2 3 1026.
Results were obtained from 50 realizations of 100 cycles wi
A ­ 0.01.
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is artifactual since, before going through a maximum
the first peak is washed out by the growing exponent
(Poisson) background caused by numerous firings p
period (Fig. 4c). Also, forT , 1, no peak atT is seen
since recovery prevents firings in two successive cycl
Also shown is theDopt vs T for the second ISIH peak
at 2T . This curve lies below that for the first peak, a
expected from SR studies in bistable [10,20] and excitab
systems [12,21]. The second peak curve is similar
the 2:1 SPLC in Fig. 3a, as expected following the sam
intuition as above.

Linear correlation coefficient.—We finally consider the
linear correlation coefficientC between the sine wave sig-
nal and the firing probabilityPsud, whereu is a normalized
signal phase [9,22].Psud is estimated numerically using
cycle histograms (CH’s) (Figs. 4b and 4d), in which a b
corresponding to a given phase is incremented whene
a spike occurs at that phase. The value ofC approaches
one when the cycle histogram is well fitted by a suitab
shifted sinusoid. This statistic reflects the degree to whi
the response of the neuron (firing rate) linearly tracks t
input signal. For eachT , Fig. 3d plotsDopt which maxi-
mizesC; this maximum is typically broad, withC . 0.9
for D varying over a fivefold to tenfold range, making th
estimation ofDopt sensitive to statistical fluctuations. As
in Fig. 3b,Dopt for largerT sT . 3.5d is independent of
T . ForT , 3.5, Dopt increases asT decreases, following
the spontaneous curve from above. Note thatDopt here is
slightly larger than those on theD vs kISIlA­0 curve, due
to the fact that in order to linearly track the signal ther
must be more that one firing per cycle. ForT , 0.9, Dopt
values shown are on a lower curve related to the spike tr
local power maxima in Fig. 3b. In fact, the latter maxim
occur atD values which also maximize the first Fourie
component ofPsud, which itself is the numerator ofC.

It is clear that Fig. 3 highlights the parameter region
of frequency dependence for the optimal statistics, w
qualitative agreement with the time scale imposed
the spontaneous firing. This is due to the interplay
time-dependent (dynamic) versus time-independent (sta
properties of the firing threshold known to exist in both th
model and real excitable cells. Since the firing thresho
is in fact time dependent, due to the slower recovery, t
extent to which the dynamic property is expressed depen
on the time between a firing and the next forcing cycl
Thus for relatively longT , only static nonlinearities play
a role; for shorter periods the dynamical aspect is al
involved.

For small D (here, for D , 1026) and all T , the
static nonlinearity produces “half-wave rectified” cycl
histograms [9,22], i.e.,Psud is negligible over half of the
cycle. This nonlinear response, proportional toA, also
produces multimodal ISIH’s. Such CH’s and ISIH’s ar
similar to those shown in Figs. 4a and 4b; however, t
latter were obtained forT ­ 1 andD . 1026, for which
the dynamical nonlinearity is predominant. In the stat
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case, signal power increases withD because the sponta-
neous or “carrier” rate becomes large enough to be fu
linearly modulated by the signal (Fig. 4d). Accordingly
C increases. Low noise yields the static nonlinear regim
Ays2 ¿ 1 with synchronization [20], and higher noise
brings on a linear regime [18,23]. This explains whyDopt
is independent ofT in Figs. 3b, 3d forT . 3. This is
similar to threshold dithering [9,24]: noise linearizes th
transfer function relating signal to instantaneous firing ra
Signal period is longer than all system time scales in th
analytically tractable regime [7–9], which in fact define
the domain of “aperiodic SR” [8].

Recovery is increasingly important forT , 3, promot-
ing phase-locked firings a random number of cycles ap
[9,22]. As for weak noise, this causes multimodal ISIH
(Fig. 4a) and rectified CH’s (Fig. 4b). Recovery causes
strong dependence onT of the optimal statistics: a smaller
T requires a largerD to overcome the “rectifications” pro-
duced by both the static and dynamic threshold prop
ties, i.e., to bring on a linear regime. Similarly to bistab
systems [10], we here find a matching [6,21] whereDopt
follows signal frequency, paralleling the behavior of th
spontaneous firing withD. Subharmonic resonances als
appear (at lowerD in Fig. 3), although, in contrast to
bistable systems,TR imposes a sharp boundary beyon
which 1:1 firing is not possible.

The full excitable dynamics introduces noise-induce
phenomena not found in simpler static threshold mode
of such systems. Dynamical and static threshold prop
ties, and time scales due to noise and signal, determ
which phenomenon is expressed by the noise.
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