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Stochastic and Deterministic Resonances for Excitable Systems
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The dependence of four firing statistics in neuronal excitable systems is studied as a function of
noise intensity and sinusoidal forcing period. For a range of biologically relevant frequencies, we find
that the noise amplitude optimizing these statistics depends on the forcing @erdodl that stochastic
resonance with time-scale matching occurs. Results are explained by the interplay of generic static and
dynamic threshold properties of excitable systems. [S0031-9007(98)07562-0]

PACS numbers: 87.22.Jb, 05.40.+]

Excitable dynamics underlie the behavior of many systhe Fitzhugh-Nagumo neuron model, but our results are
tems ranging from Josephson junctions, to chemical reagelevant to general noise-perturbed excitable systems [1,2],
tions to cardiac and nerve cells [1,2]. In these systemdn particular to their sensitivity and tuning properties for
a large perturbation can elicit a large amplitude spike oarbitrary signals [11]. The Fitzhugh-Nagumo model with
“firing,” followed by a quick return to a globally attract- additive periodic and stochastic forcing is [8,9,12]:

ing fixed point. The dynamical response of these systems dv
to periodic deterministic forcing has been extensively de- €= v(v — 0.5)(1 — v)
scribed in both experimental and model studies. Periodic )
responses include:m phase locking patterns with fir- —w +Asingt + 1+ (), 1)
ings forn forcing cycles [3]. In the space of forcing pa- dw
rameters, the generic arrangement of isoperiodic regions ar v b, (2)
has received particular attention [2,4]. d

Forcing these systems with sufficiently small peri- an _ —An + AE(1). (3)
odic perturbations yields trivial 1:0 steady state responses dt

having no “spikes.” This deterministically uninteresting The variablev is the fast voltagelike variabley is the
“subthreshold” regime has received much recent attentioslowrecovery variableé (¢) is a zero-mean Gaussian white
in the context of noise-induced oscillations in neuronalnoise of intensityD, andy is an Ornstein-Uhlenbeck (OU)
networks (see, e.g., [5] and references therein) and of stmoise with variancer> = D and correlation time, =
chastic resonance (SR) in neurons [6]. Recent theoretical ! [13]. After a firing, recovery produces an absolute
work [7—9] on SR in excitable systems has focused omefractory timeTk during which a second firing cannot
the regime in which the system simply behaves as a statieccur, followed by a longer relative refractory time during
threshold element. For example, in “aperiodic SR” [8],which firing requires stronger perturbations. Thus, in
signal fluctuations are slower than all system time scaleg;ontrast with conventional bistable systems [6], the firing
the noise intensity) optimizing the linear correlation be- threshold or “barrier heightA U depends on the time since
tween signal and firing rate is then independent of signathe previous firing.
frequencies. Figure 1 shows the organization of steady-state peri-
However, many systems are driven by higher frequencydic firing patterns in the usual forcing amplitude-period
signals, and do not fully recover their resting state betweesubspace. The curves depict the numerically computed
firings. The effect of this recovery time scale, which by in-boundaries between:m locking patterns. Only three
teracting with the signal time scale produces deterministicurves are shown for clarity, since the space between
phase locking patterns, is poorly understood in the contexhe 1:1 and 1:0 curves is populated by patterns with in-
of SR. Further, SR in its restricted sense is described aermediate ratios [2]. The shaded region below the 1:0
a match between signal period and an “interevent” timecurve corresponds to parameter values for which no spikes
scale due to noise alone, and assessed by the optimizatioocur deterministically. The amplitude threshold for a
of some signal-firing correlation for sonfe > 0 [6,10].  given n:m firing is seen to depend on signal periGd=
Here we show that, for a large range of biologically rele-27/8, and is smallest at the “best period” of the neuron
vant frequencies, the optimization of many firing statisticsT* = 1.5. Similar resonances are found in real neurons
used in the SR context closely follows such a time-scalésee, e.g., [14]); here, it arises due to the single stable
matching notion. Our approach focuses on the time*focus’-type fixed point of the two-dimensional dynamics
averaged phase locking that results from forcing with bottEgs. (1)—(3) (eigenvalues. = —13.1 = {7.31). Noise
subthreshold periodic signals and additive noise. We usalone [15] turns the system into a stochastic oscillator
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at those periods for which the signal is deterministically
suprathreshold. This is seen betwd@er= 1 andT = 2.5
for the 1:1 SPLC withA = 0.03, and over larger period
ranges for the 2:1, 3:1... SPLC’s whan= 0.015 or 0.03
(not shown). Also, by definition, the 1:1 SPLC must con-
verge to the curve in Fig. 2a as— 0. This is seen in
Fig. 2b (see also Fig. 3a), where curves move to the right
for decreasing4, implying that the average ISI with or
without signal become the same.
These results set the stage for analyzing the dependence
1 10 of firing statistics used in conventional SR studiesion
FORCING PERIOD and T and determining whether “optimal” statistics are
. . . organized according to the time-scale matching notion of
Z)l(%i'talt')leg‘%ﬁ’gm?Eﬁ:rg‘)j_s(ug%fﬁggfgg{s?e periodically forcedSR [6,10]. The idea is to use, for each statistic studied,
the same axis to plot the two time scales to be matched:
the zero-signal “mean escape time” and the signal period
generating “spontaneous” firings. The mean interspike inT. Thus, theD vs (ISl)4—o curve in Fig. 2a is replotted
terval (1Sl) (i.e., mean escape time to threshold) with noiséwith axes interchanged) in each panel of Fig. 3, alongside
only(ISl)4—, always decreases with increasiiga behav- optimal firing statistics curves in the presence of both
ior well approximated byISI) = exp(AU/o?) forlow D signal @ = 0.01) and noise.
[8,16] and a power law for highdp. The “noise-induced 1.1 SPLC—Figure 3a plots the noise-induced firing
firing” behavior is computed numerically and plotted in curve alongside the 1:1 SPLC (Fig. 2b,= 0.01). This
Fig. 2a. clearly shows the (trivial) matching between the sponta-
With noise and a periodic signal, the response patternseous (i.e., zero signal) firing and the average 1:1 firing
depend on the interaction of two time scales: the endogder small signals. We now investigate whether other sta-
nous noise-induced mean interg&bl),—o and the period tistics display similar matching.
of the deterministic forcing. Under these conditions, phase
locking curves as in Fig. 1 need to be reinterpreted as cor-
responding to different time-averaged phase locking ratios,

0.08

0.04

FORCING AMPLITUDE

0.00

) RS ISIH
asin[17]. Thus, am:1 pattern means aaperiodic firing 20 @ S ©
patternwith one spike forn stimulus cycles on average. o ;zgp;::k

Figure 2b shows the location of the 1:1 stochastic phase 10
locking curves (SPLC’s) in thé-T subspace for three
values ofA. If A is subthreshold for deterministic 1:1 re-

50 : Motnnm n ;
gardless ofl' (A < 0.019; see Fig. 1), then th® value 2. 20 (b) (d)
which produces an average 1:1 decreases monotonically MAX. POWER CORR. COEF.
with increasing?. The system no longer has a best pe- 10 -\&.
riod from this point of view. NaturallyD falls to zero
-
20 .20 0 1 10 1 10
%) (@) 0 MEAN INTERVAL, FORCING PERIOD
o 15 o 15
<) o FIG. 3. Dependence on forcing pericd (with A = 0.01)
310 w10 of the noise intensityD,, (X10~°) which optimizes firing
N G statistics (filled symbols). The data fdSI) versusD without
o O DO: 5 forcing (Fig. 2a: open circles) are plotted in each panel.
v L (a) Stochastic phase locking curves showing, as a functidh of

10° 10° the valueD,,, producing on average one firing per cycle (1:1)
NOISE INTENSITY NOISE INTENSITY and per two cycles (2:1). (k. here yields maximal power
at the forcing frequency/T in the spike train power spectrum.

FIG. 2. (a) Mean interspike interval versus noise intenfity For T < 0.9, points correspond to a secondary power peak
for Egs. (1)—(3)without periodic forcing (b) Stochasticl:1 at 1/T. (c) Doy Yields a maximum number of intervals of
curves in the noise intensity-stimulus period subspace. Foduration =T (first peak) and=2T (second peak). (dDop
each sinusoidal forcing period, the noise intengityielding on  yields the maximum linear correlatiof between the forcing
average one firing per forcing cycle is computed. The actuaind the firing probability. Fof” < 0.9, D, follows another
values of D plotted in (b) are averages from three searchespranch. In (b)-(d), dynamical refractory effects occur for
each of which uses 100 forcing cycle realizations. Stochasti@ < 3, and statistics with signal parallel the zero-signal mean
numerical integration [9] uses a time step of 0.001 sec forinterval. D,y is independent of in the static regimg” > 3.
signal periods” < 1.5 sec and 0.0025 sec otherwise. Symbols are approximately two standard deviations wide.
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Power spectral density—Figure 3b compares sponta- is artifactual since, before going through a maximum,
neous firing to the power spectral density at frequencyhe first peak is washed out by the growing exponential
f = 1/T contained in the sequence of firing times. For(Poisson) background caused by numerous firings per
eachT, Fig. 3b plots the valu® = D, that maximizes period (Fig. 4c). Also, forT" < 1, no peak afl’ is seen
this power. This curve flattens f@ > 3 where the two since recovery prevents firings in two successive cycles.
curves crossover (note that the zero-signal curve alway&lso shown is theD,,, vs T for the second ISIH peak
decreases). However, fér < 3, D, lies under, yet par- at 27. This curve lies below that for the first peak, as
allels the spontaneous firing curve. Fbr< 1, we find  expected from SR studies in bistable [10,20] and excitable
more than one local maximum for a givén(see also [18] systems [12,21]. The second peak curve is similar to
in the bistable system context). In fact, due to tight phas¢he 2:1 SPLC in Fig. 3a, as expected following the same
locking, the local maxima associated with the points plotdintuition as above.
ted for T < 0.8 have higher power than those lying on Linear correlation coefficient—We finally consider the
the extension of the main curve (filled circles) off scalelinear correlation coefficient between the sine wave sig-
into unrealistic noise levels. This stochastic phase locknal and the firing probability(6), wheref is a normalized
ing structure will be detailed elsewhere [19]. signal phase [9,22].P(6) is estimated numerically using

Interspike interval histograms (ISIH’s}-The equiva- cycle histograms (CH’s) (Figs. 4b and 4d), in which a bin
lent to escape time distributions are the ISIH’s (Figs. 4acorresponding to a given phase is incremented whenever
4c). Alocal maximum around the forcing periddmplies  a spike occurs at that phase. The valueCodpproaches
that the escape process is synchronized to this forcing. A@ne when the cycle histogram is well fitted by a suitably
cordingly, Fig. 3c is based on the number of intervals neashifted sinusoid. This statistic reflects the degree to which
integer multiples off" [12,20,21], which is also the rele- the response of the neuron (firing rate) linearly tracks the
vant statistic to quantifppona fideSR in bistable systems input signal. For eaci, Fig. 3d plotsD,; which maxi-
[10]. Histogram peaks at multiples Bfoccur typically for  mizesC; this maximum is typically broad, witkd > 0.9
Egs. (1)—(3) ifT is small, but also for an§ providedD is  for D varying over a fivefold to tenfold range, making the
small [9]. For eaclT, we estimate,, for which the num-  estimation ofD,,; sensitive to statistical fluctuations. As
ber of intervals close t@ is maximal. The curvéd,,, vs in Fig. 3b, D,y for largerT (T > 3.5) is independent of
T shown in Fig. 3c again closely parallels the spontaneou$. ForT < 3.5, D, increases a% decreases, following
curve and the 1:1 SPLC over the range of forcing perithe spontaneous curve from above. Note gj; here is
ods for which interval histograms indeed have a peak at slightly larger than those on the vs (ISI)4— curve, due

Intuitively, the value ofD producing a maximal number to the fact that in order to linearly track the signal there
of interspike intervals of duration close ®© should be must be more that one firing per cycle. FHOr< 0.9, Dy
close to the value oD producing on average one spike values shown are on a lower curve related to the spike train
per cycle. Likewise, this value dd should also be close local power maxima in Fig. 3b. In fact, the latter maxima
to that which maximizes the spectral power at frequencyccur atD values which also maximize the first Fourier
1/T. For largerT the estimation ofD,, for the ISIH  component of?(¢), which itself is the numerator af.

It is clear that Fig. 3 highlights the parameter regions
of frequency dependence for the optimal statistics, with

600 - @ 8000 =0 © qualitative agreement with the time scale imposed by
400 =1 6000 - the spontaneous firing. This is due to the interplay of
4000 time-dependent (dynamic) versus time-independent (static)
o 200 2000 properties of the firing threshold known to exist in both this
= o AN o model and real excitable cells. Since the firing threshold
”EJ 0 2 4 6 0 10 20 is in fact time dependent, due to the slower recovery, the
o INTERSPIKE INTERVAL INTERSPIKE INTERVAL extent to which the dynamic property is expressed depends
2 400 800 on the time between a firing and the next forcing cycle.
w 300 T=1 (b T=10 (d) Thus for relatively longrl’, only static nonlinearities play
= 600 a role; for shorter periods the dynamical aspect is also
= 200 :
/'\ 400 involved.
100 For small D (here, for D < 107°) and all T, the
05 o ﬂf o 2905 05 o s';atic nonlinearity .producgs “half—yvave rectified” cycle
PHASE PHASE histograms [9,22], i.eP(0) is negligible over half of the

o . . cycle. This nonlinear response, proportionalAp also
FIG. 4. Interspike interval histograms [(a),(c)] (200 bins) andproduces multimodal ISIH’s. Such CH’s and ISIH’s are

%’fiiiengr;'sgﬁgr?rf 1[0(t;)égd)(]reféo?nobéﬂfgtiI%_[:) iszei (l%hfaé?e similar to those shown in Figs. 4a and 4b; however, the

Results were obtained from 50 realizations of 100 cycles witHatter were obtained fof = 1 andD > 107°, for which
A = 0.01. the dynamical nonlinearity is predominant. In the static
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