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ABSTRACT

Neurons often display complex patterns of action potential firing in response to a wide variety of inputs. Cor-
relations amongst the interspike interval sequence are often seen in experimental data from sensory neurons
including electroreceptor afferents from weakly electric fish. Here we review some of our recent computational,
theoretical, and experimental results on the mechanism by which negative interspike interval correlations increase
information transfer: noise shaping. This mechanism might explain the behavioral hypersensitivity displayed by
weakly electric fish when detecting prey.
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1. INTRODUCTION

Understanding the neural code (i.e. how information is encoded by sensory neurons and then later decoded
by the brain) remains a largely unsolved problem in neuroscience.1 Neurons are not deterministic: the same
stimulus, when repeatedly presented, will give rise to different output spike trains.2 This is mostly due to the
fact that neurons have to operate in the presence of a significant amount of noise. Noise can come from two main
sources: external and internal. External noise sources come from the environment itself. One famous example is
the cocktail party problem where one listens to a particular speaker over background chatter.3 Internal noise
sources can come from the random opening and closing of voltage-gated ion channels: so-called flicker noise.4

They can also come from the intense synaptic bombardment that exists under in vivo conditions.5

There are two main points of view regarding the way by which sensory systems deal with noise. Noise can be
used to enhance information transfer about relevant stimuli through stochastic resonance6, 7 where the output
signal-to-noise ratio displays a maximum as a function of the noise intensity. Stochastic resonance is exclusively
seen in the subthreshold regime at the single neuron level (i.e. the stimulus by itself is insufficient to generate
action potentials). On the other hand, if a single neuron operates in the suprathreshold regime, the signal-to-
noise ratio then decreases monotonically as a function of noise intensity with the exception of suprathreshold
stochastic resonance which only occurs in a neural population.8 From this point of view, noise is unwanted and
must be minimized in order to improve information transmission.

Many electronic devices such as Sigma-Delta modulators9 and Josephson junctions10, 11 must operate in the
presence of noise. This operation is facilitated through a phenomenon called noise shaping: noise power is shifted
from one frequency range to another thereby improving signal transmission in the former frequency range and
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worsening it in the latter. It has been proposed that the brain might use noise shaping as a mechanism to deal
with noise12, 13 and a modeling study has shown that noise shaping could result from inhibitory coupling in a
neural network.14

Neurons both at the periphery and in the cortex can show correlations amongst successive interspike inter-
vals,15–20 making them non-renewal processes.21 This indicates that memory is carried from one action potential
to the next and is not ”erased” as in a renewal process. This adds an extra complication in the calculation of
mean first passage time moments and the spike train power spectrum.22–24

In this paper, we review some of our recent theoretical and experimental results showing that ISI correlations
lead to noise shaping of the resulting spike train which enhances information transmission and moreover that
weakly electric fish may use this strategy to maximize their capabilities of detecting prey. The paper is organized
as follows: first, weakly electric fish and the low-frequency characteristics of prey stimuli are introduced in
section 2. Experimental data from electroreceptor afferents showing ISI correlations are then shown and we
review modeling results showing that negative ISI correlations can enhance information transfer in section 3.
In section 4, we introduce simplified models where theoretical calculations are possible and show analytically
and through numerical simulations that noise shaping by negative ISI correlations can enhance information
transmission of low frequency stimuli. Section 5 shows that noise shaping is indeed present in experimental data
from electroreceptor afferents and we predict the net information gain brought about by this noise shaping.

2. ELECTRORECEPTOR AFFERENTS FROM WEAKLY ELECTRIC FISH

Weakly electric fish use distortions of their self-generated electric field, the electric organ discharge (EOD), in
order to detect prey and communicate with conspecifics.25 Prey signals from zooplankton (Daphnia) are faint,
spatially localized, and typically contain temporal frequencies below 30 Hz.26 However, communication signals
from conspecifics and spatially diffuse and typically contain frequencies above 50 Hz.27 Electroreceptor afferents
on their skin detect amplitude and phase modulations of the EOD and transmit this information through trains
of action potentials.28, 29 We will concentrate on the amplitude coding or P-type electroreceptors here. These
increase their firing rates in response to increases in EOD amplitude28, 30 and display significant adaptation.30–32

Moreover, they show baseline activity (i.e. in the presence of the unmodulated EOD) with high firing rates.28, 30

Closer inspection of this activity has shown that short interspike intervals followed longer ones preferentially
and vice-versa: leading to negative ISI correlations.18–20 This is shown in figure 1. Figure 1A shows an
intracellular recording from the afferents’ axon and already it can be seen that long interspike intervals follow
short ones and vice-versa. Figure 1B shows the multimodal ISI distribution that results from phase locking to
the quasi-sinusoidal EOD.20, 30 Figure 1C shows the ISI serial correlation coefficients (SCC) ρj defined by:

ρj =
〈(Ii+j − 〈Ii〉) (Ii − 〈Ii〉)〉

〈(Ii − 〈Ii〉)2〉 (1)

where {Ii} denotes the ISI sequence, j is the lag, and the average < ... > is performed over index i. A strong
negative SCC is seen at lag one. It was shown that the EOD phase locking alone was not sufficient to account
for these strong negative ISI correlations.20 Although there is considerable heterogeneity in the electroreceptor
afferent population particularly in their ability to produce packets of action potentials,30, 31 all units seen so far
have shown ISI correlations to some degree although in some of the more bursty units show SCCs that alternate
in sign and decay over a few lags. Similar temporal anti-correlations have also been observed in paddlefish
electroreceptors.33,34

3. MODELING ELECTRORECEPTOR AFFERENTS

The leaky integrate-and-fire neuron is perhaps one of the simplest neuron models.35 In this model, the membrane
voltage v obeys the dynamics of an RC circuit. The nonlinearity of the action potential genesis is captured by
the following reset rule: once v reaches a constant threshold value w, it is reset to a value vreset and an action
potential is said to have occurred. While it is capable of reproducing a variety of experimental results such as
the all-or-none nature of the action potential and phase locking to sinusoidal input, the leaky integrate-and-fire
model generates renewal spike trains in the presence of Gaussian white noise36 or sinusoidal input.37, 38 It must
thus be modified to include a variable that will carry the memory from one action potential to the next.
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Figure 1. (a) Intracellular recording from a receptor afferent. Patterning in the ISI sequence is seen in that long ISIs tend
to follow short ones. (b) ISI distribution from the data. Multiple modes are seen as receptor afferents are phase-locked to
the animal’s quasi-sinusoidal EOD. (c) ISI SCC’s ρj as a function of lag j. We have ρ1 < 0 indicating that afferent spike
train is a non-renewal process.

3.1. Model Description

An ideal variable for this is the action potential threshold w. Previous models have incorporated random time
varying thresholds39, 40 and recent experimental data has shown that the action potential threshold was variable
in vivo.41 We thus made the threshold w vary in time as well. We termed this addition to the LIF model
the leaky integrate-and-fire with dynamic threshold (LIFDT) model20, 42–48 and it is described by the following
differential equations:

v̇ = − v

τv
+ Isyn (2)

ẇ = H(t − tlast − Tr)
(

w0 − w

τw

)
+ ∆w δ(t − tlast) (3)

Isyn = [A0 + A(t)]H [A0 + A(t)] sin [2πfEOD t] H [sin(2πfEOD t)] [1 + ξ(t)] (4)

where v is the membrane voltage, w is the threshold, Tr is the absolute refractory period, tlast is the last spiking
time, and Isyn is the synaptic current, A0 is the baseline EOD amplitude, A(t) is the amplitude modulation,
and fEOD is the EOD frequency. ξ(t) is Gaussian white noise of zero mean. H(.) is the Heaviside function
(H(x) = 1 if x >= 0 and H = 0 otherwise) and accounts for synaptic rectification.20 We let the threshold carry
the memory by the following firing rule: when v = w, v is reset to vreset = 0 as in a standard LIF model, while
threshold is incremented by a constant amount ∆w and kept constant for the duration of the absolute refractory
period Tr; after this time T , the threshold relaxes exponentially towards its equilibrium value w0 until the next
spiking time. If two spiking times occur within close proximity of one another, the threshold will cumulatively
increase leading to greater refractoriness. Thus, a short ISI will tend to be followed by a long one and the model
displays negative ISI correlations44 as in the experimental data from the electroreceptor neuron.20

3.2. Modeling results

Figure 2A shows a time series from the model under baseline activity (i.e. A(t) = 0). It is seen that a short
ISI causes a cumulative increase in the threshold variable w. The longer time needed for w to decay will cause
the next ISI to be longer. We note that this is a deterministic property of the model44 and that the noise
ξ(t) constantly perturbs the system away from its stable periodic firing pattern observed deterministically, thus
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Figure 2. (a) Time series showing the voltage v (black) and threshold w (grey) from the LIFDT model. A short ISI such
as I1 causes accumulation in the threshold w which will thus rise to a higher value. Consequently, the next ISI I2 will be
longer. (b) ISI distribution from the LIFDT model’s under baseline activity(i.e. A(t) = 0). (c) ISI SCC’s from the model
showing ρ1 < 0 as in the experimental data. Overall, good agreement is seen with the experimental data. Parameter
values were previously given.20

causing the negative ISI correlations. The ISI distribution from the LIFDT model is shown in figure 2B while
figure 2C shows the SCCs from the model. Close agreement is observed with the experimental data and different
values for the parameters in the model as well as a minor addition to produce bursting dynamics can reproduce
the heterogeneities seen experimentally.23, 42, 48

In order to quantify the effects of ISI correlations on information transmission, we compared the output of
the LIFDT model to that of a previous model proposed for electroreceptor afferents.43 This previous model has
been proposed to describe electroreceptor afferent dynamics.49 However, we found that spike trains produced by
that model lacked the negative ISI correlations that were so prominent in the data.43 These models were thus an
ideal tool to study the effects of ISI correlations as the first order ISI statistics of the two models were virtually
identical. Low-passed filtered Gaussian white noise input with cutoff frequency fc and variance σ2 = 2αfc was
given to both models and information theory50, 51 was used to compute the rate of information transmission
of both models. Figure 3A shows the mutual information rate from both the Nelson and LIFDT models as a
function of stimulus standard deviation σ while figure 3B shows the mutual information rates as a function of
cutoff frequency fc.43 It is seen that the LIFDT model has a higher rate of information transmission than the
Nelson model over a wide range of stimulus intensities and frequency content. The gain in information can be
as high as 50%. Similar results were obtained with signal detection measures.43, 45 However, little insight as
to the actual mechanism by which these correlations increase information transmission can be ascertained from
these numerical simulations. In the next section, we develop more abstract models from which analytical results
can be obtained and the mechanism revealed.

4. THE MECHANISM: NOISE SHAPING

4.1. Two simple integrate-and-fire models

In order to understand the effect of ISI correlations on information transmission, we need models that will
capture the essence of the phenomenon without extraneous parameters. We thus constructed two simple perfect
integrate-and-fire neuron models which will be henceforth referred to as models A and B.23, 24
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Figure 3. (a): Mutual information rates for the LIFDT and Nelson models as a function of σ and fc = 100 Hz. (b):
Mutual information rates as a function of cutoff frequency fc for σ = 0.03 mV. The LIFDT model consistently gives
greater information rates than the Nelson model. Parameter values were previously given.43

For both models, the input is integrated without leakage according to:

v̇(t) = µ + s(t) (5)

where µ is a constant base current and s(t) is the input signal to be transmitted. We do not include the internal
noise of the neuron as a fluctuating input current but choose the mathematically simpler construction of noisy
threshold and reset points. As previously mentioned, we note that there is also some experimental evidence for
a fluctuating threshold.41, 52

The models differ in their reset rules for the voltage v. A time series for the voltage and threshold of model A
is illustrated in figure 4A. The threshold θ(t) is constant between spikes and is drawn from a uniform distribution
in the interval [Θ0 − D, Θ0 + D] with Θ0 being the mean threshold and D standing for the noise intensity. We
assume a small value D < Θ0/2. When v(t) > θ(t), a spike is fired, a new threshold is drawn, and the voltage is
decremented by Θ0, i.e. v → v − Θ0. It is easily seen that the voltage reset value will be uniformly distributed
in the interval [−D, D]. However, this reset rule correlates a given threshold value with the subsequent voltage
reset value and, as we shall see, this gives rise to a strong ISI SCC at lag one in the absence of stimulation (i.e.
s(t) = 0).

A time series for the voltage and threshold of model B is illustrated in figure 4B. The threshold θ(t) is still
constant between spikes and is drawn from a uniform distribution in the interval [Θ0−D, Θ0 +D]. However, the
reset value for the voltage v is now drawn randomly from a uniform distribution in the interval [−D, D]. There
will thus be no correlation between a given threshold value and the subsequent voltage reset value. Model B will
thus not generate any non-zero ISI SCCs at lags> 0.

We now calculate the ISI SCCs of both models. We see from Fig. 4A that an ISI Ij can be split up into
two contributions Ij = uj + vj where uj and vj are the passage times from the reset point to half of the mean
threshold (Θ0/2) and from Θ0/2 to the random threshold Θ(t). Due to the correlation between the random
threshold and the subsequent reset value in model A, we have

vj + uj+1 =
Θ0

µ
(6)

154     Proc. of SPIE Vol. 5841



Θ0/2

(a) Θ0

Θ0+D

Θ0−D

0

I
i

I
i+1

u
i v

i

u
i+1 v

i+1

Θ
0

Θ0

Θ0+D

Θ0−D

0

I
i I

i+1

D

-D

(b)

Figure 4. Illustration of simplified models. (a): Model A for s(t) ≡ 0. In between action potentials the voltage v(t)
(solid line) evolves according to eq. 5. A threshold value (shown by the dashed line) has been drawn from the uniform
density [Θ0 −D, Θ0 +D] the boundaries of which are indicated. Once the voltage hits the threshold, a spike is fired and v
is decremented by Θ0. Each ISI Ij consists of two sub-intervals uj and vj that are defined as the passage times from reset
to Θ0/2 (dotted line) and from the latter point to the threshold, respectively. (b): Model B for s(t) ≡ 0. In this case,
threshold values (dashed line) and reset values are drawn from uniform densities the boundaries of which are indicated.
Note that both random values (drawn after each firing) are independent of each other in marked contrast to model A. A
subdivision of the indicated intervals as for model A is also possible but has here been omitted for the sake of clarity of
the illustration.

We can use this to calculate the covariance between subsequent ISIs at lag one:

〈IjIj+1〉 − 〈Ij〉2 = −1
2
(〈I2

j 〉 − 〈Ij〉2) (7)

As a consequence, we obtain for the SCCs of model A ρA
i = δ0,i − 1

2δ1,i with δ1,i being the Kronecker symbol.
A similar calculation for model B gives ρB

i = δ0,i.

Models A and B furthermore generate ISIs with an identical density22, 24 which facilitates their comparison.
Since both uj and vj are uniformly distributed in the intervals [(Θ0/2− D)/µ, Θ0/2 + D)/µ], this ISI density is
then given by the convolution of these two random variables which yields a triangular distribution.

4.2. Calculation of the power spectrum of baseline activity

We used the following formula to compute the power spectra of models A and B52:

S(f) =
1
〈I〉

[
1 +

∞∑
n=1

Fn(f) + Fn(−f)

]
(8)

where Fn(s) is the Fourier transform of the nth order interval density. A straightforward calculation gives22, 24:

PA0(f) =
1
〈I〉

[
1 − sin2(βf)

(βf)2

(
1 − 1

〈I〉
∞∑

n=−∞
δ(f − n

T
)

)]
(9)

and

PB0(f) =
[(βf)4 − sin4(βf)]/〈I〉

(βf)4 − 2(βf)2 sin2(βf) cos(2π〈I〉f) + sin4(βf)
(10)

where β = 2πD/µ and the mean ISI is given by 〈I〉 = Θ0/µ.

The power spectra of models A and B are shown in figure 5A. At low frequencies (f < 0.25) and also in
the range around the mean firing rate of the neuron (f ≈ 1), the spectrum of model A shows much less power
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Figure 5. Left: Power spectra for the spike trains of the simplified models and s(t) ≡ 0. Right: Mutual information for
models A and B (solid and dashed lines) vs cutoff frequency fc (α = 0.0156); also shown is the difference between these
functions (thin solid line).

(except, of course, for the δ peak at f = 1) than the spectrum of model B. The noise power lacking in this
range is, however, exactly compensated by an excess in other frequency ranges and by the power contained in
the δ peaks. This is because the integral over the spectrum equals the inverse Fourier transform at vanishing
argument, i.e. according to the Wiener-Khinchine theorem the spike train’s correlation function at zero lag. At
arbitrary lag we have:

∞∫
−∞

dfe−2πifτ S(f) − r0

2π
= 〈x̃(t)x̃(t + τ)]〉 − r0δ(τ)

= r0(m(τ) − r0) (11)

Here m(τ) is the probability per unit time to observe a spike under the condition that at τ = 0 a spike
has occurred and r0 is the baseline firing rate which is identical for both models as they have equal ISI density
functions. Note that this does not include the reference spike but any other (not only the first occurring after
the reference spike). Since both models A and B show an absolute refractory period, we have m(0) = 0. At zero
lag, the l.h.s. is proportional to the integrated power considered above, while the r.h.s. approaches −r2

0 for both
models A and B. We thus have a shaping of the baseline spectrum by the negative ISI correlations. As will be
seen later, the baseline spectrum is considered to be a noise spectrum of the system because the baseline activity
is uncorrelated with s(t).

This noise shaping increases the available information that can be transmitted about a time varying signal
s(t). Figure 5B shows the mutual information density curves for both models as a function of stimulus cutoff
frequency fc. The mutual information rate for model A is always larger than the mutual information rate of
model B.

4.3. Using linear response theory to predict the response to time varying input

We used linear response theory53 to compute the response of both models A and B to a time varying signal s(t).
The spike train in response to s(t) is then given by in the Fourier domain:

X̃(f) = X̃0(f) + χ(f)s̃(f) (12)

where χ(f) is the susceptibility function. It turns out that it is identical for both models A and B22, 24 and is
given by:

χA(f) = χB(f) = r0/µ (13)
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The mutual information rate (in bits/sec) is given by1:

MI = −
∫ fc

0

df log2[1 − C(f)] (14)

C(f) =
|X(f)|2

P (f)Sst(f)
(15)

where C(f) is the coherence function, X(f) ≡< X̃∗(f)s̃(f) > is the cross-spectrum between the spike train
X(t) and the signal s(t), P (f) ≡< X̃∗(f)X̃(f) > is the spike train power spectrum, and Sst(f) ≡< s̃(f)∗s̃(f) >
is the signal power spectrum. Note that this formula is only valid if the signal s(t) has a Gaussian probability
distribution. The power spectrum in response to a signal s(t) is given by:

P (f) = P0(f) + |χ(f)|2 Sst(f) (16)

Using equations (12), (13-16), we get the following expression for the mutual information rate of models A
and B:

MIA,B =
∫ fc

0

df log2 [1 + SNRA,B(f)] (17)

SNRA,B(f) =
θ−1
0 Sst(f)

PA0,B0(f)
(18)

where SNRA,B(f) is the output signal-to-noise ratio of both models1 and PA0(f),PB0(f) are given by equations
(9) and (10), respectively. We note that the difference between models A and B only appears through the
baseline power spectrum. Equation (18) furthermore explicitly shows the role of the baseline spectrum as a noise
spectrum in both models.

We note that the linear response ansatz works well at large internal noise intensity (D > 0.1) but fails in the
weak noise limit as can be expected. A more elaborate theory in the latter case has been developed.24

The mutual information rates of both models are shown in figure 5B. The shaping of the baseline spectrum
leads to a lower power at low frequencies. This noise shaping gives rise to a higher output signal-to-noise ratio
and thus a higher information rate for model A than for model B at these frequencies. The construction of
models A and B have thus permitted us to understand the precise mechanism by which ISI correlations increase
information transmission: noise shaping of the baseline power spectrum.

5. EXPERIMENTAL VERIFICATION OF NOISE SHAPING

Armed with the prediction from the theory, we now return to the original experimental data that inspired us
to work on the problem. We thus recorded intracellularly from electroreceptor afferent axons in weakly electric
fish. The experimental protocol was described previously in detail.30, 54–56 Figure 6A shows the power spectrum
(black) of one representative receptor afferent under baseline activity. The inset shows the ISI SCCs under the
same conditions. As predicted by the theory, the baseline spike train power spectrum displays low power at
low frequencies. We note that this is precisely the frequency range of behaviorally relevant prey stimuli (< 20
Hz). It is currently impossible to experimentally manipulate the system such as to remove the negative ISI
correlations. However, we can randomly shuffle the ISI sequence in order to eliminate ISI correlations while
keeping the same ISI distribution. The power spectrum of the resulting spike train in also shown (grey) in figure
6A and displays less structure. In particular, there is now more noise power at low frequencies. The inset shows
that ISI correlations were indeed removed by this shuffling procedure.

Electroreceptor afferents were now stimulated by amplitude modulations of the animal’s own EOD. The am-
plitude modulations signal used was low-pass filtered white noise with cutoff frequency fc = 120 Hz. The typical
contrast used (i.e. the standard deviation of the amplitude modulation signal to baseline EOD amplitude ratio)
was 20%. Figure 7 shows the coherence curve (black) in response to the stimulus for that same electroreceptor
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Figure 6. (a): Power spectrum of an experimentally obtained spike train from a receptor afferent under baseline activity
(black). We randomly shuffled the ISI sequence and plotted the power spectrum of the resulting spike train (grey). This
procedure eliminates ISI correlations and the spike train is now a renewal process. (b) ISI SCC’s of the raw data (black
squares) and the shuffled data (grey circles) showing that negative ISI correlations are indeed removed by the shuffling
procedure.

afferent. The broadband response allows the electroreceptor population to respond equally well to both low
frequency and high frequency stimuli.56

In order to quantify the gain in information brought about by ISI correlations in the data, we apply linear
response theory to the experimental data. The theory is applied as follows. The spike train power spectrum in
response to the input is given by equation (16. We computed the susceptibility from the cross-spectrum between
the raw data spike train and the stimulus. From this, we can use equations (15) to compute the predicted
coherence curve which is shown in grey in figure 7. The linear response theory overestimates the coherence,
particularly for low frequency stimuli. This indicates that nonlinear effects are present. These will weaken the
coherence by adding contributions to the power spectrum which are not captured in equation (16). Nevertheless,
there is a qualitative agreement between the coherence of the raw data and the one predicted from linear response
theory in that they both show a good response for low frequencies.

We also used the power spectrum of the shuffled spike train in equation (16) and computed the resulting
coherence curve which is shown in light gray in figure 7. This would be the predicted coherence from a renewal
process with the same ISI distribution as the raw data. It is seen that there is a net loss in information
transmission and that this loss is greatest for frequencies below 20 Hz. Again, the linear response theory will
lead to an overestimation of the coherence: the loss in low frequency coherence might be even greater. As such,
it is most likely that noise shaping by ISI correlations is used by electroreceptor afferents and this may explain
the hypersensitivity observed in weakly electric fish in detecting faint electrical signals from prey stimuli.26

6. DISCUSSION

We have reviewed some of our recent experimental and theoretical results pertaining as to the role of ISI cor-
relations in information transmission. As beforementioned, these ISI correlations occur in a variety of sensory
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Figure 7. Coherence between the spike train and the stimulus for the raw data (black). Also shown is the coherence
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qualitative agreement is seen since both curves have the same shape. We also used the power spectrum of the shuffled
data to predict the coherence of a renewal process to input (light grey). Increasing the noise level at low frequencies
results in a dramatic decrease in the coherence at these frequencies.

neurons at the periphery15, 16, 33, 34 as well as in the cortex.17 The noise shaping strategy presented here could
thus be occurring in other sensory modalities.

The exact biophysical cause of the negative ISI correlations in electroreceptor neurons is still unknown al-
though there exists several hypothesis. Cumulative inactivation of sodium channels57 could for example give rise
to neural adaptation and ISI correlations. However, a fast spike activated slowly inactivating negative current
could also give rise to similar effects: a likely candidate would be members of the KV family of potassium cur-
rents58 that are present in electroreceptor afferents.59 Another candidate could be a calcium activated potassium
current such as Iahp. This current was first shown to be present in cortical neurons60 and was later discovered
to be ubiquitous in the central nervous system. This current is also present in electroreceptors61 and previ-
ous studies have shown that models incorporating such a current could display negative ISI correlations.62, 63

Furthemore, it was shown that such models were qualitatively equivalent to our LIFDT model.63

The presence of negative ISI correlations is linked with firing rate adaptation to step currents.44, 63 Elec-
troreceptor afferents display strong adaptation properties.30 Although our theoretical results only predicted
that negative ISI correlations only increased information transmission of low-frequency stimuli. Our numerical
simulations and the experimental data predict an increase for high frequencies as well.43, 56 A recent exper-
imental study dealing with communication stimuli in weakly electric fish as shown that adaptation, and thus
ISI correlation, in receptor afferents could help them discriminate communication signals.32 Further theoretical
work is necessary in order to understand this.

We note that long term positive ISI correlations have also been observed in several sensory neurons.16, 64 As
might be expected, these increase neural variability and instead reduce the detectability of very low frequency
stimuli. Sensory systems also use these to ignore long term trends in sensory stimuli.

Recent studies have shown that the post-synaptic targets of electroreceptor afferents, pyramidal cell, were
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highly selective in their response to spatially diffuse communication stimuli.65, 66 Further studies have revealed
that pyramidal cell properties were highly dependent on whether the stimulus was prey like, or communication
like.54, 55, 67, 68 In particular, pyramidal cells were shown to be most sensitive to low frequency stimuli when
the stimulus’ spatial extent was prey-like, and to be most sensitive to high frequency stimuli when the stimulus’
spatial extent was communication-like.68 The relatively broadband tuning of electroreceptor afferents seen
experimentally and brought about by negative ISI correlations would be ideal for this as filtering mechanisms
would then allow pyramidal cells to extract behaviorally relevant information. In particular, the experimentally
observed good response of pyramidal cells to low frequency stimuli indicates that they decode at least part of
the information transmitted by electroreceptor afferents about these stimuli.56, 68

Finally, although the inspiration for this work was biology, we note that the need for reducing low frequency
noise is not constrained to biology only. There is interest in reducing low frequency noise in several electronic
devices such as Josephson junctionsand sigma-delta modulators9–11 and the strategy outlined in this work could
also potentially be used to reduce low frequency noise in these and other excitable systems such as lasers.
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