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Chaos control in multistable delay-differential equations and their singular limit maps

Boualem Mensour* and AndréLongtin†
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The multistability exhibited by first-order delay-differential equations~DDE’s! at large delay-to-response
ratiosR is useful for the design of dynamical memory devices. This paper first characterizes multistability in
the Mackey-Glass DDE at largeR. The extended control of its unstable periodic orbits~UPO’s!, based on
additional feedback terms evaluated at many times in the past, is then presented. The method enhances the
control of UPO’s and of their harmonics. Further, the discrete-time map obtained in the singular perturbation
limit of the controlled DDE is useful to characterize the range of parameters where this extended control
occurs. Our paper then shows how this singular limit map leads to an improved method of controlling UPO’s
in continuous-time difference equations and in discrete-time maps. The performance of the method in the
general contexts of extended additive and parametric control is evaluated using the logistic map and the
Mackey-Glass map. The applicability of the method is finally illustrated on the Nagumo-Sato discrete-time
neural network model.@S1063-651X~98!09707-4#

PACS number~s!: 05.45.1b, 02.30.Ks, 42.65.Pc, 42.79.Ta
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I. INTRODUCTION

Multistability in a dynamical system is the coexistence
multiple attractors. This property implies that qualitative
different asymptotic solutions can result from changes in
initial conditions. Multistability in delay-differential system
has received recent attention because it enables such sy
to act as memory devices, an idea first suggested by Ik
and Matsumoto @1#. For the simple first-order delay
differential equations of interest in many applications@2,3#,
multistability appears when the delayt is much greater than
the response timet r of the system. Different periodic solu
tions, chaotic solutions, or both may then coexist for a giv
set of equation parameters@2,4#.

Interest in multistability in delay-differential equation
~DDE’s! arises in the context of nonlinear control, such
occurs in physiological systems@3,5,6# and optical or neura
network systems with delayed feedback@7#. For example,
prescribed periodic solutions can be stored as oscillatory
terns in the electromagnetic field of a laser cavity@8,9# or in
the firing activity in models of neural recurrent feedba
loops @10# by choosing appropriate initial conditions. Suc
multistability has further been demonstrated in electronic
cuits @11,12#. Unstable periodic solutions~UPO’s! can also
be used to store prescribed patterns if they are first stabil
by chaos-control techniques@13# such as those based on a
ditive delayed feedback@14#. The chaotic regime makes th
memory storage very versatile, due~1! to the existence of an
infinite number of UPO’s, some of which coexist with one
more chaotic attractors, and~2! to the adjustability of the
period of UPO’s through variations of the intrinsic delay~as
distinguished from the second delay for chaos control@14#!.
Such feedback has further been shown to allow the sta
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zation of UPO’s in delay-differential models of cortical fun
tion @5#.

The first part of our paper~Secs. II and III! discusses
chaos control in the Mackey-Glass DDE@3# using a second
delayed feedback loop@14#, as well as its generalization in
terms of ‘‘extended control,’’ where feedback from values
the state variable at several regularly spaced times in the
is used@15#. The number of harmonics of the fundamen
wave form which coexist in the Mackey-Glass DDE is al
studied in order to identify the subset of the infinite numb
of UPO’s which can realistically be~1! controlled using
delayed-feedback chaos control, and~2! used for information
storage purposes.

The second part of our paper~Secs. IV and V! presents a
chaos-control method for discrete-time maps. It is based
the dynamics of the DDE in the singular limit where th
delay-to-response time ratioR→`. We discuss its perfor-
mance, and illustrate it on the logistic map as well as on
‘‘Mackey-Glass’’ map which results from the singular lim
of the Mackey-Glass DDE. We also illustrate the method
a discrete-time neural network model known as the Nagum
Sato model@16# ~see also Ref.@17#!. We then improve our
method using extended control@15#. With this improvement,
orbits of even higher periodicity~i.e., of higher bifurcation
order in a period-doubling sequence! can be stabilized. Our
method is found to allow the control of UPO’s in these ma
over larger parameter ranges than those found with o
existing methods@14,15,18#.

We further bridge results in the two parts of our paper
showing that, under certain conditions, chaos control in
DDE can be understood using the finite-dimensio
discrete-time map suggested by our control method. Sing
limit maps have been shown to be useful in understand
certain aspects of the behavior of the associated DDE’s~see,
e.g., Refs.@4,19,20#!. This map predicts the range of param
eters for which control occurs; the accuracy of this predict
increases withR. This result has previously been discuss
for simple delayed feedback control@14# in Ref. @13#, and is
shown here in the context of extended delayed control@15#.
410 © 1998 The American Physical Society
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PRE 58 411CHAOS CONTROL IN MULTISTABLE DELAY- . . .
One of our goals in developing this control method is
understand multistability and UPO control in models of sp
tially distributed excitable cell assemblies, such as th
found in nervous and cardiac tissue~see, e.g., Ref.@21# for a
recent review!. The possibility of controlling, using nonlin
ear dynamical techniques, disorders such as epilepsy or h
arrhythmias, when the underlying systems indeed exh
e.g., chaotic dynamics in health or in disease, is excit
@22#. Models of such cell assemblies often rely on a simp
fied discrete-time map description of the single cell dyna
ics ~compared to, e.g., complex Hodgkin-Huxley dynamic!
to make them computationally efficient and/or analytica
tractable. These have been used as the fundamental co
tational elements of artificial neural networks as in, e
Refs. @16,17,23#. Further, our results for DDE’s and the
limiting maps will help understand UPO controllability i
physiological, optical, and other systems, involving one
many delayed feedback loops@24–26#.

This paper is organized as follows. Section II discus
multistability and hysteresis in the Mackey-Glass~MG! DDE
at large delay. It illustrates the kinds of solutions that can
obtained in such equations; these same kinds of solut
occur through chaos control techniques such as that
scribed in Sec. III. This section also reviews the ‘‘extend
control’’ method of Ref.@15#, and shows how it enables th
control of finely structured UPO’s of the Mackey-Gla
DDE, such as those corresponding to higher bifurcation
ders. In Sec. IV we present our improved method of cont
ling discrete-time maps, inspired from the control of t
DDE in the singular perturbation limit. The range of contr
in parameter space is studied analytically for fixed point c
trol in both the additive and parametric ‘‘extended contro
cases. We also discuss how the controlled map (R→`) re-
veals information on how to control the DDE~finite R!. In
Sec. V, we apply our improved control method to a chao
discrete-time neural network based on the Nagumo-S
model. The paper concludes in Sec. VI.

II. MULTISTABILITY IN THE MACKEY-GLASS DDE

A. Dynamical equations and numerical methods

We focus on first-order delay-differential equations of t
form @2,3#:

ẋ~ t !52bx~ t !1F„x~ t2t!…, ~1!

where t is the intrinsic delay in the feedback loop andt r
51/b is the response time. We define the delay-to-respon
time ratioR5t/t r5bt. This equation describes an infinite
dimensional dynamical system, and can be solved by sp
fying an infinite number of initial conditions~i.e., a function!
over the delay interval.

We have used a fixed step fourth-order Runge-Kutta
gorithm for all numerical integrations of this system. T
time step must be small enough to integrate the soluti
properly over the fastest time scaleb21. In particular, for
periodic solutions such as controlled UPO’s, square-wa
like solutions are often encountered, in which constant ‘‘p
teaus’’ are connected by rapid transitions of durat
O(b21); these transitions can be seen as ‘‘boundary laye
in which the derivative is of orderO(R21). For b50.1, as
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below, accurate solutions on every time scale can be
tained for any delay by using a 0.1-s integration time ste

One can obtain a good idea of the solutions and of th
controllability for largeR by using instead a larger time ste
By ‘‘controllability’’ we mean a measure of the range o
parameters~such as a hypervolume in parameter space! over
which control occurs to within a specified error magnitud
The use of a larger time step will not produce accurate tr
sitions between plateaus, but the plateau values will be
curate. AsR increases, the duration of these rapid transitio
becomes negligible compared to the duration of plate
themselves in periodic orbits or controlled UPO’s. Alte
nately, one can rescale time witht→t8/e, t→t8/e, yielding

b21e
dy~ t8!

dt8
52y~ t8!1b21F„y~ t82t8!…, ~2!

wherex(t)[y(t8). With this transformation, the DDE ca
be studied numerically at large delay~for example,t5300,
with b21510! in terms of an equivalent DDE at smalle
delay ~e.g., if e50.1, t8530, with an equivalent time scal
eb2151.0!, with a time stepe21 times smaller for fully
accurate solutions, or larger for an approximate solution
discussed above~the ratiosR5bt and R85be21t8 remain
the same!.

Most studies of multistability in DDE’s have focused o
the Ikeda equation@1,2,4#. In the present study, multistability
in the Mackey-Glass DDE~MG-DDE! is of interest, with
particular emphasis on its UPO’s, since we wish to cont
these unstable wave forms for large delays. We thus
have to verify whether the basic multistability properties
the MG-DDE are similar to those of the Ikeda equation. O
results indicate that this is so, and are summarized be
This is expected, as comparisons of previous studies@4,9,13#
indicate that the two systems are similar with respect to
organization of the UPO’s and with respect to the control
low period UPO’s.

The Mackey-Glass equation is@3#

ẋ~ t !52bx~ t !1F„x~ t2t!…

52bx~ t !1ax~ t2t!/„11xc~ t2t!…, ~3!

with c510 andb50.1 ~constant throughout our paper! at
large delayt5300 ~for example!. It is typically difficult to
find different initial conditions that lead to the different co
existing solutions for a given set of parameters. It is easie
obtain an idea of the shape of solutions that may coexis
keeping the initial condition fixed and then varying the fee
back parametera slightly ~Fig. 1; see also Ref.@4#!; the
resulting solutions are not coexistent, but are representa
of coexisting solutions which could be found for fixed p
rameters by trying different initial functions.

A Hopf bifurcation occurs ata50.125. Fora slightly
larger than this value, the oscillation has already grown i
a square-wave-like wave form, which we refer to as t
‘‘fundamental solution,’’ with periodT1'2t. As a in-
creases further, this solution undergoes a period-doubling
quence, where the two plateaus of the square wave are
placed by four plateaus, then eight, etc. At the same time
this fundamental solution goes through its period-doubl
sequence, other solutions come into existence@27#, which
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412 PRE 58BOUALEM MENSOUR AND ANDRÉ LONGTIN
independently undergo period-doubling cascades. They
usually not visible unless special initial conditions that a
proximate the shape of the solution are chosen. The t
harmonic of the fundamental, with periodT1/3, appears at
a50.1317. The fifth harmonic appears ata50.1376, and
finally the seventh ata50.1425

When a reaches the period-doubling accumulation po
of the fundamental ata`'0.138, the square-wave solutio
becomes chaotic. However, it still has a basic square-w
like shape, as seen in Fig. 1~a!. If a is further increased, this
square-wave solution becomes unstable, and successive
otic ‘‘harmonics’’ with basic ‘‘period’’ ~they are not exactly
periodic! close toT1 /n can be observed~n is an odd integer
representing the harmonic order!. The solution jumps first to
the third harmonic ata50.141, then to the fifth ata
50.1414, then to the seventh ata50.1466, and finally to
developed chaos ata50.1485.

Figure 1 illustrates the different chaotic harmonicsf 0

5T1
21, 3f 0 , 5f 0 , and 7f 0 . Note that the initial function in

all cases was chosen here to be the same constant; thu
figure does not indicate multistability; it merely shows typ
cal solutions over a certain range ofa which exist and be-
come unstable asa increases, and which chaos contr
should be able to stabilize. Other~but not all! initial func-
tions will also yield four similar solutions for the same fo
values ofa.

B. Multistability and hysteresis

Figure 2 demonstrates multistability by showing the c
existence of several harmonic solutions for the same valu

FIG. 1. The different solutions of Eq.~3! corresponding to the
different harmonics fort5300. The same constant initial functio
x050.95 on (2t,0) was used in each case.~a! Fundamental solu-
tion (a50.14). ~b! Third harmonic (a50.141). ~c! Fifth harmonic
(a50.143). ~d! Seventh harmonic (a50.1467).
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a. The range ofa over which thenth harmonic is stable can
be found numerically by splitting the initial delay functio
into n equal subintervals, with the function taking on co
stant values~‘‘plateaus’’! within each subinterval. The val
ues of these plateaus in this piecewise-constant initial fu
tion are generally chosen from those in the fundamen
square-wave-like periodic solution. The resulting asympto
solution is observed for a given value ofa; this parameter is
then changed slightly, and the process is repeated until
can no longer find that particular harmonic.

Our results indicate that solution coexistence can be~1!
between chaotic orbits and periodic orbits, such as betw
the chaotic fundamental, the chaotic third harmonic, and
periodic fifth harmonic whena50.141; or~2! between peri-
odic orbits, e.g., whena50.1376~see Fig. 3!. This is also
true for the Ikeda model@4#. In fact, the organization of the
multistable orbits, and of the hysteresis loops between th
is very similar to that seen in the Ikeda equation@4#. These
loops follow from the transitions between harmonics asa
increases and decreases. Not all harmonics coexist at
same value ofa. For example, the seventh harmonic soluti
coexists only with the fifth harmonic, while the latter coe
ists with the third harmonic and the fundamental~see Fig. 2!.

The number of coexisting harmonic solutions has be
shown to increase linearly with the delay in the Ikeda eq
tion, where it is in fact proportional to the ratio oft/t r
5bt @4#. We expect that the MG-DDE will also have th
property, in view of the strong similarity between the tw
systems@4,9,13# ~we note that another recent study@28# sup-
ports this similarity from the point of view of the spectr
properties of the solutions of both systems with increas

FIG. 2. Domains of coexistence and hysteresis of harmonic
Eq. ~3! for t5300. The solid and dotted lines indicate the period
and chaotic solutions, respectively. The initial conditions are cho
from the plateaus of the square wave solutions of period-2 an
orbits. Since seemingly stable solutions converge to simpler
monics after a long time, transients of 7000 delays have been
carded to identify stable solutions.
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PRE 58 413CHAOS CONTROL IN MULTISTABLE DELAY- . . .
delay!. While our simulations~not shown! indicate that the
number of coexisting harmonics does increase with the d
in the MG-DDE, more simulations are needed to ascer
whether the relationship between this number and the d
is linear as for the Ikeda equation.

For the present study, and those of information storag
well, we rather concentrate on the facts that multistabi
exists, and that it is limited, i.e., a finite number of solutio
coexist. For a given delay~or ratio R sinceb is constant in
our study!, there is a finite number of harmonics, periodic
chaotic, that can coexist. This number is three fort5300,
according to Fig. 2. Also, for this delay~and other param-
eters fixed, except fora!, the highest harmonic that we hav
observed is 7f 0 . Increasinga further produces chaotic solu
tions in which it is difficult to discern any particular ha
monic structure.

Thus, fort5300, there is a maximum number of harmo
ics nmax[4 that can be encountered asa is varied, corre-
sponding tof 0 , 3f 0 , 5f 0 , and 7f 0 . The maximum number
of plateaus in the initial condition which can evolve indepe
dently of one another is seven, the harmonic of highest
quency which can be observed. Thus, for these parame
seven is the maximum number of plateaus in the initial c
dition that are available for storing initial values to produce
prescribed pattern. Solutions with more than seven plate
will merge to one of the stable solutions in Fig. 2. Thu
there is a limit to the number of harmonic solutions that c
be observed for a given value ofa, i.e., to the number of
plateausn in the initial function that can evolve in time
without merging. Knowledge of this limit is important fo
memory storage applications such as those in Refs.@9,13#;

FIG. 3. Multistability in Eq.~3!. Three periodic solutions coex
ist for a50.1376 andt5300: ~a! the fundamental,~b! the third
harmonic, and~c! the fifth harmonic. These solutions are obtain
with three different piecewise constant initial functions and all ot
parameters fixed. The delayt is subdivided respectively into one
three, and five small plateaus of equal width.
y
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as
y
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-
rs,
-

us
,
n

these latter studies have shown that this limit increa
with R.

Interestingly, we have found that the ratioR/nmax is ap-
proximately the same in both the MG and Ikeda DDE’s
the parameter ranges studied. In the MG-DDE witht5300
andt r510 ~i.e.,R530!, this ratio is 4.28, while in the Ikeda
DDE @4# with t540 andt r51 ~i.e., R540!, this ratio is
4.44 ~our simulations of the Ikeda equation show five ha
monics, i.e.,nmax59, while the number of harmonics foun
in @4# was four!. It is thus likely that the proportionality
betweennmax andR is similar in both systems; further wor
is necessary to see if the proportionality constant is the s
or is dependent on the particular feedback used. In Sec.
we study the control of the UPO’s that arise as the mu
stable solutions studied in this section become unstable
lowing parameter changes~typically increases ina!.

III. CONTROLLING MULTISTABLE SOLUTIONS
IN THE MACKEY-GLASS DDE

A. A second delayed feedback control

Equation~3! has one delayed feedback control term.
solutions at largeR are chaotic over a wide range of param
eters@see Fig. 4~a!#. As t→` ~the limit of interest in our
study!, or e→0 in Eq.~2!, R→` and the dynamics are gov
erned by the resulting continuous-time difference equat
~CTDE!

r
FIG. 4. Numerical solutions of Eq.~3! for a50.145 without

control ~K50, r 50! using piecewise constant initial conditions.~a!
Chaotic solution of the DDE@Eq. ~9!# for t5300. ~b! Chaotic so-
lution of the CTDE@Eq. ~12!# for t5300. ~c! Chaotic solution of
the map @Eq. ~14!#. Note that the solutions in~b! and ~c! look
periodic because the initial function makes them initially follow
UPO.
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414 PRE 58BOUALEM MENSOUR AND ANDRÉ LONGTIN
x~ t !5b21F„x~ t2t!…. ~4!

In this formulation, any point in a given delay interv
evolves in time from one delay interval to the next, indepe
dently of its neighboring points in that delay interval. Th
solution can thus be discontinuous. For constant initial c
ditions, the solutions are composed of plateaus. The ev
tion of a given point from one delay interval to the next
given by the map obtained by discretizing time in units ot
in Eq. ~4!:

x~ i !5b21F„x~ i 21!…. ~5!

The dynamics of Eqs.~4! and~5! are also chaotic@see Figs.
4~b! and 4~c!#. If a second delayed control@14#, or better
still, an ‘‘extended control’’@15,29,30# ~see below! is prop-
erly applied, the chaotic harmonics as well as UPO’s of
DDE, CTDE, and map can be made periodic. This is sho
in Fig. 5 for a period-4 ‘‘P4’’ orbit, for which the map cycles
between four values, the CTDE between four plateaus,
the DDE between four plateaus connected by abrupt
smooth transitions. In the following,N designates the num
ber of points in the orbit of the singular limit map, or, alte
nately, the number of values through which the plateau
the DDE or CTDE cycle. We will thus refer to a ‘‘PN’’-type
solution.

Control is achieved here by adding a second feedb
D(t)[K@x(t2T)2x(t)# in Eq. ~1! @14#, whereT.t is the

FIG. 5. Control of the Mackey-Glass DDE@Eq. ~3!# and of its
corresponding CTDE and map fora50.145,K50.2, andr 50.8;
piecewise constant initial conditions are used.~a! Controlled P4

orbit of Eq. ~9! for t5300 andT51225.6.~b! ControlledP4 orbit
for the CTDE (bt→`) @Eq. ~12!# for t5300 andT51200. ~c!
ControlledP4 orbit for the map@Eq. ~14!#.
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period of the unstable~periodic or chaotic! fundamental so-
lution, andK is the control parameter. The dynamics th
become

ẋ~ t !52bx~ t !1F„x~ t2t!…1K@x~ t2T!2x~ t !#. ~6!

One has the choice of controlling a variety of UPO’s; t
ones of interest in our work are the fixed point, the fund
mental square-wave periodic solution, harmonics of this
lution, period-doubled versions of the fundamental soluti
and the harmonics of these period-doubled solutions.
these solutions further form a continuum as the period of
fundamental solution varies, as determined by the hyster
diagram Fig. 2~this period is proportional tot @9,13#!.

To control a harmonic of ordern of the fundamental so-
lution, the initial function in the interval2T,t,0 is split
into 2n equal plateaus. The values ofx attributed to these
plateaus are chosen from the unstable fundamental solu
Figure 6 shows the coexistence of the controlled fundam
tal UPO of periodT5615.9, and its harmonics whena
50.15. Such solutions are important for memory stora
purposes, since a finite ‘‘message’’ can be stored into
stable periodic solution@9,10# or a stabilized UPO@13#.

One can also select to stabilize the UPOPN of periodT,
and use a harmonic solution of ordern with 1,n,nmax as
the initial function over one delay intervalt. It is further

FIG. 6. Control of the multistable solutions in Fig. 1 fora
50.15, K50.05, andr 50. The periodT in each case is chose
slightly different from the period of the UPOP2 (T5615.9), since
the ratioT/(2nDt), which is the number of points on each plate
in the initial condition on2T,t,0, should be an integer to allow
the integration~n is the harmonic order!. This procedure does no
affect the basic result.~a! The controlledP2 orbit (T5615.8). ~b!
The controlled third harmonic (T5615.6). ~c! The controlled fifth
harmonic (T5616.0). ~d! The controlled seventh harmonic (T
5614.6).
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PRE 58 415CHAOS CONTROL IN MULTISTABLE DELAY- . . .
possible to minimize transients in the evolution toward
harmonic solution by specifying the initial function in th
whole interval2T,t,0, instead of the usual2t,t,0.
This is done simply by copying the initial function o
(2t,0) to the previous intervals of durationt right up to
time 2T. We denote byNmax the maximum number of pla
teau values through which the stabilized UPO can cycle
one period.Nmax depends on the bifurcation order of th
particular wave form. For example, after three period d
blings starting from the fixed point,Nmax58. Figure 7 illus-
trates the control of aP8 orbit for the DDE, as well as for the
associated singular limit map. It also illustrates the behav
of the dispersionuD( i )u for the map~absolute value of the
applied perturbation averaged over time! as a function ofK.
It is seen that this quantity falls to zero for a range ofK
values. This corresponds to the range of stable control ofP8 .

The maximum number of patterns which can be stored
‘‘storage capacity,’’ is (Nmax)

nmax, since each ‘‘bin’’ or pla-
teau of a harmonic can take on one ofNmax values. This
capacity is limited, since periodic orbits corresponding
higher bifurcation orders are difficult to control using on
one previous state at timet5T. Section III B illustrates the
notion of capacity in the context of extended control.

B. Extended control

Improving the control of finer UPO’s in delay-differentia
equations can, among other uses, increase memory sto

FIG. 7. ~a! Extended control of theP8 orbit of the MG DDE Eq.
~9! for a50.145, K50.08, and r 50.9, with t5300 and T
52447.2. The initial condition on2T,t,0 is a piecewise con-
stant function corresponding to the wave form ofP8 , as predicted
by the map Eq.~14! in ~b!. ~b! Extended control of theP8 orbit of
the map with Eq.~14! usingL58. ~c! Prediction of control in the
DDE using the dispersionuD( i )u vs K for the P8 orbit of the map
@Eq. ~14!#. Transients of 5000 periods have been discarded.
n

-

r

r

ge

capacity by using the multistability of the controlled orbit
To achieve such improved control, we use the method
extended control, proposed originally for maps@15#, and
subsequently for ordinary differential equations@29,30#. This
method generalizes the feedback term in Eq.~6! to many
previous states:

D~ t !5KF ~12r ! (
m51

`

r m21x~ t2mT!2x~ t !G ~7!

where 0<r ,1 is an adjustable parameter. This can be
written as

D~ t !5K@x~ t2T!2x~ t !#1rD ~ t2T!. ~8!

The DDE with extended control is thus governed by

ẋ~ t !52bx~ t !1F„x~ t2t!…1D~ t !,
~9!

D~ t !5K@x~ t2T!2x~ t !#1rD ~ t2T!.

This system of equations can be solved by specifying
initial function for x(t) andD(t) in the interval2T,t,0.
The parameterr can be tuned to yield the largest interval
K values over which an UPO is controllable. To minimiz
transients,x(t) is given its average asymptotic values o
each plateau predicted by the map@see Eq.~14! below#, and
D(t) is given its asymptotic value 0. Figure 5~a! shows the
control of the P4 orbit in the MG-DDE @Eq. ~9!# for a
50.145 andt5300. The control interval for, e.g.,r 50.8 is
0.07<K<0.53, which is large compared with 0.04<K
<0.11 for r 50. We will see that this range is close to th
over which the singular limit map can be controlled~see Fig.
12 for P4 , and also Fig. 9 in the case of control of the fixe
point!.

We illustrate the notion of ‘‘storage capacity’’ with a
example. Fort5300, nmax is 7 ~Figs. 2 and 6!. If r 50,
Nmax54, but, if r 50.9, Nmax58. Thus, using extended con
trol for the t5300 case (R530), storage capacity is in
creased by a factor of 128. Fort5300, other UPO’s with
N.8 are very difficult to control in the DDE due to th
continuity of the solution imposed by the dynamical equ
tions as well as numerical accuracy. In the map and CTD
however,~see Sec. IV!, such solutions can be controlled u
to N516 for a50.145. The control of solutions with highe
N are then limited by numerical accuracy.

IV. METHOD FOR DISCRETE-TIME CHAOS CONTROL

In this section, we show that the asymptotic solution a
the controllability of the DDE for large but finite delay ar
predicted by the singular limit dynamics (bt→`). In turn,
these dynamics provide a general method of controlling
discrete-time dynamical system. We should emphasize h
that our goals in controlling UPO’s in difference and dela
differential dynamical systems lie more in the context
controlling known systems such as lasers or simple ne
networks, and, e.g., exploiting their multistability properti
for, e.g., storage applications, rather than of controlling u
known systems. Thus we are assuming throughout that
havea priori knowledge of a good model of the system to
controlled. We first present our general discrete-time con
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416 PRE 58BOUALEM MENSOUR AND ANDRÉ LONGTIN
method, then study its analytical properties for additive a
parametric control, and finally discuss its usefulness
studying UPO control in the DDE.

A. Method

Using the rescaling property Eq.~2!, the controlled DDE
@Eq. ~9!# can be written as

b21e ẏ~ t8!52y~ t8!1b21$F„y~ t82t8!…1E~ t8!%,
~10!

E~ t8!5K@y~ t82T8!2y~ t8!#1rE~ t82T8!,

where et5t8, et5t8, eT5T8, x(t)[y(t8), and D(t)
[E(t8). Note that the termb21e ẏ(t8) is all the more neg-
ligible the smallerb21e is, and thus the largerb is to begin
with. Afterwards, and for simplicity, we resubstitute into E
~10! the original variablesx(t) andD(t) instead ofy(t8) and
E(t8). In the singular limitbt→` ~i.e., b21e→0!, Eq. ~10!
becomes equivalent to a controlled CTDE

x~ t !5b21$F„x~ t2t!…1D~ t !%,
~11!

D~ t !5K@x~ t2T!2x~ t !#1rD ~ t2T!,

which can be rewritten as

x~ t !5~b1K !21$F„x~ t2t!…1Kx~ t2T!1rD ~ t2T!%,

D~ t !5~b1K !21$K@bx~ t2T!2F„x~ t2t!…#1brD~ t2T!%.
~12!

For constant initial conditions, the solutions are composed
plateaus. The evolution of each point on a plateau is given
the map obtained by discretizing time in units oft in Eq.
~11!:

x~ i !5b21$F„x~ i 21!…1D~ i !%,
~13!

D~ i !5K@x~ i 2L !2x~ i !#1rD ~ i 2L !,

which can again be rewritten as

x~ i !5~b1K !21$F„x~ i 21!…1Kx~ i 2L !1rD ~ i 2L !%,

~14!

D~ i !5~b1K !21$K@bx~ i 2L !2F„x~ i 21!…#

1brD~ i 2L !%,

whereL is an integer that represents the period of the U
of the map. The initial condition is specified in the interv
2L, i ,0. When the control for a selected UPO is achiev
the perturbationD( i ) becomes exactly zero in the CTD
case~in contrast to the differential dynamics case where i
small but finite!. The behavior ofD( i ) for this map predicts
the controllability of the DDE at largeR ~Figs. 7~c! and 12
below!.

We show below that this method of controlling map
inspired by the singular limit of the controlled DDE as we
as by the work in Refs.@14,15#, allows, in comparison with
other methods, more complicated orbits to be controlled
also allows control of a given solution to within a certa
error magnitude over a broader range of parameters. It is
d
r

of
y

l
,

s

,

it

so

practical since it can access a large range of the control
rameterK and intrinsic feedback parametera, as illustrated
in the next sections. The enhanced range of control st
from the timing of the applied perturbation. For example,
the method of Ref.@15#, and the previous methods on whic
it is based~see Secs. IV B and IV C!, time in Eq. ~7! is
discretized, and UPO’s in, e.g., the logistic mapx( i )
5F„x( i 21)…5mx( i 21)„12x( i 21)… are controlled using
feedback perturbations of the parameter„m1d( i 21)…,
where

d~ i 21!5K@x~ i 21!2x~ i 212L !#1rd~ i 212L !.
~15!

This perturbation depends on the previous times (i 21) and
( i 212L); in our method, the perturbation depends on t
more recent times (i ) and (i 2L) @Eqs.~13! and~14!#, which
allows better control.

A priori, one might expect that causality is violated in o
method, since a perturbation involvingx( i ) is used to calcu-
latex( i ). This is only apparent, and a consequence of req
ing the control to use closer values in the recent past. In f
this requirement nevertheless allows us to expressx( i ) as a
function of x( i 21) and x( i 2L), i.e., to have the well-
defined causal dynamical law in discrete time@Eq. ~14!#. The
computational steps in the simplest case wherer 50 are as
follows. Iterating Eq.~14! forward in time requires the initia
conditionsx(0),x(21),x(22),...,x(12L). Only x(0) and
x(12L) are needed to computex(1); next, x(1) andx(2
2L) are needed to computex(2); and so on. Thesame
holds for both additive or parametric perturbations, as
will see below.

It is important to point out, however, that from this caus
point of view, the applied perturbation at each time step m
be small or large, since it is proportional to the state varia
x itself. This may imply that the method is not well suited
deal with situations where our prior knowledge of the ba
dynamical system to be controlled,x( i )5F„x( i 21)…, is in-
complete. Experimental tests will ultimately confirm th
point, and are beyond the scope of the present work.
control method was devised with applications to dynami
memory devices in mind, both in continuous or discre
time; in these cases, the dynamical law is often known w
great precision, such as in the case of the Ikeda laser e
tion @4# or hybrid systems such as acousto-optic devices@31#.
This extended range of control is discussed from an ana
cal point of view for additive control in Sec. IV B, and para
metric control in Sec. IV C.

B. Range of control for additive feedback

In order to compare Socolar, Sukow, and Gauthie
method with ours, we investigate the control of the fix
point of the logistic map with additive feedback contro
Since their original work used parametric control, we ne
first to derive the stability criteria for their method with ad
ditive extended control. The dynamics for the controlled m
F(x) are

x~ i !5F„x~ i 21!…1d~ i 21!,
~16!

d~ i !5K@x~ i !2x~ i 21!#1rd~ i 21!,
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which can be rewritten as

x~ i !5F„x~ i 21!…1d~ i 21!,
~17!

d~ i !5K@F„x~ i 21!…2x~ i 21!#1~K1r !d~ i 21!.

The controlled map has a fixed point at (x* ,d* )5„(m
21)/m,0… which is unstable form.3. By linearizing the
controlled map around this fixed point, and lettingy( i )
5x( i )2x* ande( i )5d( i )2d* , the above equations yield

S y~ i !
e~ i ! D5S n

K~n21!

1
K1r D S y~ i 21!

e~ i 21! D , ~18!

wheren5F8(x* )522m. The stable control is obtained b
first finding the eigenvalues of the matrix in Eq.~18!, which
are given by

l65 1
2 @n1K1r 6A~n1K1r !224~nr 1K !#. ~19!

The control is stable iful6u,1. This yields the domain o
stability n,1 ~i.e., m.1!, K.(11r )(m23)/2, and
K,11~m22!r @see Fig. 8~a!#.

Now we use instead our control term in Eq.~14!, and
apply the resulting control method to the fixed point of t
logistic and the MG maps. The linearization around the fix
point (x* ,D* ), with y( i )5x( i )2x* ande( i )5D( i )2D* ,
yields

FIG. 8. Boundaries in the (K,m) plane for stable control of the
fixed point in the logistic map using additive perturbations. Dot
lines are forr 50, solid lines forr 50.5, and dashed lines forr
→1. ~a! The range of stable control is defined by the area betw
the lines using Eq.~16!. ~b! The range of stable control is define
by the area in the upper-half-planes using our method@Eq. ~14!#.
This range is much larger than in~a!.
d

S y~ i !
e~ i ! D5

1

b1K S n1K
K~b2n!

r
br D S y~ i 21!

e~ i 21! D . ~20!

The eigenvalues that determine the stable control are g
by

l65
1

2~b1K !
@n1K1br6A~n1K1br !224rn~b1K !#.

~21!

The stable control is bounded by the curvesK.2(1
1r )(b1n)/2 andK.rn2b for 0,n,b, and byK.2(1
1r )(b1n)/2 for n,0. For the logistic map~b51 and n
522m!, the range of stability of the controlled fixed poin
in the (K,m) plane is much larger than in the previous ca
@see Fig. 8~b!#.

For the MG map~Fig. 9!, the boundaries for stable contro
of the fixed point are curved since they are plotted in
(K,a) space andn5b(1/a29) (b50.1). Figure 9 also plots
the range of control for the MG-DDE, as determined by n
merical simulation. It is seen that, for a given value ofr , the
boundary for the map and for the DDE are approximately
same at this level of resolution. Hence the stable contro
the fixed point in the MG map can be used to predict
controllability of the fixed point in the DDE at large delay
We recall that this fixed point goes unstable at a Hopf bif
cation which occurs ata50.125 fort5300.

n

FIG. 9. Boundaries in the (K,a) plane for stable control of the
fixed point of the MG map using Eq.~14! ~additive control!. The
dotted, solid, and dashed curves are the stability boundaries
respectively,r 50, r 50.5, andr→1; control occurs in the uppe
half-planes bounded by these curves. The open circles (r 50),
pluses (r 50.5), and filled triangles (r→1) indicate regions of
stable control of the fixed point of the DDE@Eq. ~9!, t5300# from
which the MG map was obtained. For clarity, only the beginning
these stability regions have been plotted for each value ofr ; in fact,
they extend vertically into the upper-half plane, as for the m
There is good agreement between the region of stable control in
map and in the DDE at large delay.
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The controllability of orbits withN.1, for example the
P4 orbit of the logistic map, is also enhanced with o
method. Without control, this orbit is unstable form.3.54.
If we apply the method in Ref.@15#, this orbit remains stable
up to m'3.62 for r 50. Using our method@Eq. ~14! with b
51# without extended control (r 50), the control of this
orbit can be maintained up tom53.97, and the allowable
range ofK is much larger~not shown!. This range decrease
with increasingL, so higher-period orbits are very difficu
to control using both methods forr 50.

The performance of the method improves even more
r .0 ~see Fig. 10!, allowing control of higher period UPO’s
and enhanced parameter ranges. For example, withr 50.9
the control of theP4 orbit can be maintained up tom54.5,
while the method in Ref.@15# controls up tom53.75 using
r 50.5. Figures 10 and 12~b! show how the range of control
lability of the P4 orbit is enhanced with Eq.~14! for, respec-
tively, the logistic map~m53.95, r 50.9! and the MG map
~a50.145,r 50.8!.

C. Range of control for parametric feedback

We now consider the case of parametric feedback for
method, and compare it to the results for parametric con
presented in Ref.@15#. Let F„x(t2t)…5m f „x(t2t)… ~m is
the feedback parameter!. Parametric control for the DDE ca
be written as

FIG. 10. DispersionuD( i )u vs K for the P4 orbit of the logistic
map x( i )5mx( i 21)@12x( i 21)#, using Eq. ~14! for m53.95,
with r 50 and 0.9. Note that, forr 50, the dispersion decreases
zero only for a narrow range ofK values, and that the ranges ofK
whereD is negligible do not overlap for ther 50 and 0.9 cases
The range of control withr 50.9 is much larger than withr 50,
demonstrating the advantages of extended control@15# even for
orbits with a higher bifurcation order.
if

ur
ol

ẋ~ t !52bx~ t !1$m1K@x~ t2T!2x~ t !#1rD ~ t2T!%

3 f „x~ t2t!…,
~22!

D~ t !5K@x~ t2T!2x~ t !#1rD ~ t2T!.

By letting bt→` as in Sec. IV B, the CTDE with parametri
control can be written as

x~ t !5@b1K f „~ t2t!…#21$m1Kx~ t2T!1rD ~ t2T!%

3 f „x~ t2t!…
~23!

D~ t !5K@x~ t2T!2x~ t !#1rD ~ t2T!.

The control of the fixed point in the corresponding map i

x~ i !5@b1K f „x~ i 21!…#21$m1Kx~ i 21!1rD ~ i 21!%

3 f „x~ i 21!…,
~24!

D~ i !5K@x~ i 21!2x~ i !#1rD ~ i 21!.

This can be rewritten as

x~ i !5g„x~ i 21!…@m1Kx~ i 21!1rD ~ i 21!#,
~25!

D~ i !5Kx~ i 21!2Kg„x~ i 21!…@m1Kx~ i 21!1rD ~ i 21!#

1rD ~ i 21!,

whereg(x)5 f (x)/@b1K f (x)#. We again focus on control
ling the fixed point of the logistic map:xi5F(xi 21)
5mxi 21(12xi 21), b51. The fixed points satisfyx*
5F(x* ) andD* 50. The algebra can be simplified using th
following relationships:

g~x* !5x* /@m1Kx* #,
~26!

g8~x* !5mn/@m1Kx* #2,

wheren5F8(x* ). The linearization around the fixed poin
(x* ,D* ) with y( i )5x( i )2x* ande( i )5D( i )2D* yields

S y~ i !
e~ i ! D5

1

m1Kx* S mn1Kx*
Km~12n!

rx*
rm D S y~ i 21!

e~ i 21! D .

~27!

The eigenvalues that determine the stable control are g
by

l65
1

2~m1Kx* !
@m~n1r !1Kx*

6A@m~n1r !1Kx* #224rmn~m1Kx* !#. ~28!

The requirement thatul6u,1 yields the stability curves for
our parametric control method: K.2m(11r )(n
11)/(2x* ) and K.m(rn21)/x* if 0 ,n,1, and K.
2m(11r )(n11)/(2x* ) if n,0. For the logistic map~b
51, x* 5(m21)/m, n522m!, the stability boundary for
the case of interest here~n,0, i.e., m.2! is thus K.
2m2(11r )(32m)/„2(m21)…. Stability occurs in the
upper-half-plane bounded from below by this curve~Fig.
11!. This curve is similar to the one with additive contr
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obtained from Eq.~21!, except for the factorm2/(m21).
With the additive control, the curves for stable control a
straight lines; for parametric control, that factor turns the
lines into parabolas. The method again produces control o
a larger parameter range than in Ref.@15#, as Fig. 11 reveals
We note again that our method assumes a good knowle
of the mapF.

D. Prediction of controllability of the DDE

This section shows that the absolute value of the feedb
perturbation,uD( i )u ~also referred to as ‘‘dispersion’’@14#!,
and the Lyapunov exponents of the map, are important
predicting the parameter range over which the DDE at la
R and the map itself can be controlled. Numerical compu
tion of the dispersion is straightforward. The Lyapunov e
ponent estimation must however be done carefully, e.g.,
ing QR decomposition as we do below@32#. The Jacobian
matrices may have singularities for higher period orbits
cause of finite numerical precision. We first convert t
2L-dimensional map@Eq. ~14!# into 2L coupled one-
dimensional maps,

y0~ i !5~b1K !21$F„y0~ i 21!…1Ky1~ i 21!1rz1~ i 21!%

z0~ i !5~b1K !21$2KF„y0~ i 21!…1bKy1~ i 21!

1brz1~ i 21!%

yj~ i !5yj 11~ i 21!, j 51,2, . . . ,L22,
~29!

zj~ i !5zj 11~ i 21!, j 51,2, . . . ,L22,

FIG. 11. Parametric control of the logistic map~Sec. IV C!.
Dotted lines are forr 50, solid lines forr 50.5, and dashed lines fo
r→1. ~a! The range of stable control is defined by the area betw
the lines using Eq.~16!. ~b! The range of stable control is define
by the area in the upper-half-planes using Eq.~14!. This range is
much larger than in~a!.
e
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yL21~ i !5y0~ i 21!,

zL21~ i !5z0~ i 21!.

The QR algorithm is then applied using the Jacobian ma
ces of the 2L-dimensional map. Only a few decomposition
are needed forQ to converge to the identity matrix@32#. The
result is shown in Fig. 12~c!, wherelmax is in fact negative
over a certain range ofK values~negativity of all exponents
is necessary to have control of the UPO!. In the r 50 case,
lmax converges quickly to zero asK increases. Forr 50.8,
lmax slowly increases to zero over the range ofK presented
here. This behavior is also seen in finite-dimensional
namical systems@29#. Very good agreement is seen betwe
the behaviors oflmax and the dispersionuD( i )u of the map
@Fig. 12~b!# for both values ofr plotted, since the dispersio
is small whenlmax is negative. This is also true when com
paring the behavior of these quantities to that of the disp
sion uD(t)u for the DDE @Fig. 12~a!#. While the dispersion
uD( i )u is zero when control is achieved, the dispersi
uD(t)u for the DDE can only approach zero, due to the d
ferentiability of the solution and the finite precision in th
integration procedure. Further,uD(t)u increases more rapidly
from its minimum thanuD( i )u for both r 50 and 0.8. Nev-
ertheless, it is clear that bothuD(t)u and uD( i )u have quali-

n
FIG. 12. Range of control for theP4 orbit of the MG-DDE and

the MG map fora50.145 with r 50 and r 50.8. ~a! Dispersion
uD(t)u vs K of the DDE using Eq.~9!. ~b! DispersionuD( i )u vs K
of the map using Eq.~14!. ~c! Maximum Lyapunov exponentlmax

vs K of the map using Eq.~29! and the QR decomposition method
Transients of 5000 periods have been discarded. In~a!, the
period of the UPO varies slightly withK according to T
51208.34113.87 exp@(0.072K)/0.1# obtained from fitted data.
This variation was taken into account for the calculation
D( i ) vs K.



-
E

t
e

u-

on
s
ra

gth

a-

vi-
of

s
ing

tic

f
out
,
ec-

or-
to

i-

ed
in

m
-

420 PRE 58BOUALEM MENSOUR AND ANDRÉ LONGTIN
tatively similar behaviors as a function of the control gainK.
Hence, the 2L-dimensional singular limit map again pro
vides good insight into the control of the UPO’s of the DD

V. APPLICATION OF CONTROL METHOD
TO NEURAL NETWORKS

The control method discussed in Sec. IV is now applied
a small chaotic neural network evolving in discrete tim
@16,17#. The dynamics of thenth neuron in a network ofM
chaotic neurons is given by

yn~ i !5 (
m51

M

Wnm(
q50

i 21

kqhm„xm~ i 212q!…

1 (
m51

N

Vnm(
q50

i 21

kqI m~ i 212q!

2a (
q50

i 21

kqgn@xn~ i 212q!#2un , ~30!

xn~ i !5 f n„yn~ i !…, ~31!

wherexn( i ) is the output of thenth neuron at timei , yn( i ) is
the internal state of thenth neuron at timei , and u is the
threshold for firing. Also,M represents the number of ne
rons in the network, whileN is the number of externally
applied inputsI to a neuron. Functionsh andg characterize,
respectively, the propagation of action potentials down ax
and the refractoriness of the neuron~the latter characterize
the inability of the neuron to fire spikes in close tempo

FIG. 13. Controlling chaos in a Nagumo-Sato network co
posed of three neurons.X1( i ) is the output of the first chaotic neu
ron, which takes values between 0 and 1.~a! The chaotic solution of
the first neuronX1( i ) vs i for K50 andr 50. ~b! Controlled solu-
tion using Eq.~14! with L515,K50.38, andr 50.5.~c! Same as in
~b!, but for L516, K50.2, andr 50.5.
.

o

s

l

succession!. Wnm describes the feedback connection stren
between neurons in the network, andVnm that between ex-
ternal inputs and neurons. Finally,a andk are constants. In
the original model@16#, the output functionf (y) was a unit
step function; instead, we have used as in Ref.@17# a sigmoi-
dal function with adjustable steepness:f „yn( i )…51/(1
1e2yn( i )/0.02). Thus the output of a given neuron is an an
log value between 0 and 1.

The above network dynamics depend on the whole pre
ous history of the system, through the decaying effects
inputs and neuron refractoriness. It was shown in Ref.@16#
that the neuron states at timei governed by these dynamic
can be rewritten solely in terms of the immediately preced
states of all the neurons in the network at timei 21 as fol-
lows:

yn~ i !5kyn~ i 21!1 (
m51

M

Wnmhm~ f m„ym~ i 21!…!

1 (
m51

N

VnmI m~ i 21!

2agn~ f n„yn~ i 21!…!2~12k!un , ~32!

and xn( i )5 f n„yn( i )… as above. As in Ref.@17#, we choose
h(x)5x and g(x)5x, M53, a51.0, u50.0, and W12
5W235W3150.5, and the otherWnm’s and allVnm’s are set
to zero. The initial functions arey1(0)51.0, y2(0)50.0,
y3(0)50.0. Further, we apply the control to the first chao
neuron in the network. The dynamics are then

y1~ i !5~11K !21@ky1~ i 21!2 f „y1~ i 21!…10.5f „y2~ i 21!…

1Ky1~ i 2L !1rD ~ i 2L !#,

D~ i !5K@y1~ i 2L !2y1~ i !#1rD ~ i 2L !,

x1~ i !5 f „y1~ i !…,

y2~ i !5ky2~ i 21!2 f „y2~ i 21!…10.5f „y3~ i 21!…,
~33!

x2~ i !5 f „y2~ i !…,

y3~ i !5ky3~ i 21!2 f „y3~ i 21!…10.5f „y1~ i 21!…,

x3~ i !5 f „y3~ i !…,

The bifurcation parameterk in Refs. @16,17#, distinct from
the additive feedback control gainK, sets the decay rate o
refractoriness and memory effects from past inputs. With
the control of UPO’s using additional delayed feedbackk
50.769 231 produces chaotic behavior with Lyapunov sp
trum ~0.13,20.23,21.29! @17#. The behavior of one neuron
in the network is shown in Fig. 13~a!, where neuron output is
plotted as a function of discrete time. The sharp spikes c
respond to neuron firings. If our control method is applied
the first neuron in Eq.~33!, the network behaves period
cally, as shown in Figs. 13~b! and 13~c! for L515 and 16,
respectively.

Our method is thus applicable to biophysically detail
models of activity in networks of neurons. This suggests

-
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turn that the control method can be applied to real netwo
of excitable cells by monitoring either the firing statex or the
internal voltage statey, provided one has sufficient know
edge about the functions and parameters in the above e
tions which describe its uncontrolled behavior. Combini
the results of this section with those in Sec. III, we anticip
that the same control method can be used for both discr
time networks, such as the one studied here, and version
these networks with added differential terms.

VI. CONCLUSION

We have first presented results on multistability and h
teresis of stable solutions of the Mackey-Glass del
differential equation, as well as on the controllability of i
unstable periodic orbits. We have focused on the large de
to-response time ratio regime (R530). In particular, the
number of multistable solutions, either periodic or chao
harmonics of a fundamental wave form, is found to be fin
as is the numbernmax of stable harmonics accessible to t
system asa is varied and other parameters are kept fixed

We have then shown that the ‘‘extended control’’
UPO’s devised for maps@15# and ordinary differential equa
tions @29,30# allows finely structured orbits of the DDE to b
controlled. The maximum bifurcation order of controlle
UPO’s in the DDE with t5300 is three~third period-
doubling bifurcation!, corresponding to aP8-type solution in
which the plateaus cycle between eight values. We have
ther shown that the difference equations~in both continuous
or discrete time!, obtained in the singular perturbation lim
of the DDE, are useful to predict the range of control of t
DDE at largeR. More work is needed to design a contr
that can stabilize UPO’s with higher bifurcation orders. Ne
ertheless, the results presented here will be useful for
design of high capacity versatile memory devices based
the multistability inherent to delayed dynamical systems
continuous-time difference equations, as well as to discr
time dynamical systems.

The information storage capacity of DDE’s at largeR,
without control @9# or with additional or extended delaye
feedback control, is limited by the requirement that only o
pattern be stored at a time. The possibility of using m
than one of the coexisting solutions at a time will be e
plored in future work.

The controlled dynamics in the singular limitR→` fur-
ther suggest an improved method of controlling discrete-t
systems. This method extends the parameter range
.
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which control occurs as compared to standard methods,
allows for the control of UPO’s with higher bifurcation or
ders. Its power relates to the fact that the control pertur
tions, extended or not, are calculated based on more re
information about the state of the system. The method wo
for both additive or parametric control. More work is re
quired to determine the performance of the method in
face of, e.g., uncertainty about the uncontrolled dynam
or, relatedly, noise. This is of importance in the context
the control of, e.g., real excitable systems.

Such future work could benefit greatly from results in t
control systems theory literature, which has confronted pr
lems of delayed feedback control for a long time~see, e.g.,
Ref. @33#!. Indeed, many DDE solutions with plateaus,
well as orbits of CTDE’s and maps, have several feature
common with so-called ‘‘discrete signals,’’ i.e., signa
which vary only at discrete times. Thus the combination
these solutions and the continuous feedback needed to o
them make the dynamical systems of study here simila
sampled-data systems@34#. Consequently, concepts from th
literature on the digital control of dynamical systems, such
thez transform and the controllability matrix, are relevant
analyze the stability of the delay and extended delay syst
studied here, both for the large delay case and the discr
time singular map case. That literature generally focuses
canonical dynamical forms involving constant coefficie
matrices and the control of fixed points, while the proble
of interest in our study involve the control of nonlinear flow
onto various kinds of periodic trajectories. Thus the metho
from that literature will be particularly helpful for fixed poin
control issues, and can also guide the analysis for the lin
ization around periodic orbits and the stabilization of UPO

Our discrete-time control method meets the primary ‘‘a
plied’’ objectives of our work, namely, to allow for the con
trol of finely structured orbits in difference equations a
maps used to model, e.g., neural networks@16,17,23# and
dynamical memory devices@9,13#. The method was illus-
trated here on a chaotic neural network, given the interes
controlling or producing aperiodic dynamics in real syste
of, e.g., nerve or cardiac cells, or in simply understand
and controlling their multistability.
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