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The multistability exhibited by first-order delay-differential equatidBE’s) at large delay-to-response
ratiosR is useful for the design of dynamical memory devices. This paper first characterizes multistability in
the Mackey-Glass DDE at large. The extended control of its unstable periodic orl§its*QO’s), based on
additional feedback terms evaluated at many times in the past, is then presented. The method enhances the
control of UPO’s and of their harmonics. Further, the discrete-time map obtained in the singular perturbation
limit of the controlled DDE is useful to characterize the range of parameters where this extended control
occurs. Our paper then shows how this singular limit map leads to an improved method of controlling UPO’s
in continuous-time difference equations and in discrete-time maps. The performance of the method in the
general contexts of extended additive and parametric control is evaluated using the logistic map and the
Mackey-Glass map. The applicability of the method is finally illustrated on the Nagumo-Sato discrete-time
neural network mode[.S1063-651X98)09707-4

PACS numbg(s): 05.45:+b, 02.30.Ks, 42.65.Pc, 42.79.Ta

I. INTRODUCTION zation of UPQO’s in delay-differential models of cortical func-
tion [5].

Multistability in a dynamical system is the coexistence of The first part of our pape(Secs. Il and Il discusses
multiple attractors. This property implies that qualitatively chaos control in the Mackey-Glass D)E] using a second
different asymptotic solutions can result from changes in thelelayed feedback loofl4], as well as its generalization in
initial conditions. Multistability in delay-differential systems terms of “extended control,” where feedback from values of
has received recent attention because it enables such systeths state variable at several regularly spaced times in the past
to act as memory devices, an idea first suggested by Ikeda used[15]. The number of harmonics of the fundamental
and Matsumoto[1]. For the simple first-order delay- wave form which coexist in the Mackey-Glass DDE is also
differential equations of interest in many applicatid@s3],  studied in order to identify the subset of the infinite number
multistability appears when the delays much greater than of UPQO’s which can realistically b&l) controlled using
the response time, of the system. Different periodic solu- delayed-feedback chaos control, d@iiused for information
tions, chaotic solutions, or both may then coexist for a giverstorage purposes.
set of equation paramet€r,4]. The second part of our papé&ecs. IV and VY presents a

Interest in multistability in delay-differential equations chaos-control method for discrete-time maps. It is based on
(DDE's) arises in the context of nonlinear control, such asthe dynamics of the DDE in the singular limit where the
occurs in physiological systeni8,5,6] and optical or neural delay-to-response time rati®@—«. We discuss its perfor-
network systems with delayed feedb&cK. For example, mance, and illustrate it on the logistic map as well as on the
prescribed periodic solutions can be stored as oscillatory patMackey-Glass” map which results from the singular limit
terns in the electromagnetic field of a laser cayBy9] or in of the Mackey-Glass DDE. We also illustrate the method on
the firing activity in models of neural recurrent feedbacka discrete-time neural network model known as the Nagumo-
loops[10] by choosing appropriate initial conditions. Such Sato mode[16] (see also Refl17]). We then improve our
multistability has further been demonstrated in electronic cirmethod using extended contidl5]. With this improvement,
cuits [11,12]. Unstable periodic solution8JPQO’s) can also  orbits of even higher periodicityi.e., of higher bifurcation
be used to store prescribed patterns if they are first stabilizeorder in a period-doubling sequenasan be stabilized. Our
by chaos-control techniqu¢&3] such as those based on ad- method is found to allow the control of UPO’s in these maps
ditive delayed feedbackl4]. The chaotic regime makes the over larger parameter ranges than those found with other
memory storage very versatile, d(B to the existence of an existing method$14,15,18.
infinite number of UPQO’s, some of which coexist with one or ~ We further bridge results in the two parts of our paper by
more chaotic attractors, an@) to the adjustability of the showing that, under certain conditions, chaos control in the
period of UPO'’s through variations of the intrinsic dei@s DDE can be understood using the finite-dimensional
distinguished from the second delay for chaos corjttd]).  discrete-time map suggested by our control method. Singular
Such feedback has further been shown to allow the stabililimit maps have been shown to be useful in understanding

certain aspects of the behavior of the associated DI¥€s,

e.g., Refs[4,19,2(). This map predicts the range of param-

*Present address: Centre de Recherche dépitdbdu Sacre  eters for which control occurs; the accuracy of this prediction
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Canada H4J 1C5. for simple delayed feedback contifdl4] in Ref.[13], and is
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One of our goals in developing this control method is tobelow, accurate solutions on every time scale can be ob-
understand multistability and UPO control in models of spa-tained for any delay by using a 0.1-s integration time step.
tially distributed excitable cell assemblies, such as those One can obtain a good idea of the solutions and of their
found in nervous and cardiac tiss(sze, e.g., Ref21] fora  controllability for largeR by using instead a larger time step.
recent review. The possibility of controlling, using nonlin- By “controllability” we mean a measure of the range of
ear dynamical techniques, disorders such as epilepsy or hegrarametergsuch as a hypervolume in parameter spaser
arrhythmias, when the underlying systems indeed exhibitwhich control occurs to within a specified error magnitude.
e.g., chaotic dynamics in health or in disease, is excitindgrhe use of a larger time step will not produce accurate tran-
[22]. Models of such cell assemblies often rely on a simpli-sitions between plateaus, but the plateau values will be ac-
fied discrete-time map description of the single cell dynam-curate. AsR increases, the duration of these rapid transitions
ics (compared to, e.g., complex Hodgkin-Huxley dynarics becomes negligible compared to the duration of plateaus
to make them computationally efficient and/or analyticallythemselves in periodic orbits or controlled UPQO’s. Alter-
tractable. These have been used as the fundamental commately, one can rescale time with- 7'/ €, t—t'/€, yielding
tational elements of artificial neural networks as in, e.g., dy(t')

Refs.[16,17,23. Further, our results for DDE’s and their _ y(t’ , _ .

limiting maps will help understand UPO controllability in b~te dt’ =—y(t)+b TRyt =), )
physiological, optical, and other systems, involving one or

many delayed feedback loop24-2§. wherex(t)=y(t'). With this transformation, the DDE can

This paper is organized as follows. Section Il discussede studied numerically at large deléfpr example,r=300,
multistability and hysteresis in the Mackey-Gl4s4G) DDE ~ with b~ 1=10) in terms of an equivalent DDE at smaller
at large delay. It illustrates the kinds of solutions that can belelay(e.g., if e=0.1, 7' =30, with an equivalent time scale
obtained in such equations; these same kinds of solutioneb™1=1.0), with a time stepe ! times smaller for fully
occur through chaos control techniques such as that dexccurate solutions, or larger for an approximate solution as
scribed in Sec. Ill. This section also reviews the “extendeddiscussed abovéhe ratiosR=br andR’=be 17’ remain
control” method of Ref[15], and shows how it enables the the samg
control of finely structured UPO’s of the Mackey-Glass Most studies of multistability in DDE’s have focused on
DDE, such as those corresponding to higher bifurcation orthe lkeda equatiofi,2,4]. In the present study, multistability
ders. In Sec. IV we present our improved method of controlin the Mackey-Glass DDEMG-DDE) is of interest, with
ling discrete-time maps, inspired from the control of theparticular emphasis on its UPQ'’s, since we wish to control
DDE in the singular perturbation limit. The range of control these unstable wave forms for large delays. We thus first
in parameter space is studied analytically for fixed point conhave to verify whether the basic multistability properties in
trol in both the additive and parametric “extended control” the MG-DDE are similar to those of the Ikeda equation. Our
cases. We also discuss how the controlled mniap-() re-  results indicate that this is so, and are summarized below.
veals information on how to control the DDnite R). In This is expected, as comparisons of previous studigs13
Sec. V, we apply our improved control method to a chaotidndicate that the two systems are similar with respect to the
discrete-time neural network based on the Nagumo-Satorganization of the UPO’s and with respect to the control of

model. The paper concludes in Sec. VI. low period UPQO's.
The Mackey-Glass equation [i8]
Il. MULTISTABILITY IN THE MACKEY-GLASS DDE 5((t)= —bx(t)+F(x(t— 1))
A. Dynamical equations and numerical methods =—bx(t) +ax(t—7)/(1+x(t— 1)) 3
We focus on first-order delay-differential equations of the
form [2,3]: with ¢=10 andb=0.1 (constant throughout our papeat
) large delayr=300 (for examplg. It is typically difficult to
X(t)=—bx(t)+FXx(t— 1)), (1) find different initial conditions that lead to the different co-

existing solutions for a given set of parameters. It is easier to
where 7 is the intrinsic delay in the feedback loop amgd obtain an idea of the shape of solutions that may coexist by
=1/b is the response time. We define the delay-to-responsekeeping the initial condition fixed and then varying the feed-
time ratioR=7/7,=br. This equation describes an infinite- back parametea slightly (Fig. 1; see also Refl4]); the
dimensional dynamical system, and can be solved by speciesulting solutions are not coexistent, but are representative
fying an infinite number of initial condition6.e., a function  of coexisting solutions which could be found for fixed pa-
over the delay interval. rameters by trying different initial functions.

We have used a fixed step fourth-order Runge-Kutta al- A Hopf bifurcation occurs at=0.125. Fora slightly
gorithm for all numerical integrations of this system. Thelarger than this value, the oscillation has already grown into
time step must be small enough to integrate the solutiona square-wave-like wave form, which we refer to as the
properly over the fastest time scabe ®. In particular, for  “fundamental solution,” with periodT;~27. As a in-
periodic solutions such as controlled UPQO'’s, square-waveereases further, this solution undergoes a period-doubling se-
like solutions are often encountered, in which constant “pla-quence, where the two plateaus of the square wave are re-
teaus” are connected by rapid transitions of durationplaced by four plateaus, then eight, etc. At the same time as
O(b™1); these transitions can be seen as “boundary layers’this fundamental solution goes through its period-doubling
in which the derivative is of orde®(R™1). Forb=0.1, as sequence, other solutions come into existef®#, which
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. FIG. 2. Domains of coexistence and hysteresis of harmonics in
time(sec)

Eq. (3) for 7=300. The solid and dotted lines indicate the periodic
and chaotic solutions, respectively. The initial conditions are chosen
from the plateaus of the square wave solutions of period-2 and -4
orbits. Since seemingly stable solutions converge to simpler har-
monics after a long time, transients of 7000 delays have been dis-
carded to identify stable solutions.

FIG. 1. The different solutions of Eq3) corresponding to the
different harmonics forr=300. The same constant initial function
Xo=0.95 on (~ 7,0) was used in each cag@) Fundamental solu-
tion (a=0.14). (b) Third harmonic 6=0.141).(c) Fifth harmonic
(a=0.143).(d) Seventh harmonica=0.1467).

independently undergo period-doubling cascades. They a® The range of over which thenth harmonic is stable can
usually not visible unless special initial conditions that ap-be found numerically by splitting the initial delay function
proximate the shape of the solution are chosen. The thiréhto n equal subintervals, with the function taking on con-
harmonic of the fundamental, with peridty/3, appears at stant valueq“plateaus”) within each subinterval. The val-
a=0.1317. The fifth harmonic appears at0.1376, and ues of these plateaus in this piecewise-constant initial func-
finally the seventh aa=0.1425 tion are generally chosen from those in the fundamental
When a reaches the period-doubling accumulation pointsquare-wave-like periodic solution. The resulting asymptotic
of the fundamental a&,~0.138, the square-wave solution solution is observed for a given value &f this parameter is
becomes chaotic. However, it still has a basic square-wavéen changed slightly, and the process is repeated until one
like shape, as seen in Fig(al. If a is further increased, this can no longer find that particular harmonic.
square-wave solution becomes unstable, and successive cha-Our results indicate that solution coexistence car(be
otic “harmonics” with basic “period” (they are not exactly between chaotic orbits and periodic orbits, such as between
periodig close toT;/n can be observeth is an odd integer the chaotic fundamental, the chaotic third harmonic, and the
representing the harmonic ordleThe solution jumps first to ~ periodic fifth harmonic whe=0.141; or(2) between peri-
the third harmonic ata=0.141, then to the fifth am  odic orbits, e.g., whem=0.1376(see Fig. 3 This is also
=0.1414, then to the seventh at=0.1466, and finally to true for the lkeda moddH]. In fact, the organization of the
developed chaos at=0.1485. multistable orbits, and of the hysteresis loops between them,

Figure 1 illustrates the different chaotic harmonitg IS Very similar to that seen in the lkeda equatjdi These
=T, 1, 3f,, 5fy, and 7f,. Note that the initial function in loops follow from the transitions between harmonicsaas
all cases was chosen here to be the same constant; thus tHi§reases and decreases. Not all harmonics coexist at the
figure does not indicate multistability; it merely shows typi- Sme value o. For example, the seventh harmonic solution
cal solutions over a certain range afwhich exist and be- COEXIStS only with the fifth harmonic, while the latter coex-
come unstable am increases, and which chaos control ISt With the third harmonic and the fundamerissie Fig. 2

should be able to stabilize. Othésut not al) initial func- The number of coexisting harmonic solutions has been
tions will also yield four similar solutions for the same four SNOWn to increase linearly with the delay in the lkeda equa-
values ofa. tion, where it is in fact proportional to the ratio af 7,

=br [4]. We expect that the MG-DDE will also have this
property, in view of the strong similarity between the two
systemg4,9,13 (we note that another recent stud®s| sup-
Figure 2 demonstrates multistability by showing the co-ports this similarity from the point of view of the spectral
existence of several harmonic solutions for the same value gfroperties of the solutions of both systems with increasing

B. Multistability and hysteresis
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FIG. 3. Multistability in Eq.(3). Three periodic solutions coex-
ist for a=0.1376 andr=300: (a) the fundamental(b) the third
harmonic, andc) the fifth harmonic. These solutions are obtained  F|G. 4. Numerical solutions of EqQ3) for a=0.145 without
with three different piecewise constant initial functions and all othercontrol (K =0, r =0) using piecewise constant initial conditioria)
parameters fixed. The delayis subdivided respectively into one, Chaotic solution of the DDEEQq. (9)] for 7=300. (b) Chaotic so-
three, and five small plateaus of equal width. lution of the CTDE[Eg. (12)] for 7=300. (c) Chaotic solution of

the map[Eq. (14)]. Note that the solutions irfb) and (c) look
delay. While our simulationgnot shown indicate that the periodic because the initial function makes them initially follow an
number of coexisting harmonics does increase with the delayPO.
in the MG-DDE, more simulations are needed to ascertain
whether the relationship between this number and the delajese latter studies have shown that this limit increases
is linear as for the Ikeda equation. with R.

For the present study, and those of information storage as Interestingly
well, we rather concentrate on the facts that multistability ’
exists, and that it is limited, i.e., a finite number of solutions
coexist. For a given delagor ratio R sinceb is constant in
our study, there is a finite number of harmonics, periodic or

chaotic, that can coexist. This number is three fer300, 444 imulati f the Iked i how five h
according to Fig. 2. Also, for this delagand other param- 4-44 (our simulations of the Ikeda equation show five har-
monics, i.e.,Ny.=9, while the number of harmonics found

eters fixed, except faa), the highest harmonic that we have ! ) : . -
observed is 7,. Increasinga further produces chaotic solu- N [4] was foup. It is thus likely that the proportionality
tions in which it is difficult to discern any particular har- Petweemm, andR is similar in both systems; further work
monic structure. is necessary to see if the proportionality constant is the same
Thus, forr=300, there is a maximum number of harmon- Or is dependent on the particular feedback used. In Sec. Il
ics =4 that can be encountered asis varied, corre- We study the control of the UPQO'’s that arise as the multi-
sponding tof,, 3f,, 5fy, and 7,. The maximum number Stable solutions studied in this section become unstable fol-
of plateaus in the initial condition which can evolve indepen-lowing parameter changégypically increases ira).
dently of one another is seven, the harmonic of highest fre-
guency which can be observed. Thus, for these parameters,
seven is the maximum number of plateaus in the initial con-
dition that are available for storing initial values to produce a
prescribed pattern. Solutions with more than seven plateaus
will merge to one of the stable solutions in Fig. 2. Thus, Equation(3) has one delayed feedback control term. Its
there is a limit to the number of harmonic solutions that cansolutions at largéR are chaotic over a wide range of param-
be observed for a given value af i.e., to the number of eters[see Fig. 4a)]. As 7—o (the limit of interest in our
plateausn in the initial function that can evolve in time study), or e—0 in Eq.(2), R— and the dynamics are gov-
without merging. Knowledge of this limit is important for erned by the resulting continuous-time difference equation
memory storage applications such as those in R6f4.3]; (CTDE)

we have found that the raf¥n,,,, is ap-
proximately the same in both the MG and Ikeda DDE'’s in
the parameter ranges studied. In the MG-DDE with300
and 7, =10 (i.e.,R=30), this ratio is 4.28, while in the lkeda
DDE [4] with 7=40 and7,=1 (i.e., R=40), this ratio is

IIl. CONTROLLING MULTISTABLE SOLUTIONS
IN THE MACKEY-GLASS DDE

A. A second delayed feedback control
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FIG. 6. Control of the multistable solutions in Fig. 1 far
=0.15,K=0.05, andr=0. The periodT in each case is chosen

slightly different from the period of the UP®, (T=615.9), since
the ratioT/(2nAt), which is the number of points on each plateau
in the initial condition on—T<t<0, should be an integer to allow
the integration(n is the harmonic order This procedure does not
affect the basic resulta) The controlledP, orbit (T=615.8). (b)
The controlled third harmonicT(=615.6). (c) The controlled fifth
harmonic T=616.0). (d) The controlled seventh harmonicT (
=614.6).

In this formulation, any point in a given delay interval ) o )

evolves in time from one delay interval to the next, indepen{€riod of the unstabléperiodic or chaotig fundamental so-
dently of its neighboring points in that delay interval. The lution, andK is the control parameter. The dynamics then
solution can thus be discontinuous. For constant initial conbeécome

ditions, the solutions are composed of plateaus. The evolu- :

tion of a given point from one delay interval to the next is X(1)==bx() +F(x(t=7)+K[x(t-T)—x()]. (6)
given by the map obtained by discretizing time in unitsrof
in Eq. (4):

FIG. 5. Control of the Mackey-Glass DDIE(. (3)] and of its
corresponding CTDE and map far=0.145,K=0.2, andr=0.8;
piecewise constant initial conditions are uséa). Controlled P,
orbit of Eq.(9) for 7=300 andT=1225.6.(b) ControlledP, orbit
for the CTDE pr—) [Eg. (12)] for 7=300 andT=1200. (c)
ControlledP, orbit for the mag Eq. (14)].

x(t)=b F(x(t— 7). (4)

One has the choice of controlling a variety of UPQO'’s; the
ones of interest in our work are the fixed point, the funda-
mental square-wave periodic solution, harmonics of this so-
lution, period-doubled versions of the fundamental solution,
and the harmonics of these period-doubled solutions. All
these solutions further form a continuum as the period of the
4(b) and 4c)]. If a second delayed contrglL4], or better fundamental solution varies, as determined by the hysteresis
still, an “extended control”[15,29,3Q (see belowis prop-  diagram Fig. 2(this period is proportional te [9,13]).
erly applied, the chaotic harmonics as well as UPO'’s of the To control a harmonic of order of the fundamental so-
DDE, CTDE, and map can be made periodic. This is showrution, the initial function in the interval- T<t<O0 is split
in Fig. 5 for a period-4 ‘P,” orbit, for which the map cycles into 2n equal plateaus. The values »fattributed to these
between four values, the CTDE between four plateaus, anglateaus are chosen from the unstable fundamental solution.
the DDE between four plateaus connected by abrupt yefigure 6 shows the coexistence of the controlled fundamen-
smooth transitions. In the followindy designates the num- tal UPO of periodT=615.9, and its harmonics whea
ber of points in the orbit of the singular limit map, or, alter- =0.15. Such solutions are important for memory storage
nately, the number of values through which the plateaus ipurposes, since a finite “message” can be stored into a
the DDE or CTDE cycle. We will thus refer to aPy"-type stable periodic solutiof9,10] or a stabilized UPQ13].
solution. One can also select to stabilize the UPQ of periodT,
Control is achieved here by adding a second feedbacknd use a harmonic solution of ordemwith 1<n<n, as
D(t)=K[x(t—T)—x(t)] in Eq. (1) [14], whereT>ris the the initial function over one delay interval It is further

x(i)=b F(x(i—1)). (5

The dynamics of Eqg4) and(5) are also chaotisee Figs.
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1.1 = — T A capacity by using the multistability of the controlled orbits.
1.0 - To achieve such improved control, we use the method of
= 0.9 . extended control, proposed originally for mafpks], and
< 0.8 L subsequently for ordinary differential equatid29,30. This
0.7 [ method generalizes the feedback term in Eg). to many
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1 . \ ) | This system of equations can be solved by specifying the
0000 0 o005 010 015 initial function for x(t) andD(t) in the interval— T<t<O.

K The parameter can be tuned to yield the largest interval of
K values over which an UPO is controllable. To minimize
FIG. 7. (a) Extended control of th@g orbit of the MG DDE Eq.  transients,x(t) is given its average asymptotic values on
(9 for a=0.145, K=0.08, andr=0.9, with =300 and T  each plateau predicted by the n{mee Eq(14) below], and
=2447.2. The initial condition or-T<t<O0 is a piecewise con- D(t) is given its asymptotic value 0. F|guré$ shows the
stant function corresponding to the wave formRyf, as predicted  ~gntrol of the P, orbit in the MG-DDE [Eq. (9)] for a
by the map Eq(14) in (b). (b) Extended control of th&g orbit of  _ 145 andr=300. The control interval for, e.gc.=0.8 is
the map with Eq(14) usingL=8. (c) Prediction of control in the 0.07<K=<0.53, which is large compared with 08&
DDE using the dispersio[D(i)] vs K for the Pg orbit of the map <0.11 forr=d. We will see that this range is close to that

[Eq. (14)]. Transients of 5000 periods have been discarded. over which the singular limit map can be controliage Fig.
] o . ] ) 12 for P4, and also Fig. 9 in the case of control of the fixed
possible to minimize transients in the evolution toward apginy).

harmonic solution by specifying the initial function in the ~ \ye jllustrate the notion of “storage capacity” with an
whole interval —T<t<0, instead of the usuat 7<t<0.  example. Forr=300, N, is 7 (Figs. 2 and & If r=0,
This is done simply by copying the initial function on N —4 put, ifr=0.9, N,,,=8. Thus, using extended con-
(—7,0) to the previous intervals of durationright up t0 o] for the 7=300 case R=30), storage capacity is in-
time —T. We denote by, the maximum number of pla- ¢reased by a factor of 128. Fer=300, other UPO's with
teau values through which the stabilized UPO can cycle iN>g are very difficult to control in the DDE due to the
one period.Np, depends on the bifurcation order of the continuity of the solution imposed by the dynamical equa-
particular wave form. For example, after three period doutions as well as numerical accuracy. In the map and CTDE,
blings starting from the fixed poinbma,=8. Figure 7 illus-  powever,(see Sec. 1Y, such solutions can be controlled up

trates the control of & orbit for the DDE, as well as for the o N=16 for a=0.145. The control of solutions with higher
associated singular limit map. It also illustrates the behavioyy gre then limited by numerical accuracy.

of the dispersioniD(i)| for the map(absolute value of the
applied perturbation averaged over tinas a function oK.
It is seen that this quantity falls to zero for a rangekof
values. This corresponds to the range of stable contrBgof In this section, we show that the asymptotic solution and
The maximum number of patterns which can be stored, othe controllability of the DDE for large but finite delay are
“storage capacity,” is Nha0"ma, since each “bin” or pla-  predicted by the singular limit dynamic®f— ). In turn,
teau of a harmonic can take on one M, values. This these dynamics provide a general method of controlling any
capacity is limited, since periodic orbits corresponding todiscrete-time dynamical system. We should emphasize here
higher bifurcation orders are difficult to control using only that our goals in controlling UPO'’s in difference and delay-
one previous state at tinte=T. Section Il B illustrates the differential dynamical systems lie more in the context of
notion of capacity in the context of extended control. controlling known systems such as lasers or simple neural
networks, and, e.g., exploiting their multistability properties
for, e.g., storage applications, rather than of controlling un-
known systems. Thus we are assuming throughout that we
Improving the control of finer UPO'’s in delay-differential havea priori knowledge of a good model of the system to be
equations can, among other uses, increase memory storagentrolled. We first present our general discrete-time control

IV. METHOD FOR DISCRETE-TIME CHAOS CONTROL

B. Extended control
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method, then study its analytical properties for additive andractical since it can access a large range of the control pa-
parametric control, and finally discuss its usefulness forameterK and intrinsic feedback parameter as illustrated

studying UPO control in the DDE. in the next sections. The enhanced range of control stems
from the timing of the applied perturbation. For example, in
A. Method the method of Ref[15], and the previous methods on which

it is based(see Secs. IVB and IV time in Eq.(7) is
discretized, and UPO’s in, e.g., the logistic maigi)
=FX(i—1))=ux(i—1)(A—x(i—1)) are controlled using
bflfy(tr):_y(t/)_f_bfl{':(y(t/_q_/))_k E(t,)}, (10) r;ﬁg:)eaCk perturbations of the paramet@x—i—d(i—l)),

Using the rescaling property E@), the controlled DDE
[Eq. (9)] can be written as

E(t)=K[y(t'=T")—y(t)]+rE(t'=T"), _ _ _ _
() =Ky =T =y(t) ]+ rE" =T d(i—1)=K[x(i—1)—x(i—1—L)]+rd(i—1—L).
where et=t’, er=7', eT=T', x(t)=y(t'), and D(t) (15
=E(t’). Note that the ternb~ey(t’) is all the more neg-
ligible the smalletb™1e is, and thus the largds is to begin . o .
with. Afterwards, and for simplicity, we resubstitute into Eq. (| ~1~L); in our method, the perturbation dependsh.o;: the
(10) the original variablex(t) andD(t) instead ofy(t’) and more recent timesi) and ( —L) [Egs.(13) and(14)], whic

E(t'). In the singular limitor— oo (i.e., b~ *e—0), Eq. (10) a"OAWS better CO”t.ror:-t et i e violated i
becomes equivalent to a controlled CTDE priorl, one might expect that causality 1S vioated In our
method, since a perturbation involvixgi) is used to calcu-

This perturbation depends on the previous times) and

x(t)=b " YF(x(t— 7))+ D(t)}, latex(i). This is only apparent, and a consequence of requir-
(1) ing the control to use closer values in the recent past. In fact,
D(t)=K[x(t—T)—x(t)]+rD(t—T), this requirement nevertheless allows us to exprésk as a
function of x(i—1) and x(i—L), i.e., to have the well-
which can be rewritten as defined causal dynamical law in discrete tifi®|. (14)]. The
1 computational steps in the simplest case wherd® are as
x(t)=(b+K)"H{F(x(t— 7))+ Kx(t=T)+rD(t-T)}, follows. Iterating Eq(14) forward in time requires the initial

conditionsx(0),x(—1),x(—2),...x(1—L). Only x(0) and
X(1—L) are needed to computg1); next, x(1) andx(2
—L) are needed to compute(2); and so on. Thesame
polds for both additive or parametric perturbations, as we

D(t)=(b+K) Y{K[bx(t—T)—F(x(t—7))]+brD(t—T)}.
12

For constant initial conditions, the solutions are composed o

plateaus. The evolution of each point on a plateau is given bw" see below. . .
the map obtained by discretizing time in units in Eq. It is important to point out, however, that from this causal
(11): point of view, the applied perturbation at each time step may

be small or large, since it is proportional to the state variable
x(1)=b~YF(x(i—1))+D(i)}, x itself. This may imply that the method is not well suited to
(13 deal with situations where our prior knowledge of the basic
D(i)=K[x(i—L)—x(i)]+rD(i—L), dynamical system to be controllexii)=F(x(i— 1)), is in-
complete. Experimental tests will ultimately confirm this
which can again be rewritten as point, and are beyond the scope of the present work. Our
control method was devised with applications to dynamical
x(i)=(b+K) " YF(x(i—1))+Kx(i—L)+rD(i—L)}, memory devices in mind, both in continuous or discrete
time; in these cases, the dynamical law is often known with
(14 great precision, such as in the case of the Ikeda laser equa-
D(i)=(b+K) YK[bx(i—L)—Fx(i—1))] tion[4] or hybrid systems such as acousto-optic deVi@as
FbrD(i-L)} This extended range of control is discussed from an analyti-
' cal point of view for additive control in Sec. IV B, and para-

wherel is an integer that represents the period of the UPdrletrIC control in Sec. IV C.

of the map. The initial condition is specified in the interval B
—L<i<0. When the control for a selected UPO is achieved, B. Range of control for additive feedback

the perturbationD (i) becomes exactly zero in the CTDE  |n order to compare Socolar, Sukow, and Gauthier’s

case(in contrast to the differential dynamics case where it ismethod with ours, we investigate the control of the fixed

small but finitg. The behavior oD (i) for this map predicts point of the logistic map with additive feedback control.

the controllability of the DDE at larg® (Figs. 4c) and 12 Since their original work used parametric control, we need

below). first to derive the stability criteria for their method with ad-
We show below that this method of controlling maps, ditive extended control. The dynamics for the controlled map

inspired by the singular limit of the controlled DDE as well F(x) are

as by the work in Refd.14,15, allows, in comparison with

other methods, more complicated orbits to be controlled; it X(i)=F(x(i—1))+d(i—1),

also allows control of a given solution to within a certain

error magnitude over a broader range of parameters. It is also d(i)=K[x(i)—x(i—=1)]+rd(i—1),

(16)
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FIG. 9. Boundaries in theK(,a) plane for stable control of the
u fixed point of the MG map using Ed14) (additive control. The
dotted, solid, and dashed curves are the stability boundaries for,
FIG. 8. Boundaries in theK, 1) plane for stable control of the respectivelyr=0, r=0.5, andr—1; control occurs in the upper
fixed point in the logistic map using additive perturbations. Dottedhalf-planes bounded by these curves. The open ciralesOf,
lines are forr=0, solid lines forr=0.5, and dashed lines far ~ Pluses (=0.5), and filled trianglesr(—1) indicate regions of
—1. (a) The range of stable control is defined by the area betweesgtable control of the fixed point of the DDEEQ. (9), 7= 300] from
the lines using Eq(16). (b) The range of stable control is defined Which the MG map was obtained. For clarity, only the beginning of
by the area in the upper-half-planes using our metfigl (14)]. these stability regions have been plotted for each value of fact,

This range is much larger than (a). they extend vertically into the upper-half plane, as for the map.
There is good agreement between the region of stable control in the
which can be rewritten as map and in the DDE at large delay.
x()=FXx(i—1)+d(i—1), y(i) _ 1 v+K ryfy(i—1) 20
17 e(i)] ~bTK \K(b—») br|lei-1))

d(i)=K[FXx(i—1))—x(i—1)]+(K+r)d(i—1).

® [Fx( =X N yd( ) The eigenvalues that determine the stable control are given
The controlled map has a fixed point ax*(d*)=((u by
—1)/u,0) which is unstable foru>3. By linearizing the 1
controlled map around this fixed point, and lettiygi) A=z [v+K+br+=(v+K+br)2—4rp(b+K)].

=x(i)—x* ande(i)=d(i)—d*, the above equations yield ~ 2(P+K) o1
(y(!) :( v 1 Y(!_1)> (18y  The stable control is bounded by the curvis>—(1
e(i))  |K(r=1) K+r/le(i—1)) +1)(b+v)/2 andK>rv—b for 0<v<b, and byK>—(1

+r)(b+v)/2 for v<<0. For the logistic magb=1 and v
wherev=F'(x*)=2—pu. The stable control is obtained by =2— ,), the range of stability of the controlled fixed point
first finding the eigenvalues of the matrix in E48), which in the (K,u) plane is much larger than in the previous case
are given by [see Fig. 8)].

For the MG magFig. 9), the boundaries for stable control
Ao=3[v+K+r=y(v+K+r)2—4(vr+K)]. (190  of the fixed point are curved since they are plotted in the

(K,a) space and’=b(1/a—9) (b=0.1). Figure 9 also plots
The control is stable ifA.|<1. This yields the domain of the range of control for the MG-DDE, as determined by nu-
stability »<1 (i.e., u>1), K>(1+r)(x—3)/2, and merical simulation. It is seen that, for a given value pthe
K<1+(u—2)r [see Fig. 8)]. boundary for the map and for the DDE are approximately the

Now we use instead our control term in Ed4), and same at this level of resolution. Hence the stable control of
apply the resulting control method to the fixed point of thethe fixed point in the MG map can be used to predict the
logistic and the MG maps. The linearization around the fixedcontrollability of the fixed point in the DDE at large delays.
point (x*,D*), with y(i)=x(i)—x* ande(i)=D(i)—D*,  We recall that this fixed point goes unstable at a Hopf bifur-
yields cation which occurs aa=0.125 for 7= 300.
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FIG. 10. DispersionD(i)| vs K for the P, orbit of the logistic
map x(i)=ux(i—1)[1-x(i—1)], using Eq.(14) for u=3.95,
with r=0 and 0.9. Note that, far=0, the dispersion decreases to
zero only for a narrow range & values, and that the ranges Kf
whereD is negligible do not overlap for the=0 and 0.9 cases.
The range of control wittr =0.9 is much larger than with=0,
demonstrating the advantages of extended coifitb] even for
orbits with a higher bifurcation order.

The controllability of orbits withN>1, for example the
P, orbit of the logistic map, is also enhanced with our
method. Without control, this orbit is unstable far>3.54.

If we apply the method in Refl15], this orbit remains stable
up to u~3.62 forr=0. Using our methodEq. (14) with b
=1] without extended controlr=0), the control of this
orbit can be maintained up ta=3.97, and the allowable
range ofK is much largefnot shown. This range decreases
with increasingL, so higher-period orbits are very difficult
to control using both methods for=0.
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X(t)= —bx(t) +{+ K[X(t—T) = x(t)]+rD (t—T)}

Xf(x(t— 1)), (22)

D(t)=K[Xx(t—T)—x(t)]+rD (t—T).

By lettingbr— as in Sec. IV B, the CTDE with parametric
control can be written as

x(t)=[b+Kf(t—7)] Hu+Kx(t—=T)+rD(t—T)}
Xf(x(t—17)) (23
D(t)=K[x(t=T)—x(t)]+rD(t—T).
The control of the fixed point in the corresponding map is

x(i)=[b+KFf(x(i—1))] Hp+Kx(i—1)+rD(i—1)}

X f(x(i—1)), (24
D(i)=K[x(i—21)—x(i)]+rD(i—1).
This can be rewritten as
X()=gXx(i =) u+Kx(i—1)+rD(i—1)], (25

D(i)=Kx(i—1)—KgXx(i—1)[u+Kx(i—=21)+rD(i—1)]
+rD(i—1),

whereg(x) =f(x)/[b+Kf(x)]. We again focus on control-
ling the fixed point of the logistic mapx;=F(x;_,)
=uXi_1(1—x;_1), b=1. The fixed points satisfyx*
=F(x*) andD* =0. The algebra can be simplified using the
following relationships:

g(x*) =x* [+ Kx*], 26

9’ (X*) = vl p+Kx* 1%,

wherev=F'(x*). The linearization around the fixed point
(x*,D*) with y(i)=x(i)—x* ande(i)=D(i)—D* yields

| )

(27)

rx*
ru

uv+Kx*
Ku(1=»)

y(i—1)
e(i—1)

y(i)
e(i)

1
- utKx*

The performance of the method improves even more if

r>0 (see Fig. 10 allowing control of higher period UPO’s
and enhanced parameter ranges. For example, wit8.9
the control of theP, orbit can be maintained up {@=4.5,
while the method in Ref|15] controls up tow=3.75 using
r=0.5. Figures 10 and 1B8) show how the range of control-
lability of the P, orbit is enhanced with Eq14) for, respec-
tively, the logistic map(u=3.95,r=0.9 and the MG map
(a=0.145,r=0.8).

C. Range of control for parametric feedback

The eigenvalues that determine the stable control are given
by

+

:W [/.L(V+r)+KX*

[ w(v+1)+Kx* P—4ruv(p+Kx*)]. (28

The requirement thdt .| <1 yields the stability curves for
our parametric control method: K>—u(1+r)(v
+1)/(2x*) and K>pu(rv—1)/x* if 0<w<1, and K>
—u(1+r)(v+1)/(2x*) if v<0. For the logistic mapb

We now consider the case of parametric feedback for our=1, x* =(u—1)/u, v=2-p), the stability boundary for

method, and compare it to the results for parametric contrathe case of interest herev<0, i.e., u>2) is thus K>
presented in Refl15]. Let F(x(t—7))=uf(xX(t—17)) (u is —u?(1+r)(3—u)/(2(n—1)). Stability occurs in the
the feedback paramejeParametric control for the DDE can upper-half-plane bounded from below by this curifég.
be written as 11). This curve is similar to the one with additive control
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Dotted lines are for =0, solid lines for =0.5, and dashed lines for K
r— 1. (a) The range of stable control is defined by the area between ]
the lines using Eq(16). (b) The range of stable control is defined  FIG. 12. Range of control for th@, orbit of the MG-DDE and

by the area in the upper-half-planes using E). This range is the MG map fora=0.145.withr=0 and r.=0.8.‘(a) Digpersion
much larger than irfa). ID(t)| vs K of the DDE using Eq(9). (b) Dispersion|D(i)| vs K

of the map using Eq.14). (c) Maximum Lyapunov exponermn
obtained from Eq.(21), except for the factomzl(,u— 1). vs K of the map using Eq29) and the QR decomposition method.

With the additive control, the curves for stable control are!ransients of 5000 periods have been d'scardeq'(a)m the

. . . - eriod of the UPO varies slightly withK according to T
straight lines; for parametric control, that factor turns thesei 1208.34+ 13.87 exp(0.07— K)/0.1] obtained from fitted data
lines into parabolas. The methc_Jd again prOd_uces control OV&Hhis variation was taken into account for the calculation of
a larger parameter range than in Rab], as Fig. 11 reveals. D(i) vs K.
We note again that our method assumes a good knowledge

of the mapF.
yL-1(i)=yo(i—1),
D. Prediction of controllability of the DDE

This section shows that the absolute value of the feedback 7 _4(i)=2(i—1).
perturbation,|D(i)| (also referred to as “dispersion[’14]), ) ) _ ) _ )
and the Lyapunov exponents of the map, are important fof "€ QR algorithm is then applied using the Jacobian matri-
predicting the parameter range over which the DDE at larg&€S Of the 2-dimensional map. Only a few decompositions
R and the map itself can be controlled. Numerical computa@'® needed foR to converge to the identity matr82]. The
tion of the dispersion is straightforward. The Lyapunov ex-result is shown in Fig. 12), wherex , is in fact negative
ponent estimation must however be done carefully, e.g., ueVer a certain range d¢ values(negativity of all exponents
ing QR decomposition as we do beloi82]. The Jacobian IS necessary to have control of the UPM ther =0 case,
matrices may have singularities for higher period orbits be max CONverges quickly to zero &s increases. For=0.8,
cause of finite numerical precision. We first convert thelmax Slowly increases to zero over the rangekopresented

2L-dimensional map[Eq. (14)] into 2L coupled one- here. This behavior is also seen in finite-dimensional dy-
dimensional maps, namical systemp29]. Very good agreement is seen between

the behaviors of ., and the dispersiofD(i)| of the map
[Fig. 12b)] for both values of plotted, since the dispersion
is small whenh ,,, is negative. This is also true when com-
) ) ] paring the behavior of these quantities to that of the disper-
2o(i)=(b+K) Y —KF(yo(i — 1))+ bKy,;(i— 1) sion |D(t)| for the DDE [Fig. 12a)]. While the dispersion
+brzy(i—1)} ID(i)| is zero when control is achieved, the dispersion
|D(t)| for the DDE can only approach zero, due to the dif-
] ] ) ferentiability of the solution and the finite precision in the
yi(h)=yj+1(i—=1), j=12,...L-2, (29)  integration procedure. FurthéD(t)| increases more rapidly
from its minimum thanD(i)| for bothr=0 and 0.8. Nev-
zj()=z,4(—-1), j=12,...L-2, ertheless, it is clear that bot®(t)| and|D(i)| have quali-

Yo(i)=(b+K)“H{F(yo(i — 1))+ Kys(i—1)+rzy(i— 1)}
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tatively similar behaviors as a function of the control gin  succession W,,,, describes the feedback connection strength
Hence, the R-dimensional singular limit map again pro- between neurons in the network, a¥g,, that between ex-
vides good insight into the control of the UPO'’s of the DDE. ternal inputs and neurons. Finallg,andk are constants. In
the original mode[16], the output functiorf(y) was a unit
V. APPLICATION OF CONTROL METHOD step function; instead, we have used as in REf] a sigmoi-
TO NEURAL NETWORKS dal function with adjustable steepnes$(y,(i))=21/(1

, _ , . +e 0% Thys the output of a given neuron is an ana-
The control method discussed in Sec. IV is now applied tqog value between 0 and 1.

a small chaotic neural network evolving in discrete time
[16,17. The dynamics of th@th neuron in a network o/
chaotic neurons is given by

The above network dynamics depend on the whole previ-
ous history of the system, through the decaying effects of
inputs and neuron refractoriness. It was shown in [RES]

M i—1 that the neuron states at timmggoverned by these dynamics
yo(i)= 2 W E k9h, (xq(i—1—q)) can be rewritten solely in terms of the immediately preceding
T Mg T states of all the neurons in the network at timel as fol-
N i—1 lows:
+ 2 Vam2 Kilp(i=1-q) M
=1 =0 . . .
" ‘ Yn()=Kynli = 1)+ 2, Wanhn(fn(Ym(i = 1)))
i—1 —
—a 2 Kigx(i-1-q)1=6h, (30 N

+ 2 VnmI m(i - 1)
m=1
Xn(i):fn(yn(i))a (31)

—agn(fa(yn(i—1))—(1-Kk) 6y, (32)
wherex,(i) is the output of theath neuron at time, y,(i) is
the internal state of thath neuron at time, and ¢ is the ~ andxy(i)=fn(yn(i)) as above. As in Ref17], we choose
threshold for firing. AlsoM represents the number of neu- h(x)=x and g(x)=x, M=3, a=1.0, #=0.0, and Wy,
rons in the network, whileN is the number of externally =W23=W3;=0.5, and the otheW,'s and allV,,,\’s are set
applied inputd to a neuron. Functionis andg characterize, 0 zero. The initial functions arg,(0)=1.0, y,(0)=0.0,
respectively, the propagation of action potentials down axon¥3(0)=0.0. Further, we apply the control to the first chaotic
and the refractoriness of the neurtihe latter characterizes neuron in the network. The dynamics are then

the inability of the neuron to fire spikes in close temporal . _ . . .
Y P POTEy (1) = (1K) " kyy(i— 1)~ F(yy(i — 1))+ 0.5 (y(i — 1))

' ' ' +Ky(i—L)+rD(i—L)],
1.0 . . P a) B
D(i)=K[yi(i=L)=ys(i)J+rD(i—L),
o7 I x4(1)=Fya(i)),
00yl ool M Yali) =kyali — 1)~ F(ya(i — 1))+ 0.5 (ya(i~ 1)),
1.0 b) L (33
SR - Xa(i)=F(ya(i),
X 05- o . . . .
ya(i)=Kys(i —1) = f(ys(i —1))+0.5f(y1(i— 1)),
0.0 et lcperi Ll e X3(i)="f(ys(i)),
1.0 , .0 |
The bifurcation parametet in Refs.[16,17], distinct from
the additive feedback control galf, sets the decay rate of
0.5 - refractoriness and memory effects from past inputs. Without
the control of UPO’s using additional delayed feedbdck,
) =0.769 231 produces chaotic behavior with Lyapunov spec-
0.0 F.. }1\ Fd . F F.o r. N

7500 7080 7800 7650 trum (0.13- 0.23,— 1.29).[17]_. The behavior of one neuron

. in the network is shown in Fig. 18), where neuron output is

! plotted as a function of discrete time. The sharp spikes cor-

FIG. 13. Controlling chaos in a Nagumo-Sato network com-réspond to neuron firings. If our control method is applied to

posed of three neuron¥, (i) is the output of the first chaotic neu- the first neuron in Eq(33), the network behaves periodi-
ron, which takes values between 0 andd) The chaotic solution of ~ cally, as shown in Figs. 1B) and 13c) for L=15 and 16,
the first neurorX,(i) vsi for K=0 andr=0. (b) Controlled solu-  respectively.
tion using Eq(14) with L=15,K=0.38, and =0.5.(c) Same as in Our method is thus applicable to biophysically detailed
(b), but forL=16,K=0.2, andr=0.5. models of activity in networks of neurons. This suggests in
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turn that the control method can be applied to real networksvhich control occurs as compared to standard methods, and
of excitable cells by monitoring either the firing stater the  allows for the control of UPQO’s with higher bifurcation or-
internal voltage staty, provided one has sufficient knowl- ders. Its power relates to the fact that the control perturba-
edge about the functions and parameters in the above equiéens, extended or not, are calculated based on more recent
tions which describe its uncontrolled behavior. Combininginformation about the state of the system. The method works
the results of this section with those in Sec. Ill, we anticipatefor both additive or parametric control. More work is re-
that the same control method can be used for both discreteired to determine the performance of the method in the
time networks, such as the one studied here, and versions tdce of, e.g., uncertainty about the uncontrolled dynamics,

these networks with added differential terms. or, relatedly, noise. This is of importance in the context of
the control of, e.g., real excitable systems.
VI. CONCLUSION Such future work could benefit greatly from results in the

i ) - control systems theory literature, which has confronted prob-

We have first presented results on multistability and hysiemg of delayed feedback control for a long tirfsee, e.g.,
teresis of stable solutions of the Mackey-Glass delayref. [33]). Indeed, many DDE solutions with plateaus, as
differential equation, as well as on the controllability of its \ye|| as orbits of CTDE’s and maps, have several features in
unstable periodic orbits. We have focused on the large delaysommon with so-called “discrete signals,” i.e., signals
to-response time ratio regimeRE30). In particular, the which vary only at discrete times. Thus the combination of
number of multistable solutions, either periodic or chaoticthese solutions and the continuous feedback needed to obtain
harmonics of a fundamental wave form, is found to be finitefhem make the dynamical systems of study here similar to
system as is varied and other parameters are kept fixed. |iterature on the digital control of dynamical systems, such as

We have then shown that the “extended control” of the 7 transform and the controllability matrix, are relevant to
UPO’s devised for mapsi5] and ordinary differential equa- - analyze the stability of the delay and extended delay systems
tions[29,30) allows finely structured orbits of the DDE to be stdied here, both for the large delay case and the discrete-
controlled. The maximum bifurcation order of controlled time singular map case. That literature generally focuses on
UPO’s in the DDE with 7=300 is three(third period-  canonical dynamical forms involving constant coefficient
doubling bifurcation, corresponding to &g-type solution in matrices and the control of fixed points, while the problems
which the plateaus cycle between eight values. We have fusf interest in our study involve the control of nonlinear flows
ther shown that the difference equatidirs both continuous  onto various kinds of periodic trajectories. Thus the methods
or discrete timg obtained in the singular perturbation limit from that literature will be particularly helpful for fixed point
of the DDE, are useful to predict the range of control of thecontrol issues, and can also guide the analysis for the linear-
DDE at largeR. More work is needed to design a control jzation around periodic orbits and the stabilization of UPO’s.
that can stabilize UPQO'’s with hlgher bifurcation orders. Nev- Our discrete-time control method meets the primary “ap_
ertheless, the results presented here will be useful for th9||6d” objectives of our Work, name|y7 to allow for the con-
design of high capacity versatile memory devices based ofto| of finely structured orbits in difference equations and
the multistability inherent to delayed dynamical systems ofmaps used to model, e.g., neural netwofks,17,23 and
continuous-time difference equations, as well as to discretejynamical memory devicek9,13. The method was illus-
time dynamical systems. trated here on a chaotic neural network, given the interest in

The information storage capacity of DDE's at larBe  controlling or producing aperiodic dynamics in real systems
without control[9] or with additional or extended delayed of, e.g., nerve or cardiac cells, or in simply understanding
feedback control, is limited by the requirement that only oneand controlling their multistability.
pattern be stored at a time. The possibility of using more
than one of the coexisting solutions at a time will be ex-
plored in future work. ACKNOWLEDGMENTS
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