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Abstract

Unidirectional synchronization of high-dimensional chaos with many positive Lyapunov exponents is demonstrated in
first-order delay-differential equations (DDEs) at large delays. Synchronization of this hyperchaotic motion is shown to
occur using feedback involving only one scalar varable. Aa analysis of the potential usefulness of such simple yet infinite-
dimensional dynamical systems for broadband signal masking and private communication is also given. A particular feature
is (he chaotic mwasking of finite messages encoded omto controlled unstable periedic orbits of the same DDE dynamics
used to generate the masking chaos. The difference equation obtained in the singular limit can further be used to transmit
digital messages and predict the parameter range over which synchronization in the DDE occurs. Results for systems with
a distribution of delays are also presented. (© 1998 Elsevier Science B.V.

Keywords: Synchronization; Delay-differential equations; Feedback control; Chaos; Multistability; Private communication; Difference

equations; Information storage; Masking

1. Introduction

Synchronization of chaotic systems has received a
lot of attention in recent years (see, e.g., Refs. [1-3]
and references therein). Apart from exploring the
medamans &5 Whith Syaplesl Srple woriimss <ot
ements can entrain one another, there has also been
interest in the potential application of chaotic syn-
chronization to signal masking and private commu-
nication [4-7]. The basic goal behind chaotic syn-
chronization in this latter context is to recover a given
chaotic trajectory from a “driving” system in a usu-
ally identical “response” system having an arbitrary
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initial condition. The idea behind private communica-
tion then is to hide a message with the aperiodicity of
chaos before transmission, and extracting this chaotic
behavior at the receiver through synchronization. The
power spectra of chaotic signals are typically broad-
Sand, dan opaizegt itk daeee @f dndormaianCRaTeng
signals (i.e. “messages”). Masking a message with a
chactic carrier, or modulating this carrier with a mes-
sage signal, both of which are simple forms of spread
spectrum communication [8], makes the presence
of the signal difficult to detect in either the time or
frequency domain.

Two main synchronization techniques have widely
been used. The first [1,9] decomposes the system
into two subsystems: a master system (transmitter),
which has one or more positive Lyapunov exponents,
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is used to drive an identical slave system (receiver),
which has only negative Lyapunov exponents, into
synchronization. In this manner, synchronization has
been achieved in various electrical circuits [2,4-6].

The second technique is based on negative feed-
back proportional to the difference between the out-
puts of the drive and response systems [10]. It is an
extension of methods used to control unstable peri-
odic orbits (UPOs) [11], except that perturbations
are instead applied to aperiodic orbits. By varying the
strength of the feedback, the Lyapunov exponents of
the response system can be made negative; the feed-
back perturbation then becomes very small in abso-
lute value as time increases, and synchronization is
obtained. This method has also been realized exper-
imentally [12-14]. It also appears in many differ-
ent studies as negative differential feedback or dif-
fusive coupling (see, e.g., Ref. [2,15,16], and also
Ref. [17] for a study of this type of synchronization
with non-identical response systems). The approach
in Ref. [1] can in fact be considered as the infinite
coupling strength limit of these feedback approaches,
since certain variables in the response dynamics are
directly replaced by those of the drive system.

Most investigations of private communication with
chaos have focused on the problem of transmitting
signals with low-dimensional chaotic systems, such
as those generated by the Rossler and Lorenz sys-
tems. However, it is desirable to use high-dimensional
chaotic carriers with one or many positive Lyapunov
exponents to make unauthorized signal unmasking
and recovery as difficult as possible. Peng et al. [18]
have shown that it is possible to synchronize chaos
from a high-dimensional hyperchaotic coupled map
lattice using a single scalar variable that is a linear
combination of the original phase space variables.
Xiao et al. [ 19] have discussed how high-dimensional
spatiotemporal chaos can be used for transmitting
and receiving a large number of informative signals
simultaneously. Also, Parlitz et al. [6] have con-
structed a high-dimensional system using a series of
low-dimensional “building blocks” of Rossler sys-
tems (each block has dimension three). This method
has many advantages, but some limitations in its
implementation since the sttractor dimension is pro-
portional to the number of blocks.

Delay-differential equations (DDEs) present an al-
ternative simple and efficient tool for chaos commu-

nication with low detectability. This is because their
simple yet infinite-dimensional dynamics have finite
high-dimensional hyperchaotic attractors, and also ex-
hibit multistability when the delay is large (see, e.g.,
Refs. [20-23]). They are also easily implementable
electronically [24,25].

This Letter shows that one-dimensional DDEs
are unidirectionally synchronizable using either of
the aforementioned techniques. While the feedback
method can be applied directly to the receiver as a
small perturbation, the master-slave method requires
that a proper master—slave decomposition be found.
We find in particular that synchronization if possible
using the state variable as the single scalar variable,
which is interesting in light of the results in Ref. [18].
Further, we demonstrate the potential of such DDEs
for private communication. In particular, we present
a new masking scheme based on the multistability of
the dynamics exhibited by these DDEs at large delay.
In this scheme, a finite message (a finite bit string) is
first encoded onto one of the many multistable wave-
forms, either periodic, or made so by UPO control
methods. This is done using a specific piecewise con-
stant initial function and feedback control [26] (the
different constants in the initial function are mapped
to bits in the message). The message is then trans-
mitted using a chaotic DDE carrier generated by an
identical system without UPO control, and recovered
using synchronization (see Figs. 4 and 5). The spec-
tral features of the signal are then similar to those of
the chaotic mask, making unmasking more difficult.

Our work also shows that the simple map obtained
in the singular limit of the DDE, especially its maxi-
mal Lyapunov exponent, predicts the parameter range
where synchronization occurs in the DDE. Finally,
the synchronization method based on this limit can
be used to synchronize any discrete-time system (i.e.
map) and to transmit digital signals.

Our Letter is organized as follows. Section 2 dis-
cusses methods of synchronization of the Mackey-
Glass DDE and of its singular limit map. Section 3
presents a method of synchronization of distributed
delay systems. Section 4 demonstrates the application
of chaotic synchronization with DDEs to private com-
munication. Section 5 analyzes the robustness of mes-
sage recovery to noise and parameter mismatch, and
discusses the potential vulnerability of this type of
chaos communication to dynamical unmasking tech-
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niques. Results and directions for future research are
summarized in the conclusion in Section 6.

Z. Synciromzadon or PEARey-GResy DDY
Z.I. Synchironization scriemies and resuirs

At least two types of chaotic synchronization
schemes can e applied o BDBEs such as dw Mackey-
Glass or the Ikeda equations. The first scheme is very
simpe. & onsists of seppiying dr Jdeive wasiEbie
x{t — 1) or x{ty from the driving DDE,

dxd(t’) = —bx(t) + F(x(t = 7)), (1

to the feedback function of the second “response”
DDE to be synchronized,

dyd(tt) = —by(t) + F(x(t —17)), (2)
or
d
-y—d(t2=—by(t)+F(x(t))~ (3

In both cases, the response system synchronizes very
rapidly. We note that, for driving with x(t), the two
outputs are shifted from one another in time by the de-
lay 7. Synchronization is expected in both cases since
x(t—7) or x(¢t) are driving, via the static nonlinearity
F, a linearly stable response system y = —by, i.e. this
response system has a negative conditional Lyapunov
exponent. This kind of synchronization would apply to
identical first-order systems responding to essentially
the same feedback variable.

A second synchronization scheme consists in ap-
plying a feedback perturbation proportional to the dif-
ference between the two outputs [10],

d);(tt) = —bx() + F(x(t - 1)),
d}:i(tt) =—by(t) + F(y(1 = 7)) + K[x(2) —y(1)].

(4)

The second DDE is identical to the first DDE, ex-
cept for its coupling to the first via the perturbation
D(t) = K[x(t) — y(¢)]. This could apply to situa-
tions where one feedback system is linearly coupled

to another identical feedback system, e.g., through
some form of crosstalk. Here the linearization of the
response subsystem involves time-dependent coeffi-
cients, and it is the numerically calculated conditional
LCyapunov exponents ot the response system that will’
determine whether or not synchronization occurs.

We tocus here on this second type ot synchroniza-
tion in the Mackey-Glass DDE (MG DDE) [27],

dxis)

&S

dt

ax{t —7r)
1+x(t—1)°

= —bx(t) + (5
with parameters b = 0.1 and ¢ = 10 (constant through-
out our study). Note that the second term on the right
hand side of Eq. (5) corresponds to the function F
in Eq. (4). The synchronization (i.e. coupling) term
is similar to the term used for UPO control in Refs.
[11.,26,281, i.e. the dynamics are similar to

dxd(tt) = —bx(t) + F(x(t — 1))
+K[x(t—-T) —x(1)], (6)

where T is the period of an UPO. However, aperiodic
orbits are now synchronized, as in Ref. [10], rather
than UPOs. The aperiodic orbits are thus generated
by two similar DDEs evolving from different initial
functions.

It is known that this system becomes chaotic for
T > 16.8 with @ = 0.2, and that in the chaotic regime,
the attractor dimension scales roughly linearly with
the delay. For the relatively large delay 7 =300
used below, the Kaplan-Yorke dimension is roughly
30 [22,23]. It is also known that the number of pos-
itive Lyapunov exponents increases with the delay,
and is close to 15 for 7 = 300. Interestingly, the metric
entropy (sum of the positive Lyapunov exponents) is
constant for 7 > 50, due to the fact that the values of
the Lyapunov exponents scale as 7! [20]. This has
implications for the predictability of the dynamics,
and for the multifractal nature of the attractor (see
Ref. [29], and Section S).

Without the unidirectional coupling from the first to
the second system, the two trajectories diverge expo-
nentially. By varying the strength of the perturbation,
the Lyapunov exponents of the response system can
be made negative, causing distances between the or-
bits of the two systems to decay to zero. This is shown
in Figs. 1a,b for two chaotic MG DDEs (Eq. (4))
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Fig. 1. Synchronization of two MG chaotic DDEs (a = 0.2,
7 =300). (a,b) x versus ¢ and y versus ¢ using Eq. (4) with two
different initial conditions. (c) The time average of |x(¢) — y(r)|
as a function of X for the DDE (Eq. (4)). The average for each K
is computed after transients have decayed. (d) The discrete-time
average |x(i) — y(i)| as a function of K for the map (Eq. (8)),
again computed after transients. (e¢) The maximum Lyapunov
exponent Amqx as a function of K for the map (Eq. (8)). We
used a fourth-order Runge-Kutta integration algorithm with time
step 0.01 throughout this Letter.

for a = 0.2 and 7 = 300, each of which starts from a
different constant initial function on (—7,0). These
results show that it is possible to synchronize these
chaotic motions, despite the presence of many positive
Lyapunov exponents, a large attractor dimension, and
a coupling via one scalar variable, namely the state
x(t).

We note that the two orbits can remain close yet
visibly distinct if the coupling parameter X is misad-
justed. Fig. 1c shows the dependence on X of the time
average of [x(z) — y(t}|. Synchronization occurs for
K larger than a certain value (K > 0.08). This appears
to be always true for the coupling we have chosen.
There have been reports in other systems (see, e.g.,
Ref. [10]) where increasing the coupling strength X
destroys the synchronization. This can be caused by
multistability. It can also occur without multistability
if the feedback is applied to only one variable. The
strong perturbation then destabilizes the system be-
cause the other variables cannot adjust fast enough to
the changes in the variable to which the perturbation
is applied. The fact that this asymmetry, where cer-

tain variables have feedback and others do not, is not
present in the one-dimensional DDE studied here may
explain why we do not see loss of synchrony at large
K.

2.2. Synchronized singular limit maps

The map obtained in the singular perturbation limit
R = br — oo of the DDE can be used to study syn-
chronization as in Eq. (4) at large R. First, this limit
yields unidirectionally coupled continuous-time dif-
ference equations (CTDEs),

x(t) =b7'F(x(t — 7)),
y() =(b+ K) '"F(y(t—1)) + Kx(1)]. (7

If time is discretized in units of 7 in Eq. (7), the map
dynamics become

x() =b7'F(x(i— 1)),
y()=(b+K)T[F(y(i— 1)) + Kx(i)]
=(b+K) ' [F(y(i—1)) + Kb~ 'F(x(i—1))].
(8)

The parameter K can then be adjusted to produce syn-
chronization. We have found that the analysis of this
map provides useful information on the parameters
that yield synchronization in the DDE from which the
map is obtained. The maximum Lyapunov exponent
of this two-dimensional map is calculated by applying
the QR decomposition method [30,31] to this map
(not to the DDE). Typically, only a few QR decom-
positions are needed for Q to converge to the identity
matrix. Figs. 1d,e show the distance |x(i) — y(i)] and
the maximum Lyapunov exponent Ap,, for the map
(Eq. (8)) as a function of K. The time average of
|x(Z) — y(i)| goes to zero and Apax goes negative (in-
dicating synchronization) at K = 0.07, close to the ac-
tual value found for the synchronization of the DDEs
(Fig. 1c). Thus, an analysis of Lyapunov exponents
for the map is an efficient way to obtain information
on synchronization of the DDE itself, while avoiding
the difficult numerical determination of the Lyapunov
spectrum of the DDE. The underlying reason is that
much of the DDE dynamics at large delay are gov-
erned by the difference (i.e. map) aspect of the dy-
namics rather than the differential aspect (the latter
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mostly imposes that the solutions be differentiable.)
This discrete method of synchronization can of course
be applied to a variety of discrete dynamical systems.

3. Synchronization of distributed delay systems

Synchronization can also be studied in the context
of systems with a distribution of delays rather than a
single fixed delay. Such systems are often encountered
in applications, and DDEs are often used to approx-
imate their behavior. Mathematically, the infinite-
dimensional DDE can be approximated by an integro-
differential equation with a smooth memory kernel,
which can be converted into a (m + 2)-dimensional
system of ordinary differential equations (ODEs)

such as Eq. (9) below [32,33]. In the chaotic regime -

with 7= 300, m has to be large (m > 100) for the
attractors of the DDE and of the distributed delay
system to have similar invariants [23]. The method
of Pecora and Carroll [1] for synchronizing ODEs
can be used here, and one possible decomposition is
into a master subsystem governed by

Yo = f(Yo, Ym+1) = —byo + F(¥m+1),

j’i=—a(yi_yi~l)’ i=l,...,m—|—1, (9)

and a slave subsystem governed by

Yo = Yo, (10)
¥ = —a(y; — Yo),

}"f=”a()’z'—)’f-1)’ i=2,....,m+1. (11)

Here, the master system drives the slave system
through the component yo. The other components
Yis Ve ooy Yy are allowed to have different arbi-
trary initial conditions. There is of course a finite
number of possible decompositions, many of which
are expected to yield synchronization [9,6] due to
the conditional Lyapunov exponents of the subsystem
(see below). The asymptotic stability of the slave
subsystem that underlies synchronization can be es-
tablished by finding a Lyapunov function [4,35]. Let
y? be the difference between the desired value y; and
the actual value of the slave variable y/: y* = yi — Vi
The y* dynamics are governed by

ok __ *
Yy = —ayy,

0.12 T T T T

s 1 2
10 20 30 40 50
time

Fig. 2. Synchronization of two MG distributed delay systems
(a = 0.55,m = 54). The master subsystem drives the slave sub-
system with the component yp. The difference between the two
outputs, y; — y/ (i=1,2,...,m+ 1), shown here for y; — ¥
vanishes as t — 00.

ylf"z—a(y;‘—y;‘_]), i=2,....,m+1. (12)

The y? dynamics are globally asymptotically stable
at the origin. This result follows by considering the
(m + 1)-dimensional Lyapunov function defined by

+ i) (13)

The time rate of change of E(t) along a trajectory is
given by

E =507 +y2+...

E() =y + 99 + .+ YmirVmn
a * * *
= —5[}’124’ OF=»)l+..

+ k=) el <0 (14)

The Lyapunov function E(#) decreases for all y # 0.
Lyapunov’s theorem [34] (see also Ref. [35]) im-
plies that E(t) — 0 as t — oo. Therefore, the dis-
tances y?, along with Eq. (13), go to zero and syn-
chronization occurs as t — oo (see Fig. 2).
Synchronization also follows here from the fact that
the conditional Lyapunov exponents of the response
system are negative. It is straightforward to show that
those exponents are the roots of (—a — A =0,
Thus there is only one (m + 1)-fold degenerate expo-
nent A = —a. This exponent is in fact the exponential
relaxation rate seen in Fig. 2. We can extend this cal-
culation to arbitrary values of m. In the limit m — oo
the distributed delay system becomes identical with
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the original DDE, and the synchronization is of the
simple type seen in Eq. (2).

4. Application to communication with chaos
4.1. Generalities

In this section, we study the potential that simple
hyperchaotic high-dimensional DDEs offer for chaos
communication. An information signal m(¢) contain-
ing a message to be transmitted can be masked by
the chaotic DDE signal x(t). Chaos synchroniza-
tion discussed above can then be used to extract the
message at the receiver end. Different strategies can
be used to make the actual transmitted signal s(t)
as broadband as possible, i.e. to make its detection
through spectral techniques difficult. As we will see
below, the spectrum of the DDE solutions of interest
in our Letter have many modes superimposed on a
broad background [20,23]. We will focus on strate-
gies in which the signal has low power, i.e. is small
in comparison to the chaotic carrier. One strategy
is signal masking, where s(¢) = x(¢) + em(t); an-
other is modulation, s(t) = x(t)m(t); there are also
combinations of masking and modulation, such as
s(t)=x(t)[1+em(r)] [8].

4.2. Communication using signal masking

We propose the following masking technique. A
message m(t), multiplied by a small positive number
€, drives the chaotic “DDE transmitter” as follows,

dx(t)
dt
The transmitted signal is s(¢) = x(t) + em(¢). A
receiver with an identical copy of the transmitter is

used to generate an output y(¢) which is synchronized
to x(t) using proportional feedback control,

=—bx(t) + F(x(t—7)) + Kem(t). (15)

dy(1) _

a —(b+ K)y(t) + F(y(t — 1)) + Ks(t).

(16)

In the following, the technique is illustrated using
K = b. If unidirectional chaotic synchronization can
be achieved despite the presence of the message m(¢),
the latter can be recovered as m(z) = [s(t) —y(1)]/e.

T T T T T T

0.15 ’ a).
0.10 - _

0.05 | .

- b)

0.000

0.003
0.002

0.001

0.000

0.00 0.01 0.02 0.03 0.04
frequency(Hz)

Fig. 3. Transmitting a sine wave signal m(¢) = sin(27z¢/100) + 1.5
with € = 0.05, using an MG carrier with @ =0.2 and 7 = 300.
(a) Power spectrum of the recovered sine wave signal using the
masking technique Eq. (15). (b) Power spectrum of the transmit-
ted signal using masking s(¢) = x(¢) + 0.05m(¢) where x is the
chaotic carrier. (c) Same as (b) but using masking-modulation
s(¢) = x(2)[1 + 0.05m(1)], yielding an even smaller power for
the sinusoid. Spectra are averages over 20 samples of 4096 points
each with sampling time 3.75.

We have found that this recovery is indeed possible.
This is illustrated using a simple sine wave for m(z).
Fig. 3a shows the power spectrum of the recovered sine
wave m(t) = sin(27¢/100) + 1.5 after being masked
by the chaotic carrier from the MG DDE. The power
spectrum (the power is on a linear scale) of the trans-
mitted signal (Fig. 3b) shows only a small peak at
f =0.01 Hz, of the same order of magnitude as other
peaks in the chaotic broadband. Note that the sine fre-
quency was purposely chosen to produce a peak that
stands out from the background, to give an idea of its
relative power; of course, it would be advantageous to
adjust this frequency so that the peak blends in with
the other background structure.



B. Mensour, A. Longtin/Physics Letters A 244 (1998) 59-70 65

4.3. Communication using chaotic
masking-modulation

We now study masking-modulation of the message
by a broadband carrier x(¢) using s(t) = x(#)[1 +
em(t)] as the transmitted signal. This masking-
modulation technique is used to drive the transmitter
in Eq. (15) in the same way as for the masking tech-
nique discussed above, but instead of driving with
Kem(t), we drive with Kem(¢)x(t). By synchroniz-
ing the receiver to the transmitter, the message can
be recovered exactly as m(t) = [s(£)/y(t) — 1] /e.
The spectral peak corresponding to the simple “sine
wave” message is even smaller in comparison with
the masking technique (see Fig. 3c).

4.4. Encoding messages onto UPOs of DDEs

The use of UPOs for private communication has
been demonstrated in Ref. [36] using the P4 orbit
of the Hénon map. That method requires an attrac-
tor dominated by a few UPOs, near which the system
spends more time. We now present a method which
suffers less from this constraint. It applies to the trans-
mission of short messages, and relies on a special mul-
tistability property of the class of DDEs of interest
here when the delay is large.

The idea here is to encode a message, in the form
of a finite bit string, directly onto an UPO of the same
kind of DDE used to generate the chaotic carrier. To do
this, an UPO has to first be stabilized, e.g., by delayed
feedback control as in Eq. (6). The message can also
be encoded onto a periodic orbit (obtained, e.g., by
using a smaller value of a in Eq. (5)), but the UPOs
offer a broader choice of orbits to choose from. The en-
coding technique is described in Ref. [26]. Such con-
trolled UPOs are multistable. They can be given, using
an appropriate piecewise constant initial function on
the delay interval, a precise periodic form determined
by the short message to be transmitted (the different
constants in the piecewise constant initial function are
mapped to bit groups in the message). The message
can be encoded onto any UPO if it can be controlled.
Also, different messages can be transmitted and re-
ceived by simply changing the UPO or the initial func-
tion. Since the encoding uses UPOs embedded in the
chaotic attractor the transmitted message will have fre-
quencies that match those of the chaotic trajectories.

Receiver yit)

DDE3 (3 — em()
+
v s(t)=x(t)+em(t)
KIs(t)-y(t)]
Transmitter Encoder
s(t) ()= DDE2 (X il DDE1
X(t)

K[z{t-T)-z(t)]
€

m(t) zZt)
(t-T)

£ 4

Fig. 4. Block diagram of a chaotic communication system based
on the masking technique and UPOs of a DDE. A finite message is
stored on a UPO of a DDE stabilized by delayed feedback control
(Eq. (6)). This waveform is then masked by the chaotic behavior
of a similar but uncontrolled DDE (transmitter), and decoded
by another similar DDE with a synchronizing perturbation as in

Eq. (4).

In other words, these frequencies will not stand out in
the spectrum, and the message has low detectability,
as shown in Fig. 5 below.

A block diagram of the method is shown in Fig. 4.
The message encoded onto a controlled UPO in the
“encoder” is then modulated before transmission with
a chaotic carrier of a DDE similar to the one in the
encoder. This second DDE can have the same or dif-
ferent feedback parameter (a in Eq. (5)), but has the
same other parameters. At the receiver, which contains
the exact copy of the transmitter system, the message
is extracted using synchronization. Figs. 5a,b show a
controlled UPO of a period four orbit P4 orbit of the
MG DDE Egq. (5) and its power spectrum. It is called
“Py” because it is made up of four “plateaus” con-
nected by abrupt transitions. These plateaus are not
exactly flat, as they have a bit of structure, especially
near their extremities. Yet the average values of these
plateaus is well approximated by the four constant val-
ues through which the controlled UPO of the singular
limit map of the DDE cycles on its corresponding pe-
riod four orbit.

The initial function on (—7,0) is divided into three
pieces, each on an interval (or “bin) of duration 7/3.
The ordinate in each of these bins is assigned any one
of the four plateau values mentioned above, i.e. it is
piecewise constant. Since there are four values, each
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Fig. 5. A message is encoded onto a multistable solution of a
controlled P, orbit, masked or modulated with a chaotic car-
rier x(r) using Eqs. (15)-16 (a = 0.2, r = 300), and then trans-
mitted. (a) The controlled multistable solution of P, in the
DDE obtained from Eq. (6) with a = 0.145, 7= 300, T = 1225
and XK =0.05, on which the message [10, O, 11, 01, 11, 00,
11, 00, 10, 00, 10, 01] has been encoded [26]. (b) Power
spectrum of the waveform in (a). (c) Power spectrum of the
masked signal s(¢) = x(¢) +0.1m(+). (d) Power spectrum of the
masked-modulated signal s(¢) = x(¢)[1 + 0.1m(z)). Spectra are
averages over 20 samples of 4096 points each with sampling time
3.75.

value can be specified by two bits; the map (or DDE
at large delay) makes the values cycle as 11 — 00 —
10 — 01 — 11. Actually, to minimize transients, the
P, orbit was obtained with an initial function defined
over (—47,0), i.e. twelve ordinate values are speci-
fied for twelve bins: [10, 01, 11, 01, 11, 00, 11, 00,
10, 00, 10, 01] (see Ref. [26] for details). The last
three pairs of bits, 00,10,01, correspond to the actual
coded message (arbitrarily chosen). The preceeding
three groups of two bits, 11, 00, 10, are the pre-images
of 00, 10, 01 under the evolution of the map (i.e. 11
is the pre-image of 00, 00 is the pre-image of 10, and
10 is the pre-image of 01). The other preceeding six
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Fig. 6. Transmitting a message using MG DDE for 7 = 300,
a = 02, X = 0.1, € = 03. (a) The transmitted sig-
nal s(t) = x(t) + em(t). (b) The recovered message
em(t) = s(t) — y(¢) using synchronization of x(¢) and y(¢).
It is a periodic P4 orbit (@ = 0.1365) obtained from a piece-
wise constant initial function with three plateaus in the interval
(—7.0). (c) The recovered message em(r) using parameter mis-
match a; = 0.2 (transmitter) and a; = 0.198 (receiver). (d)
The recovered message using additive zero-mean Gaussian white
noise £(t) to the message s(1) = x(t) + em(s) + £(¢). The noise
standard deviation is 0.005; the message em(t) has a standard
deviation of 0.03. The transmitted signal s(¢) has mean 1.24 and
standard deviation 0.35.

groups of two bits are assigned similarly. The mes-
sage signal is very difficult to pick out in the trans-
mitted signal spectrum in Figs. 5¢ (masking) en 5d
(masking-modulation). Fig. 6b illustrates such a mes-
sage once recovered from the transmitted signal shown
in Fig. 6a; it is virtually identical to the original mes-
sage (not shown).

4.5. Digital communication

We now show that the continuous-time difference
equation (CTDE) obtained in the singular perturba-
tion limit R — oo of Egs. (15) and (16) can be used
for private communication in a digital rather than ana-
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Fig. 7. Transmission of a digital message using chaotic syn-
chronization of continuous-time difference equations with mask-
ing-modulation, Eq. (17) (e =0.1, 7=9). (a) The transmitted
signal. (b) The recovered short periodic message.

log mode. For constant initial functions, such CTDEs
exhibit a series of plateaus which follow chaotic or-
bits. These plateaus are highly unstable; for exam-
ple, they will not remain “plateaus” in the presence
of noise. For example, the dynamics of the masking-
modulation technique can be written as

_F(x(t—1))
x(1) = b — Kem(t)’
1
)’(l‘)=b_'_—K[F(y(t—T))+Ks(t)], (17)

with s(2) = x(£)[1 + em(t)]. As above, we choose
K = b. The dynamics for the masking technique can be
obtained similarly. If noise is a problem, the method
can instead be used in a “map” mode rather than CTDE
mode, where each plateau is replaced by only one
value (in other words, time is discretized in units of
7, and only one state value is considered per delay
interval). Fig. 7 illustrates the method. The digital
message is a controlled multistable P4 solution of the
map with piecewise constant initial functions defined
on three bins in the delay interval (as for the DDE
in Section 4.4 above). The transmission and recovery
of this digital message is done here using a masking—
modulation (Eq. (17)) as in Section 4.3. We note

that another study has reported synchronization and
meodulation of the singular limit map for the Ikeda
equation using an approach as in Ref. [ 1] rather than
that used here [37].

5. Robustness and unmasking
5.1. Parameter mismatch and noise

We now briefly discuss the effect of noise and pa-
rameter mismatch between transmitter and receiver on
DDE synchronization and message recovery (see, e.g.,
Ref. [1]). The presence of many positive Lyapunov
exponents would intuitively seem to require strict pa-
rameter matching and very small noise levels. Our
tests show that the DDE synchronization schemes pre-
sented here can tolerate a certain level of noise and
mismatch, but not too much. We have tested the effect
of noise and mismatch on the recovery of the message
shown in Fig. 6b (see Section 4.4). This is a strin-
gent test, since the message is encoded onto a Py or-
bit of the DDE using three plateaus within one delay
interval (the P4 used here is actually a periodic orbit
rather than a stabilized UPQO; same conclusions apply
for the stabilized UPO case). More noise and mis-
match are tolerable for less complex messages, i.e. for
messages that do not vary so quickly in time. Fig. 6¢
shows the effect of a 1.0% mismatch in the a param-
eter. It is clear that the basic message waveform with
three plateaus per delay is recovered by synchroniza-
tion; but a further increase in mismatch will make the
recognition of the actual succession of plateau values
seen in Fig. 6b significantly faulty.

Fig. 6d looks at the effect of additive Gaussian white
noise on the message. The message-to-noise ratio is
0.03/0.005 = 6, and the transmitted signal-to-message
ratio is 0.35/0.03 = 11.6 (note that € = 0.3). We have
adjusted the noise standard deviation so that again we
are at the limit of recovering the succession of plateau
values without significant error. Nevertheless, the ba-
sic message waveform is recovered by synchroniza-
tion as in the mismatch case above.

5.2. Unmasking

We now briefly discuss how dynamical techniques
proposed in the recent literature may allow for the



68 B. Mensour, A. Longtin/Physics Letters A 244 (1998) 59-70

reconstruction of the message without knowledge of
the transmitter dynamics, a particular concern in the
context of private communication. For example, the
method of Short [38,39] applies a state-of-the-art non-
linear prediction algorithm (based on local neighbor-
hood maps) to the signal in which the message is
hidden. Predictions on a suitably embedded attractor
are used to subtract away the chaotic component of
the signal, thus revealing the message. This method
has been shown to work well for the low-dimensional
Lorenz system. Another method [40], which has also
been illustrated on the Lorenz system, uses the fact that
the return maps of successive extrema in the time se-
ries are shifted when the hidden binary message goes
from one state to the other. The application of these
techniques to our proposed schemes based on hyper-
chaotic DDEs and their multistability is beyond the
scope of our study, and will be discussed elsewhere.
Nevertheless, one can speculate on the success such
techniques may have in intercepting the message.

An important condition for the success of nonlin-
ear prediction based on neighborhood maps is that
the message only mildly affect the tangent space of
the chaotic attractor. These techniques are increasingly
difficult to apply as the attractor dimension and metric
entropy increase, especially if the data set is limited.
It has been shown [41] that nonlinear prediction er-
ror scales as e’ N=1/Ds where D, is the attractor di-
mension, k is the metric entropy, 7, is the prediction
time into the future, and N the number of data points.
Thus, short data sets containing a message, such as
those used here for encoding with UPOs, are difficult
to predict if D, is high; one reason is that more points
are required to fill higher-dimensional spaces. Never-
theless, it is usually the case that certain parts of the
attractor are more easily reconstructed, such as where
the local dimension and Lyapunov exponents are low.

Related issues for successful nonlinear prediction
are the disentanglement of trajectories and the proper
identification of neighbors. For the chaotic DDE car-
rier in Section 4 (7 = 300), an application of the false
nearest neighbor technique (FNN) [42] may reveal
whether good embeddings of the scalar time series
can be obtained in the first place. The idea behind the
FNN method is to calculate the percentage of neigh-
bors of points in the embedding space which are false,
i.e. which do not remain “close” upon going from em-
bedding dimension D¢ to D, + 1. This percentage is
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Fig. 8. Percentage of false nearest neighbors as a function of
embedding dimension for a chaotic solution of Eq. (5) without a
message. The 20 000 point time series was obtained from numerical
integration of Eq. (5) with 7 =300 s, an integration time step
of 0.01 s, and output every 1.0 s. An embedding delay of 300 s
was used; two points in the embedding space whose components
were less than 100 s apart in time were discarded as potential
nearest neighbors. The algorithm used is described in Ref. [42],
with Rig = 10.0 and Ayg =2.0 .

then charted as a function of embedding dimension.

An FNN calculation using the technique in
Ref. [42] for our DDE carrier (without a mes-
sage) with 20000 points is presented in Fig. 8.
The embedding delay 7. used to construct vectors
(x(2), x(1 = T), x(1 = 2T), ..., x(t = (De — DTe))
from x(t), was set to T, = 300 = 7, a natural choice
since the singular map (with time discretized in units
of 7) is relevant to the understanding the DDE dy-
namics. For other values of T, and sampling times of
the solution chosen, we have found similar results to
those shown in Fig. 8; we chose to show the results
for the case yielding the lowest percentage of FNNs
over the range of D, explored. One finds that there is
a range of embedding dimensions (5-8) where the
percentage of FNNs is low (a minimum at 1.2% for
D, = 6), but it does not get any closer to zero. Also,
the percentage of FNN increases monotonically for
7 < D, < 20, in contrast to the behavior for low-
dimensional systems [42], for which the percentage
remains very close to zero. More data points would be
needed to properly calculate the percentage of FNNs
for D, > 20.

A cautious interpretation of this result is that the at-
tractor dimension varies according to the position on
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the attractor (i.e. it is a multifractal), as Lyapunov
exponents do. This muitifractal aspect has been dis-
cussed in Ref. [29]. That study further reports that the
prediction errors from a genetic algorithm for 7 = 150
and 7 = 30 (other parameters are as in our study) were
surprisingly not very different, but that the 7 =150
case required that more constraints be put on which
past states to use for the prediction. This result is pos-
sibly linked to the relatively constant metric entropy
at large delays. Hence, embedding in 5 to 8 dimen-
sions may reveal the main dynamical features of the
attractor. Yet it is likely that finer structure would be
missed by a nonlinear prediction algorithm operating
on such embedded data.

It remains an interesting open question, whether
methods such as those in Refs. [38,39] will never-
theless accurately reconstruct the dynamics to allow
for message recovery. More work is also needed
to verify the accuracy of nonlinear prediction algo-
rithms for DDEs at large delay. We should point out
that previous such attempts have made use of large
embedding dimensions for smaller delays than those
used here (D, = 18 for 7 = 100 in Ref. [41]; De =50
for 7= 150 in Ref. [29]; D =17 for 7=100 in
Ref. [43]; other equation parameters are the same as
here). It also remains to be seen whether the spectral
filtering used to separate message and carrier frequen-
cies can be applied to the messages encoded on UPOs
of the DDE as proposed in our study, since both have
similar spectral features.

Finally, the work of Biinner et al. [44] might be
useful to unmask signals masked by DDE chaos. Their
technique relies on plots of dx/d¢ versus x(#) and
x(t — 7), all of which can be obtained from an avail-
able signal x(¢) (the derivative is numerically esti-
mated) . By scanning through values of 7, one can find
a value for which the plot neatly falls on the surface
dx/dt(x(t), x(t — 7)) determined by the dynamical
equations Eqgs. (4).

6. Conclusion

In summary, we have shown that the chaotic motion
of first-order delay-differential equations and of finite-
order distributed delay systems can be unidirectionally
synchronized through a negative feedback type of cou-
pling involving only one scalar variable, namely the

state variable itself. This synchronization occurs de-
spite the existence of a large number of positive Lya-
punov exponents and the high dimensionality of the
attractor. We have also achieved DDE synchroniza-
tion with parametric feedback instead of additive feed-
back (not shown). Synchronization also occurs in the
presence of small amounts of noise or small superim-
posed information-carrying signals. This makes delay-
differential systems appealing for broadband masking
applications such as chaos communication. This is es-
pecially true when one takes adantage of the multi-
stability feature of these DDEs at large delays. Mes-
sages can then be encoded onto stable periodic orbits,
or onto controlled unstable periodic orbits of the same
kind of DDE dynamics used for the chaotic masking.
In this case, the power spectrum of a message-carrying
waveform blends in to that of the chaos.

More work is needed to fully quantify the sensitiv-
ity of the synchronization to parameter mismatch and
noise, and to ensure, in the case of chaos communi-
cation, that dynamical unmasking techniques fail. Our
results show that synchronization and message recov-
ery can, in the schemes presented, tolerate only a small
parameter mismatch (= 3%), or Gaussian noise hav-
ing a standard deviation less than =~ 33% of the mes-
sage standard deviation. This sensitivity is presumably
a consequence of the attractor invariants and of the
coupling schemes studied. Future work should focus
on other forms of feedback coupling, such as integral
feedback, or feedback based on the system state at
many previous times. Another possiblity is of course to
choose other DDEs, such as the Ikeda system. Certain
parameter choices make the intrinsic feedback func-
tion F(x(t — 7)) for this system multipeaked rather
than unimodal as for the MG DDE, with the result
that the chaotic solutions have statistics very similar
to those of nonlinear Langevin equations [45].

Our results also suggest that properly coupled DDE
response systems can synchronize to noise as well as
any chaotic behavior present in a “drive” system. Thus,
aperiodic behavior of deterministic or stochastic ori-
gin in one delayed feedback system can entrain the
motion of similar systems to which it is unidirection-
ally coupled. This is relevant to the study of single or
multi-loop feedback systems with fixed or distributed
delays, such as those occurring in physiology [27,46]
and neurobiology [28,47,48]. Future work will also
focus on the extension of our results to bi-directional
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synchronization of mutually coupled delayed feedback
systems.
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