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Abstract

The Mackey-Glass delay-differential equation exhibits multistability when the ratio of delay to response time is large. A
piecewise constant initial function corresponding to a finite message can then be stored into a periodic waveform. We show
that the storage capability is enhanced by the control of unstable periodic orbits in the chaotic regime. Further, the relative
controllability of these orbits is quantified using a low-dimensional discrete-time map obtained in a singular limit of this

system.
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1. Introduction

First-order nonlinear delay-difterential equations
(DDEs) are infinite-dimensional dynamical systems.
They evolve forward in time from an initial function
defined over one delay interval. The Mackey-Glass
and the Ikeda equations [1], which belong to this
class of dynamical systems and which are of interest
here, model the rate of change of the state variable as
a balance between an instantaneous linear response
and a delayed nonlinear feedback (see Eq. (1) be-
low). When the feedback delay is much greater than
the response time of the system, the dynamics exhibit
multistability [2,3]. This means that, while a given
initial function uniquely specifies the solution, the
tfunctional space in which these equations evolve has
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more than one basin of attraction. Hence, the asymp-
totic solution depends on the choice of initial function.

This multistability in the time domain makes sys-
tems modeled by such equations attractive for mem-
ory storage purposes, an idea first suggested by Ikeda
and Matsumoto [3]. This strategy has recently been
implemented on a hybrid laser diode modeled by the
Ikeda equation [4]. A message, in the form of a fi-
nite sequence of binary numbers, specifies the succes-
sive values of plateaus in a piecewise constant initial
function for the system. When the delay is sufficiently
large, the system evolves in time into a periodic wave-
form uniquely specified by this sequence. A require-
ment of this technique is that the system parameters,
namely those controlling the strength of the feedback,
be chosen such that the dynamics exhibit stable peri-
odic behavior.

The dynamics of these systems become chaotic
when e.g. the strength of the feedback is increased
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[1]. However, the exponential divergence of trajec-
tories does not allow the memory storage strategy to
work in the chaotic regime. While multistability still
exists in this regime at large delay, even the memory
of a constant initial function is lost in the chaotic
evolution, as shown in Fig. 1a for the Mackey-Glass
equation. In the chaotic regime, an infinite number
of unstable periodic orbits (UPOs) coexist with one
or more chaotic attractors [2,3]. These periodic so-
lutions are not visible for typical initial conditions,
although chaotic trajectories can spend time near
them before being repelled away.

In this Letter, we show that unstable periodic orbits
of the Mackey-Glass equation can be observed using
a recently proposed chaos control technique [5], and
more importantly, that memory storage is also possi-
ble in these controlled waveforms. We find that the
chaotic regime allows for an enhanced versatility of
memory storage since, for fixed parameters in the un-
controlled system, UPOs of different periods can be
controlled by tuning one control parameter. Further,
we present a theoretical analysis of the controllability
of the UPOs in such infinite-dimensional dynamical
systems using a low-dimensional discrete-time map.
This map arises in the singular limit of the DDE in
which the delay to response time ratio R goes to in-
finity. The controllability is found to be predictable by
the Lyapunov exponents and other characteristics of
this map.

The control of UPOs in other high-dimensional sys-
tems such as partial differential equations [6] has been
reported. The large number of UPOs and the sensitiv-
ity to small perturbations endow chaotic systems with
a flexibility to produce different patterns using min-
imal perturbations and without changing system pa-
rameters [7]. Our method benefits from this flexibil-
ity. There have also been recent studies of chaos in the
context of message encryption and transmission, as in
a seminal paper [8] where this is achieved using the
synchronization of chaotic systems. Also, Hayes et al.
(91 have shown that the oscillations of a chaotic sys-
tem can be made to follow, using small perturbations,
a desired sequence of symbols, thus encoding an ar-
bitrarily long message into a waveform. In contrast,
our method involves the storage of finite messages.
However, it relies on multistability rather than on the
system’s symbolic dynamics which preclude certain
symbol sequences. Consequently, in our method, mes-

sages are directly encodable without the necessity of a
“grammar” as in Ref. [9]. Our results provide insight
into multistability in simple DDE models of neural
feedback [10] and in control systems, physiological
and other, involving multiple delayed feedback loops
[11]. Our method further provides an alternative to
models of temporal pattern storage based on networks
of many coupled neurons [12].

2. Solutions of the Mackey-Glass equation at
large delays

Our study focusses on numerical simulations of the
Mackey-Glass equation

dx(t) _ ax(t—1T1)
TR T

With parameters (constant throughout our study) a =
0.145,b =0.1,c = 10, Eq. (1) exhibits aperiodic be-
havior when the delay time 7 > 42 (see Fig. 1a).
Although we have not analyzed this motion in detail
using e.g. dimension or Lyapunov spectrum calcula-
tions, this aperiodicity is consistent with earlier reports
of deterministic chaos in this parameter range [ 1,13];
the behavior is thus assumed to be chaotic. The multi-
stability of this DDE is easily characterized (see e.g.
Ref. [4]) when (1) the parameters yield a stable pe-
riodic solution (e.g. for a < 0.14) and (ii) the feed-
back delay 7 is much greater than the system response
time 7, = b~"'. The initial functions of interest here are
piecewise constant, each constant corresponding to a
binary number in a code. The continuous solution then
consists of “plateaus™ linked together by short transi-
tions of width proportional to 2¢,/7 [14]. The solu-
tion ressembles that in Fig. 1b (which however is a
controlled UPQO), without the small spikes at the end
of the plateaus. Each plateau evolves from its initial
constant independently from the other plateaus. After
transients, all plateaus cycle through the same set of
values in the same order. In the singular limit R =
7/t — o0 of the DDE, these values are exactly given
by the asymptotic solution of the difference equation

(D)

b lax(t—71)

x()y=b"' f(x(t—1)) “Trx(—7"

(2)

Such an equation has previously been used to study
properties of DDEs like stability and bifurcations [ 14 ]
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Fig. 1. Numerical solutions of Eq. (1) for a ratio of delay to system
response time R = 30. Other parameters are 7 = 300, a = 0.145,
b = 0.1 and ¢ = 10. (a) Chaotic regime. The constant initial
function on (—7, Q) evolves into a solution whose plateaus shrink
and finally disappear, leaving no trace of this initial condition.
(b) A second feedback term with delay 7 (see Eq. (3)) is
used to stabilize the unstable periodic orbit P; (see text). The
initial function is a constant on ( ~7,0). The solution oscillates
between two values determined by Eq. (4). and reflects the value
of the initial function. The control parameters are X = 0.05 and
T =6164. (c) Same as in (b) but 7 = 1225.4. This allows the
control of the unstable penodic orbit P> which cycles between
four values determined by Eq. (4).

and the influence of noise [ 15]. One can go one step
further and discretize the continuous time in Eq. (2)
in units of 7. The evolution of each point on (—7,0)
is then governed by the one-dimensional map x(i) =
b~ f (x(i — 1)). All points on (—7,0) are mapped
in parallel from one delay interval to the next. These

points evolve independently since, in this limit, the
solution is not constrained to be continuous. Eq. (2) is
of course multistable, except when the singular limit
map has one globally attracting fixed point (which
occurs at much lower values of a). For values of R on
the order of 30, as in our study, Eq. (2) adequately
predicts the plateau values for periodic solutions.

3. Controlling unstable periodic orbits at large
delays

Unstable periodic orbits in Eq. (1) are controlled
using a delayed negative feedback of the form F(z) =
K[x(t—T) —x(t)] following the method of Ref.
[5] for ordinary differential equations. T is the period
of the selected UPO and X is the control parameter.
The dynamics then become

D - be() + fx( =)
+K[x(t—=T)—x(t)] . (3)

For a piecewise constant initial function, the plateaus
in the solution of Eq. (3) cycle through values approx-
imately given by the orbits of the difference equation
obtained in the singular limit (R — oo) of Eq. (3),

1

X(t)—b+K[f(X(t ) +Kx(t+ =T)1. 4
Note that this is a continuous-time difference equation
like Eq. (2). Fig. 2a illustrates this stable periodic or-
bit on the discrete time map associated with Eq. (2),
to avoid the three-dimensional representation using the
variables x(t), x(¢t — 7) and x(z — T) from Eq. (4).
The period-four orbit in Fig. 2a is unstable without the
second delayed feedback, since without this term the
dynamics are chaotic with a = 0.145. Fig. 2b shows
the solution of Eq. (4) corresponding to the “stabi-
lized” period-four orbit in Fig. 2a. The perturbation
F (1) is small when the trajectory lies close to an UPO
of the uncontrolled system. We focus here on these
UPOs rather than on new orbits created by the control.
This second delayed feedback can be switched on at
any time; control occurs after transients have died out.

We have found that a plot of the limit cycle ampli-
tude versus 7 for Eq. (3) can be used to estimate the
maximum number of plateaus, in one delay 7, which
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Fig. 2. Storage of a finite message into the controlled pe-
riodic waveform P, with X = 0.05. (a) Discrete-time map
x(i) = hflf(x(i — 1)) obtained by letting R — co in Eq. (1)
to obtain Eq. (2), and discretizing time in units of 7. Without
control, this map has an unstable period-four orbit (shown on
the map). cycling through [11], [O1], [10], |00]. With control
(T = 47 = 1200) this same period-four orbit, governed by Eq.
(6), is stable. (b) Solution of the difference equation Eq. (4)
obtained in the singular limit of Eq. (3). with 7 = 4r. The initial
function on (—~7;0) is chosen to be piecewise constant, with con-
stants equal to one of the four values of the controlled period-four
orbit in (a). This periodic waveform has period T. (c) Storing
the sequence [11,00,11] within a delay  into the solution of
the controlled delay-differential equation (Eq. (3)). The control
delay is T = 1225.4, which is also the period of the waveform,
close to the value of 47 = 1200 in (b). To minimize transients,
the plateaus on (—T7, —7) were chosen such that the perturbation
F(1) =K[x(1—T) — x(1)] is close to zero. This is achieved by
choosing these plateaus as the three pre-images, dictated by the
map in (a). of the message on (—7,0).
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Fig. 3. Amplitude of the limit cycle of the controlled de-
lay-differential equation (3) as a function of 7. A Hopf bifurcation
occurs at 7=11.2.

can evolve in time without merging. For the param-
eters chosen, a Hopf bifurcation occurs at 7 = 11.2,
and for 7 > 7. &~ 43 this amplitude saturates, as
shown in Fig. 3. The approximate number of plateaus
is found to be 7/7. = 7 since 7 = 300 in our study.
This holds over the wide range of K values for which
this limit cycle can be controlled ( without control, the
first period-doubling occurs at 7 = 28.1). If an initial
function with more than seven plateaus is used, the
transition time between plateaus becomes comparable
with the width of one plateau, and merging occurs.

A desired UPO can be stabilized by substituting ei-
ther the fixed point x* or x(t -~ 7) for x(¢t — T) in
Eq. (3). The linear stability analysis of the map in
the singular limit of Eq. (3) (see Eq. (4), or Egq.
(6) below) shows that the fixed point is stable for
K > —[f'(x*) + b] in the first case, and if K >
—[f'(x*) + b]/2 in the second. If X is smaller than
these values, it is possible to control period-doubled
solutions, which have more states and thus are more
interesting for memory storage. Our discussion will
focus on controlling Py, the limit cycle arising through
a Hopf bifurcation, and P, its first period-doubled so-
lution. Note that in the singular limit, the Hopf bifur-
cation becomes the first period-doubling bifurcation
of the map [14,15]. Substituting x* or x(¢t — 7) for
x(t—T), one observes a solution with approximately
the right period, but the wrong amplitude. This mea-
sured period is very close to that of the desired UPQ;
it can then be used for T in Eq. (3) to properly con-
trol the UPO. For P and P,, a fine-tuning as in Figs.
4a and 4b will further decrease F(t) until P, or P,
are optimally controlled. For constant R, the range of
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controllability of P, is much narrower than that for P;.
Higher Py are increasingly difficult to control. The re-
sulting controlled P, is shown in Fig. 1c. This method
enabled us to also control UPOs in the Ikeda equation.

4. Storing finite messages using piecewise
constant initial functions.

We now show how a sequence of binary numbers
can be encoded into one of the many possible wave-
forms of an UPO of a given period. Again, this mul-
tistability in Eq. (3) arises because the delay is large.
Following Ref. [4], we define a “(n,!) isomer” as a
solution with n plateaus in one delay 7, each cycling
through the / values of Py. There are " different ini-
tial functions or “messages” which can be stored. The
maximum storage capacity is achieved when the ini-
tial function has the maximum number of plateaus that
can evolve without merging; it is given by {7/™. A bi-
nary number can be assigned to each of the [ values, in
a ranked fashion with the lowest binary number corre-
sponding to the lowest of the / values. The number of
bits for each value is given by log, (/). For example,
P> cycles through four values; thus, a two-bit code can
be assigned to each of the four values: 00, 01, 10, or
11.

The controlled singular limit map obtained by dis-
cretizing time in units of 7 in Eq. (3) is given by

x() =b7 fx(i= 1)) + b7 K[x(i = 1) — x(i)],
(5)

which can be rewritten as

1
x(t)—b+K[f(x(z 1)+ Kx(i=D] . (6)
For a certain range of K, an orbit of period / can be
controlled. As the perturbation K{x(i — 1) — x(i}]
in Eq. (5) vanishes when the control is achieved,
the orbit cycles between [/ points on the map x(i) =
b= f(x(i— 1)). If, for example, K = 0, this map is
chaotic; however, if K = 0.05, a controlled P, orbit
cycling between four values is obtained, as shown in
Fig. 2a. An (n =3.! =4) isomer for the DDE carry-
ing the information [11,00,11] in a solution of period
1225.4 (which is approximately I7 = 47 = 1200) is
shown in Fig. 2¢. The map in Eq. (5) accurately pre-
dicts the evolution of the mean values of the plateaus
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Fig. 4. Plot of the dependence of the dispersion
{lx(1—=T) — x(1) 1) on the delay T of the second feedback loop
in Eq. (3) with K = 0.05 and 7 = 300. The quality of the control
is inversely proportional to this dispersion. (a) Py with T = 616.4;
(b) P, with T = 12254,

for this DDE. Comparing Fig. 2c to the singular limit
case in Fig. 2b, one sees small spikes near the transi-
tion points, which the control cannot eliminate. Nev-
ertheless, this waveform is stable and preserves the
memory of the initial function.

5. Stability and controllability of orbits

The map (6) can also be used to assess the range of
K values for which a desired UPO can be controlled.
Fig. 5a plots the dispersion {|x(t—T) —x(#)|) (similar
to the dispersion in Fig. 4) versus K for the DDE
and for Eq. (4), its associated difference equation.
For Eq. (4), this dispersion is zero when control is
achieved. Fig. 5a shows that the difference equation
approximation of the DDE is justified, even for R =
30, since both dispersions have a similar dependence
on K over the range of K where P, is controllable.

The Lyapunov exponents for Eq. (6) can also
be used to study the stability of the orbits. This /-
dimensional map is first converted into ! coupled
one-dimensional maps,

1 .
yo(i) =m[f()’0(i— D)+ Kn(i— 1],

yi)y=ymi=1, j=12,..,1-12,
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Fig. 5. Investigating the controllability of UPQOs as a function
of the control parameter K. (a) Dispersion (|x(1 —T) — x(1)|)
of P, for the continuous-time difference equation (4) (CTDE)
and for the delay-differential equation (3) (DDE). (b) Maximal
Lyapunov exponent of the map (6) for P». (¢) Same as in (b)
but for Py. The filled squares at low K with Ay < 0in (b) and
(c) correspond to other orbits of higher period.

yi—1 (i) = yo(i — 1). (7)

The Lyapunov exponents are then calculated using the
QR decomposition method [16] in the implementa-
tion of Ref. [17]. Figs. 5b and 5c¢ show the maximum
Lyapunov exponent A, for, respectively, P> and P as
a function of K. Comparing the regions where Ay <
0, we sce that P, has a larger range of stability than
P,. The K-range for P, decreases when a in Eq. (3)
increases until it vanishes for a > 0.151 and we are

unable to control this orbit (not shown). However if

we then increase K, control can be achieved but for
a limited time only, as An,x iS close to zero. Finally,
good agreement is found between the stability do-
mains based on the dispersion (|x(7—T) —x(¢)]) and
Amax- Fig. S clearly indicates that P, is stable only in

the range K € [0.04,0.11], while P; is stable for any
value of K > (0.035.

6. Conclusion

We have shown that the multistability of controlled
unstable periodic orbits of the Mackey-Glass delay-
differential equation at large delay can be exploited
to store finite messages into periodic waveforms. As
our method is based on the chaotic rather than peri-
odic regime, a broader range of waveforms of different
shapes and periods can be accessed by tuning the con-
trol delay. Our analysis shows that the properties of
this high-dimensional dynamical system, and in par-
ticular, the controllability of its UPOs (as measured by
the maximal Lyapunov exponent and the dispersion),
can be predicted by a low-dimensional map obtained
in a singular limit of this DDE. Increasing the ratio
of delay to response time in the uncontrolled system
allows isomers of increasing complexity to be con-
trolled. We have found (not shown) that a moderate-
to-high noise level increases the amplitude of the per-
turbation F(t); this can cause the solution to jump
from one basin of attraction to another, and thus degra-
dation of the memory. However, a small amount of
noise merely adds a bit of structure on the plateaus,
without altering the basic period and message content
of the waveform.
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