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Abstract

The Mackey—Glass and lkeda delay-differential equations (DDEs) are models of feedback systems in which attractor
dimension is proportional to the delay. Power spectra from these models are investigated analytically and numericaily.
As the delay increases much beyond the system response time, an exponentially decaying spectrum with a near-periodic
superimposed modulation appears. It is shown that each peak in this modulation is associated with a mode of oscillation
predicted by linear stability analysis around the fixed point. The number of such modes within a characteristic autocorrelation
time of the solution agrees with the Lyapunov dimension of the attractor. The disappearance of this modulation at higher
delay values is also explained. The decay rate of the spectrum in the mid-to-high frequency range is found to agree with
the sum of the positive Lyapunov exponents, i.e. with the metric entropy. Realistic models with a distribution of delays
display similar spectra as their memory kernel narrows into a delta-function. For very large delay, the DDE approaches an
infinite-dimensional continuous-time difference equation (CTDE), with each point on a delay interval evolving independently
and according to a chaotic discrete-time map. CTDE spectra, which have many features of finite-delay DDE spectra, can
be computed analytically if the spectrum of this map is known. For constant initial functions, they have a 1/f? form at low
frequencies. Our analysis suggests that the spectrum of the chaotic map is at the origin of the peak shapes in DDE spectra at
low frequency. Our findings highlight the relevance of the linear properties of DDEs to the characterization of their nonlinear
properties.

Keywords: Delay-differential equations; Difference equations; Power spectra; Chaotic attractors; Mackey—Glass equation: Ikeda
cquation; Lyapunov dimension; Singular perturbation

1. Introduction

Delay-differential equations (DDEs) are used to model a large variety of nonlinear phenomena in which the time
evolution depends not only on present states but also on states at or near a given time in the past (see e.g. [1] and
references therein). From the point of view of nonlinear dynamics, these infinite-dimensional dynamical systems
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are interesting because their chaotic attractors have a finite dimension proportional to the delay [2-5], making them
useful to study general properties of high-dimensional chaos (Fig. 1). The large delay case, or more precisely, the
large delay-to-response time case, has received a lot of attention because it is in this limit that certain properties
of the DDE can be studied using a discrete-time map [6,7]. Other recent studies have approached the problem of
high-dimensional chaos in DDEs through the use of interval maps [8] and iterative delay maps [9,10]. Further, there
has been recent interest in DDEs at large delay in the context of phase defects and phase turbulence in lasers, which
can be studied by arranging temporal solutions in a two-dimensional space—time representation { 11].

DDEs at large delay are also of interest because they exhibit multistability, i.e. different initial conditions lead
to different asymptotic periodic or chaotic solutions [12]. This property makes delay-differential systems attractive
for memory storage purposes, as first suggested by Ikeda and Matsumoto [6]. In fact, it has been shown [ 13,14] that
finite bit strings can be stored as specitic periodic solutions of DDEs through judicious choices of initial conditions.
The procedure works also for unstable periodic solutions stabilized by chaos-control techniques [15]. There has
been much progress in our understanding of multistability and chaos in DDEs (see e.g. [6]), despite two main
difficulties that hamper such studies. The first is that initial conditions for DDEs are functions on the delay interval
(—71,0), where 7 is the delay: evolution in functional spaces is more difficult to study than in finite-dimensional
phase spaces. Further, calculating dynamical invariants for high-dimensional chaos is numerically very involved.

In this paper, we show that properties of DDEs at large delays, such as dynamical invariants and multstability,
can in fact be studied using linear stability analysis, power spectra of temporal solutions, and a discrete-time map
obtained from the DDE. Some of our results complement those in a recent paper [ 16] which suggested a relationship
between, on the one hand, the exponential decay rate of such spectra, and on the other, the sum of certain Lyapunov
exponents and thus the Lyapunov dimension. Our study makes use of two classes of dynamical systems obtained
in the singular perturbation limit of the DDE [6,17]: the usual discrete-time one-dimensional map, as well as an
infinite-dimensional continuous-time difference equation (CTDE). We find that the extreme multistability displayed
by the CTDE, which is relevant to understanding memory storage and chaos control onto desired patterns in DDEs,
can be exploited to explain features of large-delay spectra in DDEs, such as peak shapes. CTDE spectra can also
be used to estimate attractor dimension in a corresponding DDE at mid-to-large delays.

The main advantage of working with spectra is that they are much simpler to calculate numerically compared to
usual invariants. especially when the attractors are high-dimensional; the further advantage of working with CTDEs
is that their spectra can be calculated analytically, once the spectrum of the aforementioned discrete-time map is
determined (an even simpler numerical task).

An initial motivation for our work is an observation by Farmer [2] in his seminal study of dynamical invariants
of DDEs. He noted in the power spectrum of the Mackey-Glass equation “a curious modulation™ superimposed on
an exponentially decaying envelope when the ratio R of delay-to-response time was large (30 in his study). We find
that both the Ikeda and Mackey—Glass models exhibit such a near-periodic modulation when R is large, and that the
peaks of this modulation are associated with the modes predicted by linear stability analysis of the dynamics around
the fixed point. This correspondence in turn suggests new relationships between these linear modes, the spectral
decay rate, the Lyapunov exponents and the Lyapunov dimension of the attractor. In particular we find that, at least
for such first-order DDEs at large R values, the exponential decay rate observed at mid-to-high frequencies is more
relevant to the characterization of dynamical invariants than the asymptotic spectrum (i.e. at very high frequency).
This follows from the fact that most of the energy of the chaotic fluctuations lies in this frequency range, and is
associated with the Jargest Lyapunov exponents and most unstable linear modes.

This paper is organized as follows. In Section 2, we discuss the properties of power spectra at different delays and
over different frequency ranges, and introduce the CTDE and discrete-time map obtained in the singular perturbation
limit of the DDE. The spectra are further characterized using notions from linear filter theory. In Section 3, we
calculate the frequencies of the modes using linear stability analysis around the fixed point and associate them with
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peaks in the power spectrumn. Section 4 estimates the attractor dimension from the number of peaks in the power
spectrum, and the sum of positive Lyapunov exponents from the rate of decay of the spectrum. It also discusses the
spectra for the distributed delay case where the DDE is approximated by a finite number of ODEs. Section 5 gives
a derivation of spectral properties of CTDE solutions for piecewise constant initial functions. It further discusses
the connection between spectra of such unstable solutions, those of the singular limit map, and those of finite-delay
DDEs. The paper concludes in Section 6.

2. Power spectra at different delays
2.1. Temporal behavior

First-order nonlinear DDEs such as Mackey—Glass or Ikeda equations have the form

dx (1)
dr
To solve such an equation, it is necessary to specify the initial condition of x over one delay interval 7, i.e. one
must specify an initial function. Since the domain of definition of a function is infinite, these dynamical systems are
infinite-dimensional. In numerical simulations, we partition this delay interval into M subintervals. Thus the behavior
of the infinite-dimensional DDE is approximated by that of an M-dimensional discrete dynamical system [2], which
maps the values of x over one delay interval into those over the following delay interval. Fig. 1 shows numerical
solutions of the Mackey—Glass equation [ 18] for different delays:

= —bx(t) + F(x(t — 1)). (hH

dx (1) — —bx(t) + ax(t — 1) )
a7 I+ x00 — 1)

The parameters chosen [2,16], a = 0.2, b = 0.1, are the same throughout our study. A fourth-order Runge—Kutta
method with linear interpolation on the delay variable has been used throughout our study. As the ratio R = 7/1,
of the delay-to-response time 7, = 1/b increases, the chaotic solution loses some of its regularity, as can be seen
on going from Figs. 1(a) to (b). For very large R values (Fig. 1(c): R = 500), the solution which evolves from
a constant initial condition exhibits plateaus, with a bit of chaotic fluctuations at the end of each plateau. In the
singular limit R — oo, obtained throughout our paper by letting T — oo and keeping b fixed, the evolution of
these plateaus is given by the CTDE:

F(x(r—1))
x(t) = ————

b

We note that time is still continuous in this difference equation. A further simplification of the dynamics in this
singular limit results from discretizing time in units of one delay, and associating only one value of the state variable
x with each time unit. The dynamics can then be cast in the form of a discrete-time map (see e.g. [7]):

F(xp)
b

Hence, for a constant initial function on (—7, 0), the values of the successive plateaus are predicted by this map.

=Gt —1)). 3)

=G(x,). 4)

Xp+1 =

2.2. Spectral behavior

To further investigate the properties of high-dimensional solutions of such first-order DDEs, we calculate the
spectral properties of solutions. We numerically generate a long solution time series starting with a constant initial
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Fig. 1. Solutions of the Mackey—Glass equation, Eq. (2). for delay values of (a) 7 = 25, (b) T = 200, and (¢) T = 5000. Other parameters
are ¢ = 0.2 and b = 0.1. A tixed step fourth-order Runge—Kutta method was used with integration time step 0.01. Linear interpolation
was used for the required two midpoint evaluations of the delayed variable. The initial condition was a constant (0.8) on the delay interval
(—1.0) in each case. The solution was found to be insensitive to the value of the constant initial condition (unless it is equal to 1, the
unstable fixed point). Asymptotic solutions are shown in (a) and (b): the transients in (¢) have not completely decayed; further this plateau
solution is unstable.

condition on (—t. 0). This solution is divided into many adjacent pieces. The power spectrum for each piece is
computed using the Fast Fourier Transform — periodogram method: the individual results are finally averaged to
produce an “averaged” power spectrum.

Fig. 2 shows power spectra from solutions of the Mackey-Glass equation for different delays using constant
initial functions. We cannot exclude the possibility that different initial functions lead to different asymptotic chaotic
solutions with different spectra and dynamical invariants, i.e. that the dynamics are multistable [12]. However, for
a given delay, all constant initial functions tested yielded solutions having similar average power spectra.

When the delay is small (e.g. 7 = 25, as in Fig. 2(a)), the spectrum is broadband with a few broad peaks, a
familiar characteristic of chaotic motion. There does not appear to be any clear relationship between the position of
these few peaks and the frequency of the solutions obtained from a linearization of the dynamics around the fixed
point (see Section 3).

However, if the delay is increased further to, e.g., T = 200 (Fig. 2(b)), a clear periodic modulation of the broadband
background appears, as first noted in [2]. Further, the mean decay rate of this background no longer changes for
larger delay values (the rate is the same in Figs. 2(b) and (¢)), and is well-fitted over a large range by an exponential
(Fig. 2(c)). The number of peaks in the power spectrum increases linearly with the delay, and for the accuracy used
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Fig. 2. Power spectra of solutions of Eq. (2) for the parameters used to generate the time series in Fig. 1; (a) T = 25, (b) v = 200, and
(¢) T = 5000. The spectra are obtained using the FFT algorithm, and are averages of spectra from 100 consecutive §192-point time series.
The integration time step is 0.01 s. The spectrum for v = 5000 is fitted to y = C} + C2 f with C| = =7.6 and C3 = —93.02. The
sampling time is 3.75s. A Hanning window was used for all spectra in our study.

in our simulations, the modulation can no longer be seen when t > 2000, due to the finite frequency resolution in
our spectra (see Fig. 2(c)). Let us assume that two peaks can be resolved if their centers are separated by at least
2Ay, where Ay is the width of one peak. Estimating the width of each peak as Ay = 0.00025 Hz, we expect that
neighboring peaks can be resolved if 7—' > 2Ay, which agrees with our observation.

Fig. 3 shows a power spectrum for T = 200, as in Fig. 2(b), but using a smaller sampling time of | rather than
3.75 s (note that time in Eq. (2) is not dimensionless, and thus we choose an arbitrary time unit of | s throughout our
work). We find that the modulation seen in Fig. 2(b) begins to die out past ¢5~ 1 and disappears around f = 0.14 Hz.
Here ¢ is a system-dependent constant as discussed in Section 4.1, and § is defined below. Also, the rate of decay
seen in the range where the periodic modulation 15 present is the same as in Fig. 2(b). This suggests that aliasing
effects, while potentially present because the solution is resampled with a time step larger than the integration time
step, seem to slightly affect power estimates only at the very highest frequencies, i.e. those close to the Nyquist
frequency used for the computation of a given spectrum. We have found behaviors with increasing delay similar to
those in Figs. 2 and 3 for spectra of the Ikeda equation. For example, Fig. 4 shows a modulation as in Fig. 2(b) for a
ratio of delay-to-response time of R = 20. However, we note a difference in line shape between the Mackey—Glass
and lkeda cases, the line shape being much simpler in the latter case. This difference will be explained in Section 5.

Our spectra for large delays can be decomposed into three different ranges of frequencies: (1) the low frequency
range O < f < b/2m, (2) the mid-to-high frequency range b/2r < f < ¢6~' (8 being the correlation time of the
feedback term — see below, plus Figs. 2(b), 4-6), where the periodic modulation is clearly seen for large delays,
and (3) the very high frequency range f > ¢§'; this latter range is shown only in Fig. 3. The spectral features
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Fig. 3. Power spectrum for 7 = 200, as in Fig. 2(b), but with a sampling time of 1, i.c. a Nyquist frequency of 0.5 Hz. The spectrum in
(0. 0.12) Hz was not changed (compare Fig. 2(b)) by using this smaller sampling time.

in region (1) can be understood by considering the delayed feedback in Eq. (2) as a forcing or “input” term in a
non-autonomous system. By Fourier transforming Eq. (2), as in conventional linear systems analysis, we can write

J2TfX(f) = —bX(f) + F(f), (5)

where F(f) is the Fourier transform of the nonlinear feedback function. The magnitude squared amplitude (MSA)
response function, relating the “output” X (f) to the “input”, is then:

X 1
|F(H12 b2 +amafr

P = ©

We have verified numerically that the power spectrum of the output x () and the input F (x(¢)) for Eq. (2) are indeed
related by Eq. (6) (not shown).

o
>

Fig. 4. The power spectrum of the lkeda equation, i.e. Eq. (1) with F(x(r — 1)) = 2.1~ ' sin(x(r — 7)) with parameters b = | and
7 = 20. The spectrum is obtained from 100 consecutive 8192-point time series with an integration time step of 0.01 s and a sampling
time of 0.165s.

Fig. 5. Autocorrelation function of the feedback term F(x(r — 7)) for the Mackey—Glass equation (Eq. (2)) in the chaotic regime
{a = 0.2. 5 = 0.1) for various delays: (a) 7 = 31.8, (b) T = 50, (¢) r = 100 and (d) r = 200. The correlation time &, at which the
autocorrelation decays to | /¢ times its maximum value of 1 (at lag s = 0), is found to be 9.72 s in all cases.
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Fig. 6. Autocorrelation function of the feedback term tor the Ikedu equation (see Fig. 4) with ¢ = 20. The correlation time 8, at which
the autocorrelation decays to 1 /e times its maximum value, is found to be 0.35 5.

If f <« b/2m, the MSA response function is & 1/b>, so that in this leftmost part of region (1) fluctuations are
amplifiedby =~ 1/ b2 from one delay interval to the next, in agreement with the difference equation (4) (see also [3]).
As will be shown in Section 5, the shape of the peaks in this low-frequency region are similar to those for the CTDE
(Eq. (3)) (Figs. 12 and 13), except that each main peak for the DDE is composed of two peaks rather than four in
the CTDE. due to the limited resolution of our spectrum calculation for the DDE. The CTDE in fact can be used
to relate the low-frequency spectral features of the DDE to those of the discrete-time map (Eq. (4)). As we move
towards b/2m, the frequency dependence of the denominator in Eq. (6) comes into play, yielding a Lorentzian-type
of decay which carries into the beginning of region (2). Region (1) can be assimilated with the “core range” in the
terminology of Ikeda and Matsumoto [3], i.e. it contains the most dominant (i.e. most energetic) Fourier modes of
the chaotic motion.

In region (2), the spectrum initially follows Eq. (6), but quickly gives way to an exponential decay over the
remainder of this range. In fact, most of region (2) is well-fitted by

S(f) = Ae™* '/ (7)

where A is a constant and u ! is a spectral decay rate (in seconds: see Fig. 3). This region of exponential decay

can be associated with the so-called dissipative range [3], characteristic of viscous dissipation at high frequency (or
high wave number) in the context of turbulent flow. Region (3) is found to exhibit a slower decay. which is also to
a good approximation exponential over a substantial part of its range (0.2 < f* < 0.4 Hz).
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For the Mackey—Glass equation, the integrated power §; is found not to depend on the delay, provided this delay
is larger than approximately 50, i.e. provided R > 5 (since » = 0.1). With negligibie error, this integrated power
can be approximated by

¢3!
A e
S = / S(Hdf == —e T = e, ®)
0

where C(0) is the autocorrelation function of x(t) at zero lag (by the Wiener—Khintchine theorem, the integrated
power in the spectrum is equal to C(0)). Thus, past a certain delay, the power in the signal x () is constant, and
consequently, the variance C(0) of x(z) becomes constant.

3. Linear stability analysis

We now show that the frequencies of the peaks that make up the modulated part of the power spectrum at large
delays. such as for T = 200 in Fig. 2(b), agree very well with the frequencies of linear modes obtained by linear
stability analysis of the DDE. These modes are determined by the characteristic equation of the DDE linearized
around its fixed point x™ (which of course is unstable in the chaotic regime):

dx(t) *

P = —b(x(t) — x4+ Bt — 1) = x4 -, ¢
where 8 = F'(x*). If we take trial solutions of the form u(r) = x(r) — x* = upe®’, the characteristic equation
becomes

s+b—Be” T =0. (10)

Eq. (10) has an infinite number of roots s, = &, £ 127 f,, with f, satisfying (see also [19])

(n—1/2)

_ n
5 <f,1<z, n=123.5,... (11)

The mode associated with s, goes unstable when A, becomes positive (in particular, the fixed point goes unstable
when A; becomes positive). If the delay is increased much beyond the response time 5~!, more and more modes
cross the imaginary axis, thus becoming unstable with period close to 2t/#n. For delay increases, a mode that has
gone unstable remains unstable.

All modes show up as clear peaks in the power spectrum at frequencies corresponding to those of the roots,
with the most unstable ones being the dominant ones (Figs. 2 and 7). Some of the stable modes close to the
imaginary axis appear also in the power spectrum because of nonlinear coupling to the unstable modes. In fact,
due to nonlinearity, even the most unstable modes in the dissipative range appear in the power spectrum. It is as
if all these eigenfrequencies are excited by the chaotic fluctuations, even though they are stable in the absence of
these fluctuations. One can expect that the number of degrees of freedom in the system is directly related to these
“spectrally visible™ unstable and stable modes of the linearized system (see Section 4).

Hence, each peak of this modulation corresponds to a mode of oscillation predicted by linear stability analysis
around the fixed point. This one-to-one correspondence between the peaks in the power spectrum and the linear
modes has, to our knowledge, been studied only for periodic systems [20], as well as for low-dimensional chaos [21]
when the delay is not too large compared to the response time. In this latter case, the correspondence is not very
good because the modes do not appear at the same frequencies as the spectral peaks. It is also c¢lear from our
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Fig. 7. Roots of the characteristic equation (Eq. (10)) obtained by linearizing the Mackey—Glass equation (Eq. (2)) around the fixed point.
(a) T = 25;(b) T = 200. Note that the real part 4 of the root (ordinate) is plotted against its imaginary part w/(27) = f. Other parameters
area =0.2,h=0.1.

results that, at larger delays, most of the energy in the chaotic waveform lies at the low frequencies (the ordinate is
logarithmic). This is similar to the case of fluid turbulence, where most of the energy lies in the long wavelength
modes.

We also note that the real parts of the roots decrease with increasing delay (Fig. 7). This explains why the peaks
in the power spectrum decrease in amplitude with increasing delay. At the same time, the peaks become closer.
since their spacing is proportional to 1/7, until they can no longer be resolved using a given level of frequency
resolution in the spectral calculation. An approximate expression for the imaginary and real parts of these modes
can be obtained for A, ~ 0:

=l (o) aiss 12
fo= 5 5r) S n=L35 (12)
and for n large, these modes decay as
1 —2nf, | 1 -7
Ap = ——1 : ~——Inn——In{—|. 3
. Tn( 3 ) —nn rn<ﬁt) (13)

This dependence of the real part of the eigenvalue on the logarithm of the root number has also been found for
the Lyapunov exponents [2,3]. Ikeda and Matsumoto [3] further suggested (without showing it) that the Lyapunov
exponents with larger negative values, for which this logarithmic scaling of exponents with exponent number is
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seen, in fact correspond to the linear modes. The reason for this is that the decay rates (as a function of ») of the real
part of the roots and of the Lyapunov exponents are the same when n becomes large. Thus, these negative Lyapunov
exponents can be estimated from the expression for the stable modes (Eq. (13)), i.c.

L ~
Masny2 = An, (14)

for n odd and sufficiently large. Comparing the Lyapunov exponents recently computed by Sigeti [16] with our
roots of the characteristic equation, we find that the Lyapunov exponents indeed agree with the real parts for
sufficiently large n. For example, for t = 200 in the Mackey-Glass equation, we find the following real parts A,
and Lyapunov exponents A}‘ (remember only odd numbered modes are seen in the spectrum): (A9 = —0.000695,
'A1L5 = —0.00075), (31 = —0.00102, A1L6 = —0.00102), (133 = —0.00132, A1L7 = —0.00132), (k35 = —0.00161.
xﬁg = —0.00162), (A37 = —0.00188, )Jf() = —0.00193), (k3¢ = —0.00214, A'2~0 = —0.00222), (14; = —0.00238,
)\51 = —(0.00250).

These negative modes do not, a priori, provide information on attractor dimension (such as the Lyapunov di-
mension) and Kolmogorov-Sinai entropy, since one needs the positive exponents and the first few negative ones to
estimate such quantities [22,23]. Nevertheless, this agreement between modes and exponents shows that apparently
nonlinear characteristics of DDEs, such as self-oscillation frequencies and negative Lyapunov exponents, are in fact
closely related to simple linear characteristics. In the next section, we discuss how other linear properties of the
DDE are related to dynamical invariants such as dimension and Lyapunov exponent spectrum.

4. Dynamical invariants from power spectra
4.1. Estimating the dimension

For the Mackey-Glass equation, the information dimension d of the motion on the attractor has been shown
to increase linearly with the delay [2,5]. The same applies to the Lyapunov dimension, since both dimensions
were shown to be equal [2]. The proportionality constant between delay and dimension is closely governed by
the autocorrelation time & of the feedback F(x(#)) ([5]: see Figs. 5 and 6). This time can be estimated as the 1/e
decay time of the central peak in the autocorrelation function from its maximal value at zero lag, i.e. at s = 0
(the other symmetric half of this peak is at negative lags, which are not shown). A good estimate of the Lyapunov
dimension is then d = ¢7/8, where ¢ is a constant that depends on the particular feedback used. For example, in
the Mackey-Glass equation ¢ is close to one [2,5]; for Ikeda equation. ¢ =~ 0.85 [5].

We have found that 4 can be estimated from either the power spectrum or linear stability analysis. Since power
spectra can be easily calculated with standard algorithms, and linear stability analysis is straightforward to carry
out, estimating dimension in these ways clearly is advantageous in comparison with algorithms to compute, e.g.
the correlation integral or the spectrum of Lyapunov exponents. In particular these latter methods, while standard
tools, are particularly time consuming for high-dimensional systems such as those of interest in our study.

Our estimation method works as follows. From the spectral point of view, the attractor dimension can be estimated
as the number of peaks within the frequency range (0, ¢4~ 1. Since each peak corresponds to a mode, the dimension
also represents the number of roots of the characteristic equation (Eq. (10)) within that range; this is the basis of
the linear analysis estimate. For example, in the Mackey—Glass model with parameters (see [2]) ¢ = 0.2, b = 0.1,
and a delay T = 200, we found § =~ 9.72 (see Fig. 5) and a dimension d = ¢t/8 = 21 (see Table 1). The number
of peaks in the power spectrum within the (0, ¢5 ') frequency range is also found to be approximately 21, in good
agreement with the Lyapunov dimension found in [2]. For the Ikeda model, the Lyapunov dimension found for
the parameters v = 20 and it = 2.1 is >~ 42 [6]. We compute § = 0.35 (see Fig. 6), which yields a dimension
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Table 1
Numerical results at different delays for the Mackey—Glass equation

T ds dxy Z AE Z P u u/ Z }.E /1/ Z )L,“,L

50 6 5.37 8.99 x 1077 4.067 x 1072 1.075 x 1072 1.196 0.264
100 11 10.34 1.022 x 1072 4.062 x 1072 1.075 % 1072 1.052 0.265
200 21 20.28 1.041 x 1072 4.063 x 1072 1.075 % 1077 1.033 0.265

ds 1s the dimension of the attractor estimated from the power spectrum by counting the number of peaks within the range (0. s =
0.103) Hz (Fig. 5). where ¢ = 1. This dimension is equal to the number of Lyapunov exponents and is approximately given by 7/8. dgy
1s the Kaplan—York dimension. ){ are the positive Lyapunov exponents. 4, are the real parts of solutions of the characteristic equation

1, .
—17f where A is a constant.

of the linearized system (Eq. (10)). i is the exponential decay constant of the power spectrum S{ f) = Ae

d = ¢t /8 = 48 (where ¢ ~ 0.85 |5]), which is close to 42. Further, estimating dimension by counting the number
of spectral peaks in the corrected range (0, ¢871), as the results in [5] would suggest, yields approximalety 48 {see
Fig. 4), and thus there is agreement with the value obtained above.

We note that the spectra show a continuous variation of features as the delay increases: while the background
converges (o a constant mean slope, the number of modes increases smoothly and their amplitude decreases,
following the behavior of the linear modes (more cross the imaginary axis and asymptotically their real parts
decrease); consequently, the fundamental frequency (roughly 1/27 as predicted by Eq. (12)) steadily decreases.
Given the relationship found between the number of modes within the characteristic bandwidth (0, ¢8~ 1) and the
Lyapunov dimension, it is reasonable to assume that the attractor dimension also increases smoothly with the delay
for high delays. As Farmer [2] found that dimension still increases in small jumps at high delays, more work is
perhaps needed to verify whether these jumps really occur and what their origin is.

4.2. Lyapunov exponents and power spectrum decay

For the ring-cavity laser, the Lyapunov dimension increases linearly with the delay, but the metric entropy
stays constant past a certain delay value [4]. The fact that the metric entropy saturates but the dimension keeps
increasing with delay implies that the Lyapunov exponents scale as 1/, as has been pointed out in various studies
(see e.g. [2.4]). The findings of Section 3 support this dependence. Indeed, we found that the negative Lyapunov
exponents are closely given by the real part of the roots of the linear characteristic equation. As shown in Eq. (13),
these real parts also scale as 1/7.

Table | presents our attractor dimension estimates s based on the power spectrum. These values agree with
estimates based on the Kaplan—Yorke conjecture dy using the Lyapunov exponent estimates in [16] (as well as
other sources). The sum of positive Lyapunov exponents ){ converges to a constant when the delay is increased,
and can be related to the decay rate of the power spectrum !

DI (15)

This result is significant since the chaotic fluctuations of longer wavelengths are related to the positive Lyapunov
exponents in that range. In region (3) beyond the dissipative range, the Lyapunov exponents are very negative, and
therefore it is less likely that the decay rate in this range is governed by the positive Lyapunov exponents. We found
that this decay rate ;! can also be related to the sum of the unstable linear modes by

Y at/4. (16)

Hence, the relation between the positive Lyapunov exponents and the unstable linear modes is

DoAY A4 an

in the dissipative range as follows:
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This correspondence established using the decay rate in region (2) may be a peculiarity of the Mackey—Glass and
Tkeda systems, i.e. of first-order DDEs with feedback dynamics; for other lower-dimensional ODEs, a correspon-
dence can perhaps only be found at high frequency, as the results in [16] suggest. Itis the modulation in the spectrum
at mid-frequencies and large delays (z > 100) which initially drew our attention to a possible matching of the sum
of Lyapunov exponents with the spectral decay rate in the region (2) containing much of the energy in the signal.
This is the region where the modulation is present, i.e. where most of the dominant modes are fluctuating.

4.3. Distributed delays

To obtain more insight into the exponential behavior of DDE spectra, we now study the more realistic case of
“distributed delays™ [24,25] rather than of single fixed delays. In this distributed delay case, the system state in the
present is affected by not one, but many past state values via a memory kernel K (1):

1
dx

P fa@),z), z(n) = / K(t —u)x(u)du. (18)

—
By choosing a gamma distribution kernel

O(erl

Glg) = ?'—q’"e_‘“’, a.m >0, (19

the DDE can be transformed to a finite number of ODEs

dyo ) dy
el SO0, Ymtr), iP

In the limit (m, @) — oc (keeping their ratio constant), the kernel becomes a delta-function, and this set of ODEs
approaches formally the DDE, with the average delay given by

Jo 4Gy dg  m+ 1
fo~ Gr(g) dg a

Fig. 8 shows three spectra obtained for three different values of m, adjusting « in order to have an average delay of
T =200 in each case. For T = 200 when m = 199 (« = 1), the power spectrum starts to exhibit the peak structure
at low frequencies, as seen in Fig. 2(b), even though the decay rate of the exponential background is steeper than
for the DDE. For increasing m, the slope approaches that for the DDE; as (m, a) — oc, the power spectra likely
converges to that for the DDE.

The frequencies of the modes are the roots of (Eq. (20)) around the fixed point:

=o(yvi-1—v), =012 ....m+1. (20)

T =

(21

(s +b)s +a)" = F'(xHa"t! =0, (22)

This equation has m + 2 roots corresponding to m + 2 frequencies. To study the limit of Eq. (22), we write it in the
following form

u+b%i+§f — Flity = 0. (23)

Inthe limita — oc, the term (1 +s /)T goes toe*”, and the characteristic equation of the distributed delay system
becomes identical to that for a DDE with fixed delay T:

s+b—F'(xMe T =0, (24)



14 B. Mensour, A. Longtin/ Physica D 113 (1998) 1-25

1 T T 1 v T M T ¥ T v T T T
-5+ —
1 .
-10 |- n -
\7 l
| LY ]
L
-15 | i} ‘l« -1
”\M
[l 4
L ‘t\“
= M\
o 201 -
= o)
-25 —
by |
30 | a) —
.35 N 1 N 1 . 1 s 1 M 1 " 1 2 1

0.00 ©0.02 004 006 008 0.10 0.12 0.14 0.16

frequency

Fig. 8. The power spectrum of the distributed delay approximation, Eq. (20), to the Mackey-Glass equation, Eq. (2), with an average
delay T = (m + 1)/ = 200. The parameters for the Gamma memory kernel are: (a) m = 199and o = 1, (b) m =399 and o = 2, and
(¢) m = 799 and o = 4. The spectrum converges to that in Fig. 2(b) as m in Eq. (20) is increased, i.c. as the approximation to the DDE
improves. The peaks, which are most prominent in (¢). correspond 1o the frequencies of the modes obtained from linear stability analysis
around the fixed point of the system of ODEs, Eq. (22). These pezks are equivalent to those obtained with the DDE for r = 200. The
sampling time is 3.75.

It is thus possible, for large m, to draw a correspondence between the center frequency of the spectral peaks with the
roots of the characteristic equation, as we did for the DDE. We further conjecture that the number of peaks in the
power spectrum can be used to estimate attractor dimension, and the spectrum decay to estimate the Kolmogorov
entropy, as for the DDE.

5. CTDE solution spectra for piecewise constant initial functions

The solutions of the CTDE are chaotic; thus solutions for constant initial functions are unstable, i.e. small
perturbations to neighboring points on a plateau will diverge exponentially in time. Nevertheless, we have found
that the spectra of such CTDE solutions can be used to estimate attractor dimension for DDEs, and further suggest
an origin for the peak shapes in DDE spectra at large delay (t ~ 200). This section investigates such CTDE spectra.

5.1. Power spectrum of solutions

In the limit (R — 00), the solution of the DDE approaches the CTDE (Eq. (3)), and clear plateaus are observed if
one takes piecewise initial functions (see Fig. 9). Their values are predicted by the map (4). In this case, the power
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Fig. 9. Solution of the Mackey-Glass equation, Eq. (2), at very large delay T = 540 000. Other parameters are ¢ = 0.2. b = 0.1. This
solution is equivalent to the one obtained with the continuous-time difference equation, Eq. (3). The integration time step is 2.7.

spectrum can be calculated analytically using the Fourier transform of a non-periodic signal with an infinite period
(T — oc) as follows:

"
1 .
X(f)= lim —/x(t)esz’ dr. (25)
T—oc T
0
We choose T = Nt (an integer multiple of the delay) with N — oc. Eq. (25) becomes

N—oo

Nt
1 L
X(f)= lim N—T/x(r)ezm-f’dt. (26)
0

For a constant initial function, the solution x{¢) is composed of plateaus of length 7, ie. x(r) = ¢; for jT <1t <
(j + Drt,where j =0,1,2,...(N — 1), and the u; s are constants. The above equation becomes

Noio Uthr rif

P [ e k

X(f)= lim — Y aj e dr = lim ——

(f) Nox NT ZO ! [ N—ooo T TTf
j=

SO . 27)

Jt
where X (f) is the Fourier transform of a series of points generated by the map (Eq. (4)). Using the trans-
formation f — ft and the approximation f/t =~ sin(f/r) at large delays, the power spectrum can then be
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Fig. 10. Power spectrum of the Mackey—Glass equation (Eq. (2)) at very large delay T = 540000, for which the solutions are as shown
in Fig. 9. The initial condition was constant. The integration time step is 2.7. The spectrum is similar to the one obtained with the CTDE
in Fig. 13, even though the delay here is finite.

written as

L2,

S = 1X (N = 5Ty p), 28)
T sin“(w f/7)

where S1(f) = | X (f)|? is the power spectrum of the map (Eq. (4)). Below, we will show that a similar form can

be obtained for the power spectrum using the discretization of the time in units of 7 in Eq. (3). Fig. 10 shows the

power spectrum of the DDE at very large delay (t = 540 000) which is equivalent to the power spectrum of the

CTDE in Fig. 13.

5.2. The spectrum of M parallel maps

We now show how the discrete-time map, Eq. (4), can explain the shape of the spectral peaks for the DDE at finite
delay. and also be used to estimate attractor dimension. This method is even easier and faster than that in Section 4,
since it does not require a numerical integration algorithm (such an algorithm, along with an autocorrelation function
estimator, are required, however, to obtain the correlation time §). By discretizing the time delay = in Eq. (3) into
M points, the CTDE is equivalent to M difference equations (or M mappings in parallel), as shown in Fig. 11. We
show below that the power spectrum of these M moving points is related to the power spectrum of the map (Eq. (4))
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Fig. 11. Transition from a map evolving in discrete time to M maps evolving in parallel in discrete time. The points on (~71, 0) evolve
independently from one interval to the next, and so are mapped in parallel according to the map x(i) = G(x(i — 1)). As M goes to
infinity. the system of parallel maps becomes equivalent to the continuous-time difference equation, Eq. (3).

via a lowpass filter response function. In the following, we will consider the CTDE as M parallel (“decimated” is
perhaps a better term) series of N points, each series of N points being generated by the map in Eq. (4). Each series
xm(t),m =1,2, ..., M, can be represented as
N-1
X (8) = 3 G (xom)8lt — (j — DM A — (m — 1)A], (29)
J=0
where A is the sampling time and § is the Dirac delta function. The series of N * M points for the M moving points
is given by

M
x(1) = Z X (£). (30)

m=1

The Fourier transform of these M parallel series is given by

T
X(f):m / x(t)e*T U gy
—00

—2mifMA M N-1

_ ¢ 2zim—1) f A Jj rijfMA
_Wzle z{;G (Xom)e : (31)
m= J=
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Since x(r) is discrete in time with time step A. its Fourier transform will be discrete in the frequency domain with
frequency step fr = k/(M x NxA) , k=0...., (NM — 1). Eq. (31) becomes

e—2ik/N M , . N .
X(f) = Z e2771(”171) /(MxN) Z G/ (xOm)el_m] /1
NxM | =
m= J=
a—2rik/N M o , ,
— m Z e._m(mfl)!\,(M*/\)Xm(fk)q (32)
m=l1
where
N—-1
: j 2mijh/N
X (fi) = Z G (xom)e= AN (33)
J=0

is the Fourier transform ot the mth series of N points.

In the context of information storage in DDEs [13--15], the initial conditions of interest are piecewise constant
functions on the interval (—t. 0). This fact, along with the eventual goal of generalizing our results to arbitrary initial
functions, lead us to pursue our calculation with initial functions made up of L constant plateaus in the interval
[—=M A, 0]. We can then write for the Fourier transform of N x M points from M parallel time series of N points:

—2rik/N L IM/L
XU == PO V8
=1 m=(—-1M/L+1
e2mik/N L / miL
_ Ze‘m(lfl)/\,/(L*N) Z eJrl(m ——l)k/(M*N)X,(fk)
M
=1 m'=1
g—2mik/n UL 2rri(m’ — )k /(M*N = 2ri(/—Dk/(LxN
_ 2rilm’=1)k *1’)2 2ri(t=Dk/(LxN) g
= e € Xi(fx)- (34)
T

m'=1 =1

This assumes that all chosen initial values for the plateaus belong to the attractor of the map; in other words, each
plateau evolves in an asymptotic regime, once the transients have died out. If the map is ergodic, we can expect
identical power spectra for time series starting from typical initial conditions. Therefore we can expect that, for
any /,

2
| Z

X1 (fol? = 1X1(fo) (35)

Here X (fx) 1s the Fourier transform of the map (Eq. (4)). If the map has periodic solutions, then there is a finite
number of attractor solutions, and each one can be obtained from any other one by a simple time shift. In this case,
we can write

Xi(fo) = X1 (foe™", (36)

where ¥ = ¢; — ¢y is the phase difference between X ( f) and X ( f). If the map is chaotic, the Fourier transtorms
will differ in phase at each frequency, but not in modulus since the spectra will be similar. In this case, one expects
a more complicated relationship of the form ¥ (k) = ¢;(k) — (k) where we have highlighted the frequency
dependence. Hence we have the following general form for the Fourier transform of a CTDE solution with initial
functions defined using L subintervals:
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o 2mik/N ok Mer n 2ol (I (LN ) (k
X(fi) = S Xy (f) ) @2 M) 3 gl ks b 7
m'=1 [=1

The power spectrum is
S(f) = 1X P = THBPS(fo). (38)

where S1(fx) = | X, (‘)"k)l2 is the power spectrum of the map (Eq. (4)), |H (k)|? is the magnitude squared amplitude
response

|H(k)|2— 1 sin“(wk/(L % N))

- — ZKk) (39)
M sin®(mk /(M % N)) 2]

with

L
Z(k) = Zez.ﬂi[([—l)k/(L*NH“(I/](k)]. (40)
I=1

This spectrum S( fx) can be estimated using the periodogram for N * M points generated by the M parallel maps
(Fig. 11). This periodogram is defined at (N % M /2 + 1) frequencies as
S(0) =X (0,

. 1 2 . ) NxM
SCH) = SUX SN+ IX (fvam—0) 7], k=1,2,...,( 5 -1],

S(fnems) =X Unams)I> (41)

For M maps in parallel, f; is defined for the following frequencies:

k

_ NxM
T MxNxA

k
2fi——, k=0,1,..., , 42
f(M*N 2 (42)

T

where f. = 1/2A is the Nyquist frequency.
5.3. The case of constant initial conditions

IfY;, =0,1=1,2,..., L (same initial conditions), then

sin®(;k/N)

Zh))P = ————L
10| sinz(nk/(L*N)

(43)

The power spectrum takes the form

, I sin®(k/N) .
S(f) = — S : 44
(fr) M2 Sk (M = N) 1(fx), (44)

with zeros at k = N, 2N, ..., M x N/2. This form is equivalent to the one found in Section 6.1 (see Eq. (28)) by
replacing M with r. Note that the maximum value of the denominator is 1, and that for low frequencies it decreases
as 1/k?, i.e. as 1/f2. Figs. 12 and 14 show parallel map power spectra for, respectively, the Mackey—Glass and
Ikeda models for M = 1, M = 2, and M = 10. We note that, for illustration purposes, we have normalized our
spectra in order to keep the Nyquist frequency at 0.5. In fact, if we were to compare actual spectra for, e.g. M = 1
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Fig. 12. Power spectra of the Mackey—Glass continuous time difference equation (CTDE), Eq. (3), x(t) = G(x(t — 1)) (see Fig. 11):
(a) power spectrum of a single point evolving in time (M = 1); (b) same as is (a) but for M = 2 points on the delay interval evolving in
time; (¢) same as in (a) but for M = 10 points. The initial values for all points is the same in each case.

and M = 10, we would find that the spectrum for M = 10 extends over 10 times the frequency range of that for
M=1

As M increases, more and more peaks are seen in the power spectrum. In fact, closer inspection reveals that
the power estimates for higher frequency values for M == 2 are obtained by juxtaposing the spectrum for a single
map (Figs. 12(a) and 14(a)) with its mirror image about the y-axis. This juxtaposition is then multiplied by the
frequency-dependent filtering or “scaling” factor in Eq. (44), i.e. the prefactor of S| ( fr) on the right-hand side.
Spectral estimates at higher values of M are similarly obtained by reflection, transiation and scaling.

The filtering function |H (k}|? in Eq. (44) (see also Eq. (38)) affects the amplitude of the power and determines
its zeros as well. The symmetries of the spectra can be seen to originate from the properties of the spectrum of M
parallel maps without this filtering function. The spectral estimates over different frequency ranges are then related
to each other by:

SUf) = SUiwgen)e g =1....M—1; k=0.....N. (45)
With the filtering function in place, the following translation and reflection relationships hold:

S(firg-1n) = [Hk + (g — DNIPS1(fo),

5 (46)
SUfirg-1nn) = |Hk + (g = 1/2IN)"Si(fnpok), g=1.....,M/2; k=0,.... N/2.

Thus, one can construct piece by piece the whole power spectrum for M parallel maps.
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Fig. 13. Power spectra of the Mackey-Glass CTDE, Eq. (3). for M = 54 points on a delay interval evolving in parallel forward in time,
calculated (a) from the time series generated by the CTDE, and (b) analytically using Eq. (44) in which S)(f;) is the power spectrum
computed numerically from the evolution of a single point (M = 1) following the map Eq. (4) (shown in Fig. 12(a)). The spectra are
equivalent when the number of points used to calculate the FFT in (b) is equal to M times the number of points in (a). If the number of
points used to calculate the FFT is the same in (a) and (b), then we have 1o multiply the power spectrum in (b) by the factor M in order
to get the agreement. The initial values for all points is the same in each case.

Figs. 13 and 15 show spectra for M = 54, obtained from the FFT algorithm in (a) and from our analytical
expression (Eq. (44)) in (b). The agreement is excellent when the FFT of the map (Eq. (4)) in (b) uses M times
the number of points in the FFT in (a). The envelope of this power spectrum decays as 1/sin” fi, as can be seen
by setting the numerator in Eq. (44) equal to | (see Figs. 13 and 15). The low-to-mid frequency part of these
spectra, at which most of the energy of the chaotic fluctuations concentrates, then approximately follows a power
law S(f) = 1 /£ (as can be seen by Taylor expansion of the denominator in Eq. (44)), a property usually associated
with stochastic processes. The spectrum of M parallel maps thus appears as a collection of peaks, whose shape is
determined by the spectrum of a single map, and these peaks are “superimposed” on a background similar to a noise
background at low-to-mid frequencies.

We note that this decay rate does not depend on the specific map (Ikeda or Mackey—Gilass) obtained in the singular
limit. This map only determines the shape of the peaks in the CTDE limit.

There is also a correspondence, for large delays, between the peaks in these CTDE spectra with the mode
frequencies in the DDE: f;°’°F = n/2t (n = 1,3.5,...,[r/A] + 1) for the DDE, and fC™0F = »/2M A(n =
13,5, ..., (M + 1)), where M = [t/ A]. | ] stands for the integer part of 7/A. A is the sampling time in the DDE.
In the CTDE the frequencies should be estimated in the middle of the main peaks. The attractor dimension can then
be found from the CTDE by counting the number of peaks within ¢~ A. For DDE:s at large delay, these estimates
agree with the ¢8 ' estimate proposed in [5].
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Fig. 14. Power spectra of the Ikeda CTDE x(t) = 2157 by sin{x{r — 1)) with parameters # = | and v = 20: (a) power spectrum for
M =1, i.e. for a single point evolving according to the Ikeda map; (b) Same as in (a) but M = 2: (¢) same as in (a) but M = 10. The

initial values for all points is the same in each case.

6. Conclusion

In conclusion, the peaks in the power spectra of the Mackey—Glass and Ikeda models at large delays are found
to agree with the frequencies of the linear modes obtained through linear stability analysis of the dynamics around
the fixed point. The attractor dimension can be estimated from the power spectrum of the DDE using these peaks;
it can also be estimated using the CTDE approach (Eq. (44)) combined with the numerically determined spectrum
from a single map (Eq. (4)); hence our approach to calculating dimension (and metric entropy) is simpler than the
one based on the computation of Lyapunov exponents. We anticipate that our results may be applicable to DDEs
other than the simple first-order ones of the type studied here.

The map (Eq. (4)) obtained in the singular limit of the Mackey-Glass DDE explains many properties of the DDE.
For example, this map exhibits a period-doubling cascade to chaos like the DDE. This is not the case for all DDEs.
LeBerre et al. [4] have shown that the bifurcation sequence to chaos in the ring-cavity DDE is different from that of
the two-dimensional map obtained in its singular limit, even though the Lyapunov dimension increases linearly with
the delay as for the Mackey—Glass equation. In particular, they show that the dimension of attractors in the “map”
description is bounded by the dimension of the map, i.e. 2. Our approach here suggests that the CTDE is perhaps
a better system with which to compare attractor dimensions of DDEs. The CTDE is in fact infinite-dimensional, as
is the DDE from which it is derived as the delay (or more precisely, the ratio R) becomes infinite.

Farmer [2] suggested that the number of degrees of freedom in the DDE is likely to be related to the embedding
dimension of the attractor rather than to its Lyapunov or information dimension. Alternately, LeBerre et al. [4] have
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Fig. 15. Power spectra of the Ikeda CTDE with M = 118, calculated (a) from the time series generated by the CTDE, and (b) analytically
using Eq. (50) in which Sy(fy) is the power spectrum computed numerically from the evolution of a single point (M = 1) (shown in
Fig. 14(a)). The initial values for all points is the same in each case.

proposed that the number of degrees of freedom in a laser system such as the ring-cavity system is roughly given by

the delay-to-response time ratio R = y 7 for that system (y is the linewidth). Our findings for the class of first-order

DDE:s studied here show that the number of modes within the characteristic time §/c is close to previously reported

Lyapunov dimensions, a result in the same spirit as [4].

We summarize our findings as follows:
I. Many properties of the DDE at large delay, such as its dynamical invariants and its power spectra, are related
to the roots of the characteristic equation of the DDE, obtained by linearizing its dynamics around the fixed
point.

. The almost-periodic peaks in the power spectrum seen, e.g. for t = 200 (R = 20), first observed by Farmer [2],
correspond to the frequencies of the roots of the linearized dynamics. The correspondence becomes perfect
as R — oo. These peaks, corresponding to modes of oscillation, are located at odd integer multiples of the
fundamental period which is on the order of 27.

™~

3. The disappearance of the modulation in the power spectrum at very large R values follows from the accompa-
nying decrease of the real part of the eigenvalues of the linearized problem.

4. The Lyapunov dimension of the attractor agrees with the number of peaks in the power spectrum between zero
frequency and the reciprocal of the correlation time of the feedback function.

5. The sum of the positive Lyapunov exponents equals the rate of decay of the power spectrum in the mid-to-high
frequency region (2). This metric entropy stays approximately constant for R > 5.
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6. Systems with a distribution of delays rather than a single fixed delay exhibit spectral behaviors similar to those
of DDEs when their memory kernel becomes sharply localized in time. In particular, when they are equivalent
to 200 or more coupled ODEs, the decay rate of their power spectrum is very close to that for the corresponding
DDE. Hence our study with distributed delays shows that the decay rates, and thus the attractor dimensions,
match only when the system of ODE:s for the distributed delay case has sufficient (and very high) dimensionality.

7. The spectra of CTDE can be calculated analytically for piecewise constant initial functions, provided the
spectrum of the map obtained in the singular limit is known. This latter spectrum can be obtained numerically.
The CTDE spectrum is in fact constructed by translations of the basic spectrum of the map, as well as of mirror
symmetric images of this basic spectrum. These basic “units™ are then put end to end and multiplied by a
filtering function, Eq. (39). As for the DDE at very large delay, the peaks in the CTDE obtained using a large
number of plateaus (i.e. for M large) merge, and their fine structure becomes washed out.

8. CTDE spectra for constant initial functions have a particularly simple form (Eq. (44): see Figs. 13 and 15),
with the basic peak structure similar to that seen in DDEs at low frequency (see e.g. Fig. 1(b)). That such a
correspondence should exist at low-frequency is expected since that is where the behavior of finite-delay DDEs
is most similar to that of the CTDE (see Section 2.1). We note that the CTDE spectral decay is very different
from that of the DDE, i.e. the singular limit does not produce a smooth transition in the spectra shapes from
DDE to CTDE.

9. The peak structure mentioned in the previous item is determined by the spectrum of the map (see Fig. 13(a)
for Mackey—Glass and Fig. 15(a) for Ikeda) obtained in the singular limit of the DDE. It is in fact composed of
that spectrum alongside its mirror image. This explains why the peaks in the spectrum of the Ikeda DDE are
sharp, while those for the Mackey-Glass DDE are broader and have more than one extremum.

10. The more negative Lyapunov exponents can be estimated from the analytical expression for the stable modes,
as suggested by lkeda [3].

I'l. At very large delays, there is a transition from an exponential to a 1/sin’( f)-type spectrum, which is of
1 /fz-type at low-to-mid frequencies.
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