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Summary. - -  The Fitzhugh-Nagumo equations (FHN) provide a simple description 
of the dynamics of a large class of neurons. We characterize synchronization and 
stochastic resonance in this model using two complementary points of view: the 
signal-to-noise ratio (SNR), and the absolute as well as normalized peak heights of 
the interspike interval histograms (ISIHs). At low stimulus frequencies, multiple 
f'Lrings can occur during one period, while at high frequencies, the refractoriness 
precludes firing at every cycle. The behaviors of the SNR and ISIHs are thus 
investigated at low, medium and high frequencies to illustrate special synchroniza- 
tion properties of the FHN system. In particular, the behavior of the SNR vs. noise 
is found to be similar for forcing amplitudes just below and above that at which a 2 : 1 
deterministic phase-locked f'kring solution becomes stable. Our results rely on an 
accurate method of estimation of the power spectrum of the point process formed by 
the fh'ing times. A theoretical analysis for the shape of the simulated power spectra 
is also presented. 

PACS 87.10 - General, theoretical, and mathematical biophysics (including logic of 
biosystems, quantum biology, and relevant aspects of thermodynamics, information 
theory, cybernetics, and bionics). 
PACS 05.40 - Fluctuation phenomena, random processes, and Brownian motion. 
PACS 02.50 - Probability theory, stochastic processes, and statistics. 
PACS 01.30.Cc - Conference proceedings. 

1.  - I n t r o d u c t i o n .  

This pape r  describes various aspects  of the synchronization of an excitable 
neuron [1] to an external stimulus in the presence of stochastic forcing. An excitable 
neuron can be described by variables tha t  vary  on fast  t ime scales, such as the 
t r an smembrane  voltage, as well as by  other fast  or slow variables (sect. 3). 

(*) Paper presented at the International Workshop -Fluctuations in Physics and Biology: 
Stochastic Resonance, Signal Processing and Related Phenomena,, Elba, 5-10 June 1994. 

835 



836 A. LONGTIN 

1.5 
a) ~ 1.0 

1.o 

I ~ 0.5 
0.5 '~ 

o o o o .  

- 0 . 5  ~ ~  - 0 . 5  
0 5 10 15 2O 0 

time (s) 

b) 

5 l o  15 20 

Fig. 1. - Membrane voltage (a)) and corresponding spike trains (b)) from numerical simulations of 
eq. (5). A delta-spike occurs when the potential crosses the threshold 0 from below. These spikes 
are then convolved (b)) with sin(2zf~t)/(2nf~t) to avoid aliasing and produce a flat spectral 
window up to f~[2]. Parameters are a = 0.5, b = 0.12, d = 1.0, r = 0.03, fi = 3.75, E = 0.005, 
D = 9.10 -6, tc = 0.01, f~ = 4.55. The integration time step is 0.005, and the spiking threshold 
is 0 = 0.5. 

Excitability is characterized by a single globally attracting fLxed point known as the 
resting potential or Vo. Under stochastic forces due to various ionic events, the 
voltage executes a random walk around this resting state. If  this random walk 
reaches a certain threshold value 0, the voltage executes a rapid positive excursion, 
followed by a rapid repolarization back to the negative resting voltage (fig. la)). 
Compared to the subthreshold motion around V0 and 0, the shape of this ,,action 
potential- or ,,spike, is perturbed only slightly by noise. I t  is generally accepted that  
the information communicated to post-synaptic neurons is contained uniquely in the 
time of occurrence of these spikes [3]. 

During each cycle of a periodic stimulus, the voltage first approaches, then recedes 
from the threshold, in turn raising then lowering the t'wing probability. The case of 
interest in this paper is that  in which the stimulus alone is too small to induce firing: 
noise becomes essential to transduce information about the stimulus into a spike 
train. ,,Skipping, [4] can then arise if the cell fires in phase with the stimulus, but not 
at every cycle of the stimulus. However, sect. 6 shows that  the condition of ,,no 
deterministic firing- is not necessary for skipping to appear: a stochastically 
perturbed limit cycle oscillation can also, under certain conditions, produce skipping. 
In the context where no deterministic fwing occurs, stochastic resonance (SR) can 
occur, as was first demonstrated in numerical studies in [5] and [6], and experimen- 
tally in [7]. 

The present study brings together the spectral and residence-time-histogram 
approaches to study synchronization and SR in excitable neurons. Section 2 describes 
a few measures of synchronization used in neurophysiology. I t  also gives a theoretical 
understanding of the power spectra shapes obtained throughout this paper. Section 3 
presents the model studied here, the method used to compute alias-free power 
spectra with a flat spectral window, and other details of the numerical simulations. 
Sections 4, 5 and 6 look at various properties of this model under, respectively, low-,  
medium- and high-frequency conditions. In the latter case, a comparison is made to 
the deterministic firing case which exhibits a stochastic-resonance-like effect. SR 



SYNCHRONIZATION OF THE STOCHASTIC FITZHUGH-NAGUMO EQUATIONS ETC. 837 

from the ISIH point of view is compared to that using spectral methods in sect. 7 and 
the paper concludes in sect. 8. 

2. - M e a s u r e s  o f  n e u r a l  s y n c h r o n i z a t i o n .  

There are various measures of neural synchronization in the neurophysiological 
literature. Excellent reviews can be found in[3,8]. One simple measure, the 
interspike interval histogram or ISIH, is the equivalent of the residence time 
histogram previously used to study SR in bistable systems [9,4]. ISIHs (shown in 
fig. 4) have sharp peaks when periodicities and/or phase locking are present. The 
temporal ordering of the interspike intervals (ISI) is not reflected in this measure. 
Nevertheless, spectral analyses of ISIHs are routinely used to derive a measure of 
synchrony between stimulus and fn'ing, known as ,,synchronization index>,, when the 
frequency is much greater than the zero-stimulus mean firing rate. This index can also 
be computed by Fourier-transforming a temporal representation of the probability of 
f ~ n g  known as the post-stimulus-time histogram. A review of these methods along 
with recent developments can be found in [10]. Other measures of synchronization 
based on cycle histograms (an ISIH covering only one stimulus cycle) are described in 
French et al. [11]. 

Spectral properties can of course be calculated directly from the point process 
describing the spike train. In fact, SR has been recently demonstrated in a modulated 
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Fig. 2. - Power spectral density obtained from spike trains constructed as in fig. lb) from 250 
realizations of the stochastic process in eq. (5). Parameters are as in fig. 1. Each realization 
consists of 105 time steps, of which the first 10 t were discarded as transients. Note the flat 
spectrum out to the cut-off frequency f~ = 4.55, characteristic of a Poisson process. 
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point  process  in [12]. A periodic t ra in  of action potentials  can be model led by  a Dirac 
comb 

(1) x(t) = ~ 5(t-inTo),  
? n  = - o c  

where  To is the  period. I t  is well known tha t  the  power  spec t rum of x( t )  is a set  of  
del ta-functions a t  in teger  multiples of  fo = l / T o :  

(2) S ~ ( a ) ) -  2 z  6 ~ . 
T~ n = - ~ T O  

The spec t rum for  the case whe re  the  I S i s  are  equal to a cons tan t  plus a small r a n d o m  
per tu rba t ion  has been  studied in the  l i tera ture  (see, e.g., [13]). This analysis is useful 
to unde r s t and  m a n y  bu t  not  all fea tures  of  power  spec t ra  unde r  skipping conditions. 
I n  fact, our  simulations of  the  F H N  sys t em below reveal  t ha t  increas ing the  noise 
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Fig. 3. - Voltage time series from eq. (5) and spike train power spectra for low-frequency 
conditions: fl = 0.75 (f0 = 0.119). The noise intensity is D = 2.5.10 6 for panels a), b), and 
D = 10 -5 for panels c), d). The multiple firings near the stimulus maximum contribute to the 
high signal-to-noise ratios (see fig. 5). Other parameters are a = 0.5, b = 0.12, d = 1.0, r = 0.1, 
t = 0.005, tc = 0.01, f~ = 8.0, 0 = 0.5. Integration time step is 0.005. Spectra were computed by 
averaging 250 realizations of 61200 time steps, for each of which the first 10 000 time steps were 
discarded as transients. 
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Fig.  4. - In te r sp ike  interval  h i s tograms  and spike t ra in  power  spec t ra  for eq. (5) under  high- 
f requency (fl = 7.5) and l a rge ' ampl i tude  conditions. In  a), b), r = 0.20, there  is no determinis t ic  
fwing, while in c), d), r = 0.22, there  is determinis t ic  f ir ing every  other  cycle of the  st imulus 
(2:1  phase  locking). Other  p a r a me te r s  are  a = 0.5, b = 0.12, d = 1.0, e = 0.005, D = 2.5.10 -6 ,  
tc = 0.01, f~ = 12.36. In tegra t ion  t ime s tep is 0.005. Spec t ra  are  obtained from 500 real izat ions of 
43134 s teps  discarding the f'wst 10 000 s teps  for each one. 

intensity D causes less stimulus cycles to be skipped. When SR occurs, the first peak 
of the ISIH at To is clearly the highest, and the signal resembles a periodic signal with 
jitter, even though a bit of skipping occurs. Assume the n-th spike occurs at time tn = 
= nTo + ~ ,  where the ~n are independent random perturbations with distribution 
q~(~). The ISIH is then a Gaussian centered on To. The power spectrum is given 
by[13] 

(3) Sx(w) = 1 1 -  Iq~(w)Ie+ -~o I~b(w)l 2 ~=-~ 5 w To ' 

where r is the Fourier transform of the probability density qX~). We will discuss 
this result in the context where the ~ are Gaussian-distributed with zero mean and 
standard deviation a, as the peaks in the ISIHs computed below (see also [5]) are 
approximately Gaussian. The characteristic function then takes the form ~b(w)= 
= exp [ - (w ~ a s)/2]. The first two terms in eq. (3) characterize the jitter statistics. They 
produce a noise background which increases sigmoidally, leveling off at the value 
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To 1 . The last term is a discrete periodic spectrum which accounts for the underlying 
periodicity. The discrete components are weighted by the term Ir  2. For 
example, a typical Gaussian noise causes the amplitude of the components to decrease 
with increasing frequency, rather than remain constant as in eq. (2). 

The spectra presented in this paper at low (fig. 3), medium (fig. 2) and high (fig. 4) 
stimulus frequency all present discrete components at integer multiples of the 
driving frequency, with their amplitude decreasing with increasing frequency. The 
sigmoidal increase in S(o) due to -noisy periodicity- is also seen, but closer analysis 
reveals that its precise shape is governed more by the noise-induced limit cycle (a 
special property of the FHN system: see sect. 3) than by the stimulus (except at high 
frequencies: see sect. 6). It is possible to extend the above calculation to compute a 
signal-to-noise ratio (SNR) based on eq. (3). For Gaussian noise, we find 

[ ( o 0 e x p [ - w ~ 2 ]  ] 
(4) SNR(dB)  = 10 log ~ -  exp----[_w~o2------- ] . 

In the context of SR, the behavior of this SNR as a function of a is of interest. The 
SNR monotonically decreases from ~ as a ~ 0 to - ~ as a --* ~.  Thus, with noisy 
periodicity, increasing noise simply deteriorates synchronization to the stimulus. So 
while this heuristic analysis helps in the understanding of the spectra, it must be 
expanded to include skipping in order to see SR; this will be presented 
elsewhere. 

3. - S i m u l a t i o n s  o f  the  F i t z h u g h - N a g u m o  equat ions .  

Our study of stochastic synchronization focusses on the Fitzhugh-Nagumo model 
in the excitable regime with periodic forcing on the recovery variable[i,5] 

(5) 

f e dv = v(v - a)(1 - v) - w + ~](t) dt 

= v -  dw- (b + rsinflt), 

~ - ;~ + ~(t), 

where (~(t))= 0 and <~(t)~(s))= 2D6(t- s). We chose the exponentially correlated 
Ornstein-Uhlenbeck process ~](t) for the noise; its intensity is D~, and its correlation 
time tc = ;t -1 was set to 0.01, a time scale comparable to that of the fast variable (the 
precise value of tr will depend on the particular neuron under study). The power 
spectrum of ~](t) is flat up to the cut-off frequency 4. These equations are integrated as 
in [5]. 

In the absence of periodic and stochastic forcing, this system can fire periodically 
if b > bn = 0.264 (Hopf bifurcation). At be, the fu'ing period is 1.14, and it decreases 
slowly as b increases, reaching, e.g., 0.86 when b = 0.30. All our simulations are done 
for b = 0.12. While this is quite far from bu, the limit cycle is nevertheless ~,induced- 
by the noise, i.e. the system spends some time near this solution which exists only for 
neighboring parameters when D = 0. And its presence is manifest in all our spectra as 



SYNCHRONIZATION OF THE STOCHASTIC FITZHUGH-NAGUMO EQUATIONS ETC. 841 

a bump near f = 0.9, which is some average value of the limit cycle frequencies for 
b > bH. When r > 0, the threshold for periodic firing depends on r and fl [14]. A large- 
amplitude stimulus highlights this limit cycle ,,bump,, (see fig. 4) as it (along with the 
noise) effectively modulates b and periodically brings it close to or beyond b n . This 
bump is also accompanied by its own harmonics. 

A spike is said to occur when x(t) crosses the threshold value 0 = 0.5 from below. 
Our results depend quantitatively rather than qualitatively on the value of 0, 
provided it is not too close to V0 (resting potential) nor to the peak of the action 
potential when D = 0 (for the small tc chosen here, fluctuations near this maximum 
will occur for large D). Further, a crossing is counted only if it occurred more than 

0.4 (the refractory period) after the previous spike. 

3"1. Power spectral density. - Care must then be taken to obtain a good estimate of 
the power spectral density S ( f )  of the point process formed by the spikes over the 
frequency range of interest. An excellent method has been proposed in [2]. It avoids 
aliasing and produces a flat spectral window for frequencies up to f~, the frequency at 
which the spike train is sampled (see, e.g., fig. 2). It requires that the spikes be 
convolved with the function s in (2z f~ t ) / (2z f~ t )  (fig. lb)). The 4096 point power 
spectra and 200 bin ISIHs are constructed from many different realizations of the 
stochastic process equation (5). The mean was subtracted from the sampled spike 
train, followed by a Hanning-type windowing of the data. The signal strength, here 
measured at the signal frequency f0 only, is calculated by summing five bins centered 
on f0. The noise floor is estimated from the average of three points to the right and 
three to the left of these five bins. The signal-to-noise ratio is calculated as 

f s(f0) df 
(6) SNR = 10 log ~ 

N(fo)  ' 

where A stands for the five ,,signal, bins. We have found that our results are 
qualitatively similar (with lower SNR values) if only the maximum S(fo)  is taken. 
Our SNR differs slightly from other definitions (see, e.g., [7]) since it uses the total 
area under the signal peak. All our results are qualitatively similar (e.g., SR occurs at 
the same value of D) if the area of the peak above the noise floor is used (a factor of 
five must be subtracted from the ratio in eq. (6) before taking the logarithm). The 
statistical error in estimating the SNR is smaller than the size of the symbols used to 
plot our data. Further, the spectra are not phase-randomized since the spike train for 
each realization is sampled (after a fixed time for transients to decay) starting at the 
same phase of the external stimulus. 

In the following sections we look at the behavior of this SNR and of ISIHs under 
special frequency and amplitude conditions chosen to illustrate special synchroniza- 
tion properties of the FHN system. A general comment on the shape of the spectra 
can be made at this point, as it pertains to the noise-induced limit cycle. Except for 
fig. 4, the spectra obtained below show the limit cycle bump and its harmonics even 
when the stimulus has zero amplitude (data not shown). P u t t i n g r - - 0  simply 
eliminates the sharp signal peaks. The increase to the first bump presumably does not 
occur by the same mechanism as that which gives rise to the sigmoidal increase in 
eq. (3). In fact, in fig. 2 and 3, the bump along with the trough preceeding it become 
more pronounced as either D or b increase, two effects which make the limit cycle 



842 A. LONGTIN 

more prominent. The trough occurs because low frequencies can induce limit cycle 
firing in the frequency range of the bump. In other  words, low-frequency fluctuations 
are filtered out by the limit cycle which acts as a resonator.  However, we suspect the 
attenuation of the harmonics of the bump occurs by a mechanism similar to tha t  
discussed in sect. 2. 

4. - Synchron iza t ion  at low frequency.  

We first consider the case fl = 0.75 and r =  0.1. For  this low frequency, 
deterministic firing occurs when r > 0.173. A stimulus frequency which is low 
compared to the internal relaxation time of the neuron will initiate zero, one or many 
spikes per  stimulus cycle. The same is t rue if low noise is also present,  as is shown in 
fig. 3. At higher noise (fig. 3c)), many spikes are seen during each cycle, and the 
instantaneous fwing rate  follows the stimulus wave form, leading to high SNRs (see 
below). This phenomenon is known to occur in mammalian auditory fibers at low 
frequencies[15]. I t  is also responsible for the linearization by noise, studied by 
French et al. [11], of the input-output relation of certain receptor  neurons, which is 
otherwise nonlinear due to rectification and phase locking. 

The power spectra in fig. 3b), d) consist of sharp spikes at integer multiples of the 
driving frequency with a decaying envelope. This is a signature of noisy periodicity 
(sect. 2). This discrete spectrum is superimposed on a noisy background modulated by 
broad peaks at integer multiples of the noise-induced limit cycle frequency (around 
0.9 Hz, sect. 3). These broad peaks are caused by the multiple firings on this limit 
cycle. They are enhanced by increasing b towards bH. They are also enhanced by the 
noise (compare fig. 3b), d)), and especially low-frequency noise which allows the 
dynamics to spend more time near  the limit cycle (thus the t rough at low frequency). 
When the amplitude of the low-frequency stimulus is zero, the sharp peaks disappear, 
and the bumps are less pronounced, since the noise by itself can cause only brief  
excursions to the limit cycle. When D is at the intermediate value of ~ 7.5.10 .6 , the 
SNR reaches it maximum, as is shown in fig. 5a). In this case (not shown), many 
spikes are t r iggered during the time when the stimulus is near  its maximum. As a 
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Fig. 5. - Stochastic resonance for (left panel) low- (circles: fi = 0.75, r = 0.1), mid- (squares: 
fl = 3.75, r = 0.03) and (right panel) high-frequency forcing (squares: fl = 7.5, r = 0.20; circles: 
fl = 7.5 and r = 0.22). The signal-to-noise ratio (eq. (6)) is plotted vs. D. Deterministic f'wing 
occurs for the r = 0.22 case. Simulation parameters for fl = 3.75 are as in fig. 1; those for fl = 0.75 
are as in fig. 3, and those for fl = 7.5 are as in fig. 4. 
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result, the ISIH peak normally at To moves to the left, and a sharp peak due to the 
multiple firings appears at shorter ISis. 

5. - S y n c h r o n i z a t i o n  at  m e d i u m  frequency .  

Higher frequencies such as the one (fl = 3.75) used in this section tend to produce 
one-to-one phase locking without multiple firings. The small amplitude r = 0.03 case 
(far from the deterministic firing regime) is investigated here. A typical solution and 
power spectrum were shown in fig. 1 and 2. This spectrum is for a noise value just  
below the one at which SR occurs. Signal magnitude and SNR are smaller in this case 
than in the previous (and next) case, and the modulating amplitude is hardly visible 
as it is buried in the noise (fig. la)). In fact, the second harmonic of the fundamental at 
f0 barely rises out of the noise floor. The SNR is plotted vs. D in fig. 5a); it is lower 
because the signal is small. However, the noise does not seem to affect the shape of 
the spikes as much in this case as in the low- and high-frequency cases (not shown). 
The relations between the SNR and the ISIH for this case are discussed in sect. 7 
below. The initial increase in S(~o) is hardly affected by the presence of the weak 
stimulus (not shown). It is due again to the noise-induced limit cycle around 0.9 Hz 
which is visible but small, and to jitter (sect. 2). It becomes important when 
D > 1.5.10 .5 (not shown). This is in contrast to the cases in sect. 4 and 6 since (sect. 3) 
here the small stimulus (plus noise) does not bring b near to bn as often. 

6. - S y n c h r o n i z a t i o n  at  h igh  frequency .  

Due to refractoriness, a neuron is incapable of fwing at every cycle of a super- 
threshold stimulus of high frequency. The combination of noise and refractoriness can 
easily produce skipping, regardless of whether or not deterministic stimulus-induced 
firing occurs. This is shown in fig. 4, where deterministic firing occurs when r > 0.215. 
Panels a), b) for r = 0.20 are qualitatively very similar to panels c), d) for r = 0.22. 
This is due to the fact that 2:1 phase locking, which exists for D = 0 and r = 0.22, is 
induced by the noise when r = 0.20. When D = 0 and r = 0.22, all the peaks in the 
spectrum are of the same width and strength (data not shown). The sharp peaks for 
D > 0 are at integer multiples of the forcing frequency (1.19 Hz), and at even 
multiples of the first broad peak corresponding to the frequency of the 2:1 phase- 
locked solution (0.598 Hz). The presence of noise produces a decreasing envelope of 
both series of peaks (sect. 2). Further, the rate of increase in S(o)  is proportional to D 
as in eq. (3). 

It is intriguing that the sharpest and highest peak occurs at fi  = 1.19, even though 
the ISIH has very few events corresponding to this frequency. In fact, the most 
probable ISI corresponds to 2T0, not To. An intuitive reason for this effect is that 
each ISI at nTo (n ~ 1) has one of its corresponding harmonics atfo, leading to a high 
power at f t .  Another insight comes from considering each ISI as the sum of two 
random variables: an integer Poisson variable multiplied by To, and a Gaussian 
variable. By putting a dead-time (mimicking refractoriness) which excludes events at 
To, we found that the ISIH for a sequence of such ISis can be made identical to those 
in fig. 4. The associated power spectra were also identical to those observed here. A 
more rigorous analysis will be carried out elsewhere. 
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The subthreshold case r = 0.20 exhibits SR (fig. 5). Moreover, as the r = 0.20 and 
r = 0.22 cases are barely distinguishable at the noise levels of fig. 4, one might ask 
whether  the superthreshold dynamics display behavior similar to SR. The behavior of 
the SNR vs. D for r = 0.22 is plotted above that  for r = 0.20. I t  is seen that  this SNR 
diverges as D ~ 0 since the limiting motion is periodic (sect. 2). There  is a range 
however where this SNR plateaus, and even increases slightly, before resuming its 
downward trend. This SR-like effect, which is a form of noise-induced order,  most  
likely arises for the same reason that  normal SR does: a commensurate relation 
between the ra te  at which fu'ings would occur with r = 0 and the rate induced by the 
stimulus. 

7. - N o r m a l i z e d  a n d  u n n o r m a l i z e d  I S I H s .  

Stochastic resonance has also been investigated from the residence-time- 
histogram point of view [9]. A similar resonant  behavior of the IS IH  peaks was 
demonstrated in models of excitable neurons in [5] and [6]. Here  we take a closer look 
at this problem by comparing SR from the spectral and IS IH points of view. We have 
performed two measures on the IS IH at different values of D: 1) the number  and 
2) the normalized probability of ISis  falling near  the maximum of the first two peaks 
of the ISIH.  The histogram contains 200 bins ranging from 0 to 8To. The number  of 
events ,,near the maximum, is defined as six bins centered on To (or 2T0 for the 
second peak). The probability is obtained by dividing this number  by the total 
number  of events in the ISIH.  Figures 6a) and b) plot, respectively, this probabili ty 
and number  of events as a function of D. The upper  curves (circles) are for the 
high-frequency high-amplitude case, while the lower curves (squares) are for the 
medium-frequency low-amplitude case. As in fig. 5, all curves s tar t  at small values, 
but  only the behavior near  the ~,resonance, is plotted. Fur ther ,  only the numbers  for 
the second peak P2 at 2T0 are plotted as it is always well defined and its behavior 
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fig. 5. 
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correlates well with the spectral SNR. In contrast, the first peak shifts towards lower 
ISis and D increases, and is eventually engulfed by the gamma-type noise 
distribution, concurring with results in [9]. 

A comparison of fig. 6a) and b) shows that the probability curves reach their 
maximum at slightly smaller values of D than do the unnormalized curves. Another 
observation arises from the comparison of these curves to the SNR curves in fig. 5. At 
high frequency, the probability and the SNR peak near the same value of D, while the 
maximum number of events occurs at a larger D. In contrast, for fl = 3.75 and low 
amplitude, the maximum number of events and the SNR reach their maximum near 
the same D. However in this latter case r is small, and the ISIH is not as smooth as in 
the high-frequency case, and longer simulations may be needed before drawing a final 
conclusion. Thus there does not seem to be one fLxed rule by which these various 
indices can be connected. For  now, the only conclusion is that SR from the ISIH point 
of view occurs at slightly lower noise values, as was the case in a recent experimental 
study [7]. The behavior of P2 is similar to that described in the adiabatic limit by [9] 
for the bistable system, although such comparisons should be done with caution since 
our simulations are done at quite high frequency and the noise is slightly 
colored. 

8. - Conclusion. 

Our study has described synchronization of the FHN excitable system to different 
stimuli. Our results rely on accurate alias-free and spectrally flat estimates of power 
spectra of spike trains generated by the FHN system. We have found that SR occurs 
over a wide range of frequencies and amplitudes, and have compared the SNR and 
ISIH points of view. From the neurobiological point of view, it is not clear whether 
SNR, probability or absolute numbers of spikes is more significant. For example, a P2 
event might be more probable at D1 than at D2 > D1, yet in absolute numbers, there 
are less P2 events at D1 than at D2. The resolution of this problem will probably 
depend on the particular neural system under study. Perhaps numbers of spikes are 
not so important, but accurate input-output phase relationships are. And neural 
circuits which use noise to sharpen phase relationships, e.g., through SR, may thereby 
increase their timing and computational capabilities. 
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