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Abstract

This modeling study examines the short-term synaptic plasticity properties of the electrosensory lateral lobe (ELL) afferent pathway in

the weakly electric fish, Apteronotus leptorhynchus. We studied the possible functional consequences of a simple phenomenological model

of synaptic depression by taking into consideration the available in vivo and in vitro results [N. Berman, L. Maler, Inhibition evoked

from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus), J. Neurophysiol.

80(6) (1998) 3173–3196; M.J. Chacron, B. Doiron, L. Maler, A. Longtin, J. Bastian, Non-classical receptive field mediates switch in a

sensory neuron’s frequency tuning, Nature 26(424) (2003) 1018–1022]. Filtering and coding properties were examined. We find that

simple short-term phenomenological synaptic depression can change steady-state filtering properties and explain how the known

physiological constraints influence the coding capabilities of the ELL pyramidal cells via dynamic synaptic transmission.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The objective of this research is to understand the
synaptic plasticity properties between the primary electro-
sensory afferents and sensory pyramidal cells in the
afferent pathway of the weakly electric fish. Pyramidal
cells in the electrosensory lateral lobe (ELL) receive
multiple convergent mono-synaptic excitatory and di-
synaptic inhibitory inputs from the primary electrosensory
afferents (P units). These afferents carry information about
the amplitude modulated quasi-sinusoidal electric organ
discharge (EOD) and are able to transmit signals with high
fidelity over frequencies ranging from low to very high
values [1]. Here, we studied the effect of short-term
synaptic plasticity on coding and filtering of time varying
signals. In vitro studies from the ELL have demonstrated
e front matter r 2006 Elsevier B.V. All rights reserved.
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that these P-unit synapses show both short-term facilita-
tion and depression; the biophysical substrates of this
plasticity are unknown and it is possible that the depressive
component involves postsynaptic inhibition as well as
mechanisms intrinsic to the synapses [2]. We focus here on
the depressive component since, over longer time scales, it
predominates over facilitation. We employed computa-
tional models incorporating the key known physiological
properties of the synapse and the postsynaptic pyramidal
cells. Our strategy was to constrain the P-unit-to-pyramidal
cell synaptic properties based on in vitro data from electric
fish [2] as well as on the time constants of synaptic
depression in similar auditory brainstem systems [6,13]. We
then quantitatively varied the synaptic time constants to
determine what dynamics could support the frequency
filtering seen in vivo.

2. Methods: mathematical model

A modulated Poisson process is given as an input to a
pyramidal cell model with synaptic depression. This input

www.elsevier.com/locate/neucom
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is meant to mimic the signal received from the electro-
receptor afferents, which encodes amplitude modulations
of the EOD. Two sets of simulations were performed.
In order to study filtering properties, sinusoidally modu-
lated (SAM) Poisson inputs were generated. In these
simulations, we changed the sinusoidal modulation fre-
quency of the mean rate parameter of the Poisson input.
Secondly, we designed simulations with the aim of
determining coding properties. For these purposes low-
pass filtered Gaussian noise was used as a time-dependent
rate parameter for Poisson spike generation. In both cases,
these input spike trains drove a leaky integrate-and-fire
neuron (LIF) via a phenomenological synaptic depression
model. Computer simulations were performed on a laptop
(Clevo 5620D 2GHz Pentium-IV), using Fortran-77
language on a Debian Linux (kernel version 2.0.34)
platform. For the computation of filtering and coding
properties, we used MatLab 6.5 software running under
Windows-XP platform on the same machine. The Euler
integration method was used with an integration time step
of 0.025ms.

2.1. Poisson input modulated by sinusoids and by low-pass

filtered Gaussian noise

The mean rate parameter l of the Poisson input was
modulated according to:

lðtÞ ¼ AþM sinð2pftÞ, (1)

where M is the modulation depth, f is the modulation
frequency, and A is an additive constant term (which
determines the mean rate without SAM). We looked at the
effect of varying f in order to approximate the frequency
filtering properties of the synaptic dynamics. Bode plots
(gain-vs-frequency) for SAM Poisson input were computed
from the steady-state responses of the system.

To examine the coding properties of our model, low-pass
filtered Gaussian noise was generated and then we
considered a doubly stochastic Poisson process, where
the rate of occurrence lðtÞ was the low-pass filtered
Gaussian noise. We constructed this process in order to
mimic the physiologically plausible environmental input of
the ELL pyramidal cells. Gaussian white noise was
generated by using the Box–Muller algorithm and we have
used a fourth order filter to low-pass filter the noise. The
cutoff angular frequency was chosen to be 120Hz because
this (0–120Hz) regime corresponds well with the envir-
onmentally plausible AM modulation range of the EOD.
The low-pass filtered noise was multiplied by a scalar ðq ¼
0:125Þ in order to adjust the physiologically realistic
presynaptic input rate.

2.2. Synaptic depression model

The model of synaptic depression used in our study has
been described in [5]. The variable D denotes the recovery
from synaptic depression. Between input spikes, it evolves
according to the following equation:

dD

dt
¼

1�D

td

. (2)

The G variable is the synaptic conductance, which is
governed by

dG

dt
¼
�G

tg

. (3)

At every incoming spike in the modulated Poisson input,
the depression variable is updated as D! Dd where d is a
constant factor. Likewise, the synaptic conductance G gets
updated according to G! G þDg where g is a constant
factor. In our simulations we used d ¼ 0:3 and g ¼ 0:2.

2.3. Leaky integrate and fire neuron

The leaky integrate and fire model is described by the
following equation:

dV

dt
¼
�V

tm
þ

I syn

C
þ

I inj

C
, (4)

I syn ¼ gmaxGðV � EsynÞ, (5)

where V is the membrane potential, tm is the membrane
time constant and C is the membrane capacitance. When V

reaches threshold we reset the membrane to V reset. The
following parameters are used: tm ¼ 10ms, Esyn ¼ 0mV,
C ¼ 1 nF, V reset ¼ �80mV, V thres ¼ �55mV, gmax ¼ 0:2,
A ¼ 0:2, M ¼ 0:2. For the firing rate drop compensation,
the following DC currents were used: ðI inj ¼ 0:25;
0:57; 0:805; 1:14; 1:37Þ for ðtg ¼ 20; 17:5; 15; 12:5; 10msÞ,
and ðI inj ¼ 1:05; 0:95; 0:805; 0:65; 0:5Þ for ðtd ¼ 20; 17:5;
15; 12:5; 10msÞ, respectively.
We performed two sets of simulations. (A): We let the

firing rate change as we altered the synaptic dynamics
parameters. In these simulations I inj was zero; unless the
synaptic (noisy) input is present, the LIF neuron does not
fire. (B): The LIF firing rate was kept constant (72Hz) by
adjusting the values of bias current ðI injÞ while changing the
synaptic depression parameters. This allowed us to follow
the changes in coding properties without the effect of the
firing rate drop [11].

3. Model performance analysis

3.1. Quantification of filtering properties

In order to study filtering properties, SAM Poisson input
drives the synapses and the postsynaptic LIF neuron
according to the equations described in the previous
section. In all of the simulations where we studied the
filtering properties, we used the A-type simulations (see
Methods) where the input injected current I inj was set to
zero. For each modulation frequency, we numerically
constructed the rate histogram from the LIF spike train
outputs, and compared its modulation to that of the input
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spiketrain histogram as in [9]. The total simulation
duration was 200 s independent of the stimulus frequency.
This simulation duration was long enough to average out
the effect of the initial transients in the solutions. Cycles
were collected for computing input output cycle histograms
which were then fitted by sinusoids in order to calculate
gain values for each given input frequency. Before the
fitting, the mean values of the cycle histograms were
subtracted from the histograms at all modulation frequen-
cies. Fits were performed by a nonlinear fitting algorithm
provided in the MatLab Statistics toolbox using least-
square data fitting by the Gauss–Newton method. The gain
of the response at each SAM stimulus was computed by
dividing the amplitudes of the fitted sinusoids of the input
and output cycle histograms.

3.2. Quantification of coding ability

In order to quantify the information transmission ability
of the synapse and the postsynaptic neuron, coherence,
mutual information and coding fraction measures were
used. All the simulations were 300 s long which is long
enough for stimulus estimation and mutual information
calculation by indirect method [7]. We followed how the
coherence measure changed with synaptic dynamic para-
meters. The coherence function CA;B was calculated
according to

CA;B ¼
½XA;Bðf Þ�

2

SA;Bðf ÞSstðf Þ
, (6)

where XA;B, SA;B are, respectively, the cross-spectrum
between the spike train and the signal, and the power
spectrum of the output spike train in the presence of the
input stimulus. Sstðf Þ is the power spectrum of the input
stimulus. For Gaussian input, a lower bound on the mutual
information (MI) rate can be calculated from the coherence
function according to [10]

MA;B ¼ �

Z cf

0

log2½1� CA;Bðf Þ�df , (7)

where cf is the input cutoff frequency. We employed this
measure in order to calculate the transmitted information
per spike, since altering synaptic dynamics changes the
synaptic conductance and therefore the overall injected
current—and thus the mean spike rate.

From the optimal Kolmogorov–Wiener linear filter, one
can estimate the stimulus from the spike train [7,10]. The
deviation of this linear estimate from the actual signal
defines a mean square error value �. The filter is chosen
such that it minimizes this mean square error. The coding
fraction k is a normalized measure of the quality of the
linear reconstruction achieved by the cell:

k ¼ 1�
�

s
, (8)

where s is the variance of the stimulus. To calculate
coding fraction, MatLab code from Gabbiani [7,11,12] was
used. It uses as input the original stimulus (the low-pass
filtered Gaussian noise) and a binary representation of the
spike train generated by the LIF model with synaptic
dynamics.

4. Results

4.1. Filtering properties

While examining filtering properties, we dissected our
system according to different variables, and individually
studied the separate stages. The detailed description of
these results is beyond this paper. We found that the
depression dynamics is able to act as a low or band-pass
filter, depending on the ratio td=tg between the time
constants of recovery from depression ðtdÞ and decay of the
synaptic conductance ðtgÞ. On increasing the synaptic
depression time constant, the overall synaptic conductance
decreases but when td exceeds tg, the gain function
becomes non-monotonic. The peak of the hump is
dependent on the td=tg ratio (Fig. 1(A)). In case of further
increased td (35ms), the firing rate drop dominates, thus
the gain non-monotonicity disappears (Fig. 1(A)). In order
to closer investigate the physiological parameters of our
system, we fixed the recovery time constant of the
depression to be td ¼ 15ms. This corresponds well with
recovery time constants found in other systems transmit-
ting high frequencies [3]. With this fixed td we ran further
simulations where now we changed the time constant of the
synaptic conductance tg and found similar results to our
previous ones (not shown). The coherence measure
(Fig. 1(B)) changes qualitatively depending on the depres-
sion recovery time constant. It also becomes non-mono-
tonic in the parameter regime where td4tg.

4.2. Dependence of coding properties on synaptic dynamics

Next we compared the coding capabilities of the
postsynaptic neuron while changing the time constants of
the synaptic dynamics. While studying the sensitivity of the
coding properties to td and tg, we had to take into account
the firing rate change of the LIF, since firing rate affects
information transmission [11,12]. We therefore used the
following two methods [11,12]: (A): Mutual information per

spike was used. For spike train generation, we used A-type
LIF simulations (see Methods); (B): the postsynaptic cell’s
firing rate change was compensated via DC current
injection, in order to keep it at the same mean value
(B-type simulations).
The low coding fraction values agree well with earlier

results reported in similar doubly stochastic models, where
for an ideal deterministic single synapse with high input
stimulus bandwidth ð450HzÞ, the coding fraction values
were less than 0.1 [8]. We found that, as the synaptic
depression recovery time constant increased, the coding
fraction decreased (Fig. 1(E)). The mutual information per

spike measure however increases (Fig. 1(C)). This is due to
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Fig. 1. (A) Gain curve obtained for the LIF neuron for the sinusoidally modulated Poisson input without controlling for firing rate (Methods—type A

simulations for panels A–E). The synaptic recovery time constant td is varied, while keeping tg ¼ 15ms constant. (B) Coherence curves between the input

noise stimulus and output spike train while varying td and keeping tg ¼ 15ms constant. (C) Mutual information per spike and (E) coding fraction as a

function of td and tg. (D) Mean firing rate of the LIF neuron as a function of td and tg. While varying one time constant, we kept the other time constant

fixed. (F) Mutual information rate per spike and (G) coding fraction as a function of td and tg. For panels F–G, while changing td we kept tg ¼ 10ms, and

while changing tg, td was kept constant at 15ms. Also, the postsynaptic firing rate hf i was fixed (at � 72Hz) for panels F–G (type B simulations).
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the fact that, despite the firing rate drop (Fig. 1(D)), the cell
fires more reliably to stimulus upstrokes, due to the
depression dynamics. The coding fraction drop with
increasing td (Fig. 1(E)) parallels the decreasing firing rate
(Fig. 1(D)), as found in earlier studies [8,12].

Next, the synaptic depression time constant was fixed
(15ms), and we varied the synaptic conductance time
constant. The firing rate increased with longer synaptic
inputs (larger tg—Fig. 1(D)), as expected. The mutual

information per spike decreased with tg (Fig. 1(C)); the
timing of the postsynaptic firing becomes less reliable as the
synaptic event is longer. The observed non-monotonicity in
Fig. 1(C) is an artifact: at very short tg values, the synaptic
events are not long enough to induce firing (Fig. 1(D)).
Thus, MI/spike values start at zero. When the cell starts to
fire, the MI/spike values are high, and this value gradually
decreases (Fig. 1(C)). The coding fraction has a slight non-
monotonicity because the postsynaptic firing becomes less
precise but the linear reconstruction improves with firing
rate increase (Fig. 1(E)) [12].
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To further investigate the synaptic information transmis-
sion, the firing rate drop induced by changes in td and tg

was compensated by adding a DC current such that
the postsynaptic mean firing rate was kept at 72Hz
(Fig. 1(F,G)). Here, we found that both the MI/spike
and the coding fraction values change in parallel: with
increasing td , both increase, and with increasing tg, both
decrease (Fig. 1(F,G)). Thus, with increasing td the firing
rate drops, but since we compensated this with an
increasing DC current, the MI/spike measure increases,
although it reaches lower values than on Fig. 1(C). The
spiking becomes less precise with increasing tg (Fig. 1(G)),
and this can be followed with both the MI/spike and the
coding fraction measures.
5. Discussion

A thorough in vitro analysis of the afferent pathway in
the ELL revealed NMDA and AMPA components of the
excitatory glutamatergic afferent synapses as well as
truncating and shunting effects of the GABA-ergic feed-
forward inputs on the EPSP shape [2]. Behavioral and in
vivo results show that the pyramidal cells in the ELL
reliably detect high frequencies in their EOD amplitude
modulation [4]. In vivo responses from the ELL pyramidal
cells to SAMs show that a subpopulation of the ELL
pyramidal cells (E cells) are best described as ‘‘receptor
like’’, thus having high-pass characteristics [9], with peak
responsiveness at EOD amplitude modulation frequencies
between 32 and 64Hz [1]. Our simulation results suggest,
that in order to see such characteristics the synaptic
depression time constant ðtd Þ should be longer than the
time constant of the synaptic conductance ðtgÞ. Indeed
Fig. 1(A,B) shows that this configuration is capable of
band-pass filter characteristics, and high frequency inputs
can then be transmitted. According to our simulation
results, if NMDA receptors ðtg420msÞ contribute strongly
to the synaptic current, then shorter values for the synaptic
depression recovery time will result in a synaptic low-pass
filter [2]. In order to preserve gain at higher frequencies,
faster AMPA receptor currents, which decay rapidly as
seen in vitro [2], should dominate the synaptic response.
Under these conditions however the overall gain is
decreased (Fig. 1(A)).

Our results on coding ability performance in the signal
estimation paradigm correspond well with previous studies
on single deterministic synapses [8] submitted to modulated
Poisson input. We have found that increasing td in turn
increases the information transmitted by single spikes, in
spite of a concomitant overall firing rate and coding
fraction drop. Coding fraction however parallels the
information per spike when one controls for the firing
rate. Future work will better constrain model parameters
to quantitatively reproduce both filtering and coding
properties seen in vivo and in vitro, and investigate how
synaptic facilitation may also play a role in this context.
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