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Intrinsic Burst Mechanisms and Network Oscillations.

LIF model neurons were used to represent ELL pyramidal cells in the network simulations presented in the main results of the letter (Fig 2,3 and see Methods).  This type of model neuron makes no assumptions upon the intrinsic ionic capabilities of the cell membrane and as such is a simplistic representation of cell behavior.  The advantage of using this description to explore network behavior is that it allows for a clear distinction between emergent network properties and intrinsic cellular dynamics.  Furthermore, the lack of assumptions of specific ionic channels increases the generality of any results obtained.  However, the disadvantage of using such simple neurons is that they inevitably under represent the true complexity of the intrinsic behavior of the real cells.  The is indeed the case for ELL pyramidal cells where extensive in vitro, in vivo, and modeling studies have described complex bursting firing patterns mediated by several nonlinear ionic currents.  In this section we will first review our past results on the intrinsic bursting dynamics of ELL pyramidal cells, summarizing a previously presented model that reproduces the bursting nature of cells recorded in vitro. Next we will show how the oscillatory discharge described in the main letter is not dependent upon this dynamics and can be achieved when using the more realistic bursting model neurons.  Finally, we hypothesize upon interactions between the network and intrinsic cell dynamics.

ELL pyramidal cells are spatially extended neurons possessing a long apical dendritic arborization1 (up to 800 m).  This dendritic shaft does not branch until approximately 200 m from the soma and immunohistochemical studies show that a patched distribution of active Na+ channels exist over this proximal dendritic area1.  In vitro experiments have shown that the Na+ distribution supports an active dendritic action potential backpropagation that establishes a depolarizing after potential (DAP) at the soma subsequent to somatic spike replolarization (Fig 5a)1,2.  This DAP transiently affects the excitability of the somatic membrane, facilitating the production of further somatic action potentials.   A novel form of burst discharge has been shown to occur in these pyramidal cells whereby the width of the dendritic action potential is dynamically regulated resulting in an increased DAP amplitude2,3.  A recent modeling study have shown that a cumulative inactivation of the dendritic K+ current responsible for dendritic spike repolaraization is sufficient to account for this effect3.  This increase in DAP amplitude causes a reduction in somatic ISI, which then through increased dendritic K+ inactivation causes a further increase in DAP amplitude.  This positive feedback process establishes a continual and accelerated reduction of somatic ISI.  This somatic-dendritic interplay is abruptly halted when the somatic ISI is lowered below the refractory period of the dendritic action potential resulting in failure of dendritic backpropagation.  This removes the subsequent somatic DAP and the somatic ISI is lengthened and AHP is hyperpolarized.  The entire process groups action potentials into small clusters (typically 3-6), which we label as bursts.  Figure 5a gives a schematic of this burst process while a complete description of this mechanism is given in detail elsewhere2,3.    


The experiments and modeling described above gave sufficient understanding of the burst mechanism so as to construct reduced models4,5 which are computationally less involved than large scale compartmental models3 yet retain the essence of the cellular dynamics which support this form of burst discharge.  Specifically one of these descriptions4, entitled the Ghostburster, was set of 6 coupled nonlinear differential equations detailing a two compartment description of an ELL pyramidal cell. We have extended our mathematical model of the ELL pyramidal cell network so as to replace the simple LIF description of pyramidal cells with the more realistic, albeit more complex, Ghostburster description.  The model is as follows
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Equations (3)-(8) (Ghostburster equations) replace equation (1) (LIF equation) shown in the Methods section of the main text.  Vs,i represents the somatic potential while ns,i is the activation gate of a somatic K+ rectifier current. Together these two variables support the spike dynamics of the somatic compartment of the ith Ghostburster neuron (eqs (3)-(4)).  Vd,i models the dendritic potential whereas nd,i and hd,i are respectively the dendritic K+ activation and Na+ inactivation gates; these variables allow for dendritic action potential backpropagation in the ith Ghostburster neuron (eqs (5)-(7)).   pd,i is the cumulative inactivation of dendritic K+ current; this variable evolves with a timescale slower the spiking currents and has been shown to be crucial for this form of burst discharge3,4.  Physiological justification for equations (3)-(8) as well as parameter values are given elsewhere4.  The feedback kernel G is given by equation (9) and is identical to equation (2), except that the spiketimes tjm are now defined as the mth time that Vs,j > 0 and [image: image10.wmf]0
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.  Note that equation (3) shows that the feedback G(t), the stimulus Si(t), intrinsic noise source i(t), and cell bias Bi all influence only the somatic compartment directly; the direct inhibitory feedback pathway terminates exclusively on pyramidal cell somata and proximal dendrites6   Some parameters describing the inputs and interaction are changed from those given in the Methods section due to the switch of neuron models.  For the simulation results presented below they are as follows: Bi = 9,  = 0.9, W = 36, and g = 0.004.  The remaining parameters are identical to those presented in the methods section.  The intrinsic model parameters are set so that the model cell is in a chaotic bursting state with timescales similar to that observed in vitro, an example burst is shown in Fig5a.


Figures 5b and c show the spike time autocorrelation, A(), and inter spike interval (ISI) histograms for the model described by eqs. (3)-(8).  These results show behavior during local and global stimulation qualitatively similar to that of the LIF simulations (Fig 2) and the ELL pyramidal cell data (Fig 1).  Specifically, the Ghostburster cells show oscillatory behavior only during global stimulation, as marked by the damped oscillation in A() and bimodality in the ISI histogram (Fig 5c).  The power spectra density (PSD) of the ghostburster spike trains also show a characteristic peak at approximately 30 Hz only for global stimulation.  The PSDs during local and global geometries yield oscillation indices of 75.41 spk2/s and 142.06 spk2/s respectively.  These indices are larger than those calculated from both the data and model LIF network spike trains; this is to be expected since the mean firing rate of the Ghostburster neurons match in vitro measurements (~ 70 Hz) yet is considerably higher than those observed in vivo (~20 Hz), thus resulting in larger power at high frequencies.  This remains a discrepancy between the Ghostburster model network and both the experimental results and the LIF model network, however since the Ghostburster model was designed to match in vitro recordings this is to be expected.  Nevertheless, the relative comparison between local and global oscillation indices for the Ghostburster network is similar to that obtained from the data and LIF network.  Thus, these results all show that the general phenomena of network oscillatory behavior during global stimulus is possible when ELL pyramidal cells are modeled with a realistic description based on extensive in vitro characterization.  

Definitive proof that active action potential backpropagation occurs during in vivo conditions and leads to burst discharge as described in Fig 5a has not yet been established.  This would require intra-dendritic recordings showing dendritic action potentials and their subsequent failure at high firing rates.  However, pyramidal cell in vivo firing statistics do show ISIs that are within the range reported for somatic doublet ISIs connected to dendritic failure as observed in vitro (5-8 ms)2, thus it is likely that dendritic failures do occur.  Indeed, there is a higher incidence of these low ISIs during global stimulation suggesting that Ghostbursting dynamics occurs preferentially during this stimulus geometry (see Fig1 and unpublished observations).  This would be consistent with a potential feedback-mediated mechanism that would gate burst dynamics specifically during global stimulation.  Interestingly, a threshold for burst discharge has been theoretically and experimentally observed4, and the threshold can be modulated by a variety of intrinsic ionic currents suggesting that such gating mechanism would be feasible 7,8.  However, much further work is required to verify and expand upon these preliminary speculations.         
Information Transfer and Network Oscillations 

Establishing a relation between the dynamics of networks of neurons and their information processing abilities is a current area of interest.  In this section we will begin to address how the feedback mediated oscillatory dynamics described in this paper relate to the previously established information processing abilities of ELL pyramidal cells.   ELL pyramidal cells have been shown to estimate Gaussian stimuli poorly under global stimulus conditions 9-11.  In contrast, these same cells have performed adequate estimation of locally applied stimuli9.  Thus, it is shown that not only are the discharge patterns of pyramidal cells dependent upon the spatial extent of stimuli, but their coding strategies are as well.  To explore a potential connection we have also used linear stimulus estimation techniques12 to measure the ability of ELL pyramidal neurons to estimate a time varying stimulus during oscillatory and non oscillatory firing patterns.  We note that the stimulus used is identical to that presented in the methods section, zero mean band limited (0-40 Hz) Gaussian noise.  Briefly, we reconstructed the stimulus by convolving the spike train with the Wiener-Kolmogorov filter that minimized the mean square error 2 between the actual stimulus and the reconstructed stimulus.  A measure of this accuracy of the reconstruction is the coding fraction = 1-/, where  is the standard deviation of the stimulus.   A spike train which constructs the stimuli perfectly gives  = 1, while a spike train that gives a chance estimate gives  = 0.  These measures are described in detail in a number of studies11-13 and the associated MATLAB algorithms are available at http://www.klab.caltech.edu/~gabbiani/singproc.html.
There are two categories of ELL pyramidal cells, basilar (E-cells) and non-basilar (I-cells) 14; oscillatory firing dynamics were observed for both types.  However, the stimulus estimation analysis that we present here is confined to spike trains only from I-cells.  The interpretation of the results for E-cells spike trains is more difficult, potentially due to additional interneuronal interactions (unpublished observations); these results will be presented elsewhere.  As previously reported9 the coding fraction for pyramidal cells was significantly reduced under global (0.0547+/- 0.037) as compared to local (0.170 +/- 0.061) geometry (p=0.004, n=6, pairwise t-test).  However, the StF blockade partially restored the coding fraction under global geometry (0.136 +/- 0.018, which is not significantly different from local geometry, p=0.5, t-test, n=6).  The  values presented here are lower than those shown previously9, this is due to the broad band (0-40 Hz) nature of the stimulus used.  Nevertheless, a correlation between oscillatory dynamics and a reduction in estimation ability was observed for a subset of pyramidal cells (I-cells).  To our knowledge, this preliminary result is the first successful pharmacological manipulation of neural coding.  

Figure Legends

Fig 5: A network of Ghostburster neurons involving global inhibitory feedback shows differential responses to both local and global stimuli. a) Schematic of Ghostbursting dynamics. Dendritic (top) and somatic (bottom) membrane potentials during a single model burst.  Note the increasing spike frequency culminating at a high frequency somatic spike doublet causing failure of dendritic backpropagation.  The traces were produced by integrating equations (3)-(8) with parameter values given elsewhere4 b) Local stimulation of Ghostburster network gives non-oscillatory network dynamics as evident by the lack of an oscillation in A() and unimodal characteristic of the ISI histogram. c) Global stimulation of Ghostburster network gives oscillatory network dynamics as seen by the damped oscillation in A() and bimodal ISI histogram.  
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