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Abstract

Weakly electric fish continuously emit a quasi-sinusoidal electric organ discharge (EOD) to probe their

near environment (electrolocation). P-type tuberous receptors located on their skin respond to amplitude

modulations of the EOD by varying their firing rate. These receptors, and the neuronal circuitry down-

stream from them, must encode and process low-frequency stimuli due to prey and obstacles and certain

communication signals, as well as high-frequency communication signals emitted by other fish. We ulti-

mately seek the biophysics that govern the encoding process, and in particular, the sensitivity to certain

stimulus features. Since the pyramidal cells to which these receptors project can also be monitored, studies

of weakly electric fish offer a great opportunity for deciphering the encoding/decoding problem. Here we
briefly summarize our recent advances on this issue. We then present new results on the encoding properties

and relative modeling advantages of two widely used classes of neuron models of electroreceptor activity: a

leaky integrate-and-fire dynamical model, and a non-dynamical modulated stochastic point process model.

The quality of encoding, based on the stimulus reconstruction method, is assessed as a function of firing

rate and stimulus contrast, in the context of bandlimited Gaussian stimuli. Our main conclusion is that the

quality of encoding increases strongly with firing rate, but also depends on the actual combination of

biophysical parameters that determine this rate.
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1. Introduction

To elucidate the computations accomplished by nervous systems, it is useful to study a
preparation in which the activity can be recorded in chains of neurons, starting at the sensory
periphery and going centrally. Statements about �neuronal coding� by one cell can then be ver-
ified by recording the activity in the postsynaptic cell. For example, if a study concludes that a
primary receptor encodes only the magnitude of upswings in an external stimulus, the post-
synaptic neuron better be able to discriminate between different upswings. Another important
factor is the complexity of the circuitry, such as the number of cell types in a given nucleus. Such
complexity of course impedes our understanding, especially when it prevents the clear identifi-
cation of input and output for a cell or a cell population. Finally it helps if the stimulus ensemble
relevant to the animal is limited. All these factors pose serious difficulties for the study of
mammalian brains.

The sensory system of the weakly electric fish offers an excellent opportunity to test statements
about neural coding. They produce a weak quasi-sinusoidal electric field (electric organ discharge
or EOD) which is modulated in phase and amplitude by stimuli. Here we will focus solely on
amplitude modulations (AMs) of the EOD caused by lower-frequency stimuli. These fish have no
cortex, which makes their neural circuitry relatively less complicated. The input/output of different
stages is well-defined. Further, it is possible to record (1) the external electric field modulations
caused by stimuli; (2) the firing activity of the receptor afferents; (3) the activity of their post-
synaptic pyramidal cells; and even (4) from the neurons at the next stage in the nucleus pre-
eminentialis. And the relatively simple stimulus ensemble consists of low-frequency bandlimited
noise associated with prey and obstacles (such as rocks) and certain communication signals, as
well as higher-frequency signals associated with special communication signals (chirps) between
fish. Such frequency characteristics are determined by Fourier spectral measurements of the
electrical signals caused by such signals, and the low- vs high-frequency label relates to where the
dominant power lies (e.g. at low frequencies for so-called low-frequency stimuli). In this study we
concentrate on the coding of lower-frequency stimuli by two model classes.

The purpose of the electrosensory system is to �make sense� of these random AMs of the electric
field caused by interesting stimuli, and filter out uninteresting ones. Thus, noisy time-varying
stimuli will be of interest here throughout our work. Interestingly, in the absence of stimuli (i.e. of
EOD modulations), different receptors have different �baseline firing rates�. The role of this dis-
tribution of baseline rates is not known, and we can speculate about this role using a combination
of modeling and information theory calculations.

The goal of this paper is to present such calculations, and provide clues for the role of the
baseline firing rate (calculated as a probability of firing per EOD cycle, or �P -value�) and of the
noise seemingly present in these receptors. The two classes of models we focus on are well-
grounded in the biomathematics literature, and reveal different aspects of the coding process in
P-type electroreceptors, which we will refer to as P-units. Both involve noise at a basic level,
which appears as a plausible ingredient of the dynamics of these receptors. Our study reveals
the relative advantages of the two model classes in the context of a specific coding problem.

The paper is organized as follows: A description of the electric fish and of their electroreceptors
is given in Section 2. Sections 3–5 consider a dynamical integrate-and-fire framework for mod-
eling P-unit activity, and presents results on coding in this model. Section 6 considers a modulated



M. St-Hilaire, A. Longtin / Mathematical Biosciences 188 (2004) 157–174 159
point process model of their firing activity. It was developed by Nelson et al. [13], and is extended
here to reveal certain aspects of the coding capabilities of the P-units as a function of their firing
statistics. A discussion follows in Section 7. While our results are developed in the context of
electroreception, they are relevant to cells driven by a carrier signal (such as the EOD) which is
modulated by environment stimuli, as occurs e.g. in auditory systems.
2. What are P-units?

A comprehensive survey of the known anatomy and physiology of the electrosensory system
of the weakly electric fish of interest here (Apteronotus leptorhynchus, or AL) can be found in
Ref. [20]. This weakly electric fish probes its environment via active electrolocation, see e.g.
[1]. The quasi-sinusoidal EOD from the tail area has a precisely controlled frequency between
0.6 and 1.0 kHz. The EOD produces a time-varying potential on the fish�s skin.
There, tuberous electroreceptors respond to modulations of this potential by varying their
firing rate.

Spiking activity in these receptors is phase locked to the EOD [12,14,16], in the sense that firings
always occur within a certain EOD phase interval and at most once per cycle. Consecutive action
potentials are separated in time by roughly a random integer number of EOD cycles. This
behavior is called �skipping�. Each receptor has a P -value, which is the probability that it triggers a
spike at each EOD cycle in the absence of a stimulus, i.e. in the presence of the baseline EOD
alone. It is observed that the P -value is a smoothly increasing function of the EOD amplitude [16].
Accordingly, �probability� or P-type coders – in contrast with time or T-type coders which trigger
a spike every EOD cycle – encode carrier (EOD) amplitude modulations (AMs) by varying their
skipping pattern. The EOD can be perturbed by nearby objects (rocks, worms) with an impedance
different from that of the surrounding water. Their refractory period prevents them from firing
more than once per EOD cycle.

Only extracellular recordings of spikes from P-units are presently possible. The precise
mechanisms of synaptic transmission and of firing are not known. Thus we rely on indirect
evidence from other preparations and on numerical calculations and mathematical models to
understand P-unit firing. Earlier work has revealed that a population of these receptors shows a
wide range of values of P – even within the same specimen for which the EOD frequency is
constant [12]. The question of the role for this distribution thus arises. In this paper, the bio-
physical determinants of P are considered, along with the possible role of P from the information
theory point of view.

A single P-type electrosensory unit consists in tens of individual receptor cells grouped at the
base of an epidermal pit [1]. Each of the receptor cells releases neurotransmitter to an afferent
nerve that innervates the whole unit and triggers an action potential when the stimulation reaches
a given threshold. Neurotransmitter release rate and conductance are generally known to be
unreliable – or �noisy� – during the synaptic transmission process. Hence, it is strongly believed
that the synaptic transmission process at the release sites, given their large number and their
associated unreliability, is responsible for most of the noise (and skipping) in the encoding process
in P-units [2,13,15,18].
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3. Methods

For both models studied in this paper, the input stimulus, which is an AM of the EOD, was
generated by filtering Gaussian white noise with a fourth-order low-pass filter, similarly to what
was done in [11]. The only difference is that the input to this filter was Ornstein–Uhlenbeck noise
in that work, while here it is zero-mean Gaussian white noise nstðtÞ with autocorrelation
hnstðtÞnstðsÞi ¼ 2Dstdðt � sÞ, where d is the Dirac delta function. The subscript �st� refers to the fact
that this white noise produces the stimulus signal, i.e. realistic AMs of the EOD. The equations for
this filter are
dS
dt

¼ z2; ð1Þ

dz2
dt

¼ z3; ð2Þ

dz3
dt

¼ z4; ð3Þ

dz4
dt

¼ 4az4 � 6a2z3 þ 4a3z2 þ a4½�SðtÞ þ nst	: ð4Þ
These AMs have a well-defined upper cutoff frequency given by a=2p, which we set at one-tenth of
the EOD frequency [16], i.e. a ¼ 2p=10 (fEOD ¼ 1, corresponding to 1 kHz). This noise modulates
the amplitude of a sinusoidal signal (i.e. of the EOD). The value of Dst was chosen to yield a
standard deviation of the resulting AM signal SðtÞ equal to 17% of the mean EOD amplitude r0,
i.e. rSðtÞ ¼ 0:17.

Further, a separate Gaussian white noise nsyn was added to the amplitude of the EOD to
mimick synaptic noise (see below). A refractory period was numerically implemented to prevent
the occurrence of unrealistically close spikes. From the input analog signal SðtÞ and the output
digital spike train, a linear estimate SestðtÞ of the stimulus SðtÞ was computed using the optimal
Wiener–Kolmogorov filter hðtÞ [8,16,21]:
hðtÞ ¼
Z fc

�fc

df
Ssxð�f Þ
Sxxðf Þ

e�i2pft; ð5Þ
where fc is the cutoff frequency (or �bandwidth�) of the input signal. This filter minimizes the
reconstruction noise defined below. The quantities Ssxðf Þ and Sxxðf Þ are, respectively, the cross-
spectrum between SðtÞ and the spike train, and the auto-spectrum of the spike train. The estimate
SestðtÞ was computed by convolving the delta functions making up the spike train with hðtÞ. The
difference nðtÞ 
 SestðtÞ � SðtÞ is usually referred to as �noise� in this information theory literature.
Here we will refer to it as �reconstruction noise�, to distinguish it from the noise used in the model
dynamics (synaptic noise) and the input signal (the random amplitude modulation, or �AM�). This
is important since in dynamical models, it is possible to e.g. decrease reconstruction noise
by increasing synaptic noise, through the stochastic resonance effect [11]. We use the coding
fraction



M. St-Hilaire, A. Longtin / Mathematical Biosciences 188 (2004) 157–174 161
c ¼ 1� �

rSðtÞ
as a measure of information transmission [16], where � is a measure of the noise power:
�2 ¼
Z fc

�fc

dfSnnðf Þ ð6Þ
and Snn is the power spectrum of nðtÞ. Also, rSðtÞ is the standard deviation of SðtÞ, and thus,
06 c6 1. A higher value of c implies better coding, since SðtÞ can then be better reconstructed
from the knowledge of the spike train.
4. Dynamical model of P-unit firing

4.1. Model

The standard leaky integrate-and-fire neuron model was adapted by Chacron et al. [2] to
reproduce the first-order as well as certain second-order firing statistics of P-units. Its deter-
ministic properties have been analyzed in Chacron et al. [4]. The key element of this model is a
dynamic threshold variable which preserves a memory of the recent firing history, as seen in the
autocorrelation function of successive interspike intervals which show a negative correlation at lag
one (not shown). The leaky integrate-and-fire model with dynamic threshold (LIFDT) model is
basically an LIF model with a threshold xðtÞ that changes in time and obeys the following rule:
When the potential vðtÞ equals the threshold xðtÞ, a spike occurs, and the threshold is raised from
its current value by a fixed quantity Dx. It then decays exponentially towards a �rest� value x0

after an absolute refractory period Tref . The threshold tends to increase when a few firings occur in
a small time window, thus making the following interval more likely to be longer. Similarly, a long
interval will allow xðtÞ to recover more, making a short interval more probable. As for vðtÞ, it is
reset to zero after the spike and resumes its evolution as in the usual LIF model. These consid-
erations lead to the following equations:
_v ¼ v0 � v
sv

þ iðtÞ iðtÞ
C

; ð7Þ

sx _x ¼ Hðt � tlast � TrefÞðx0 � xÞ þ Dxdðt � tlastÞ; ð8Þ

where the post synaptic current iðtÞ is coupled additively to the current balance equation and d is
the Dirac delta function. The refractory period is implemented by the Heaviside function Hð� � �Þ
with tlast being the time of the last spike. The capacitance C was set equal to 1.

The input current iðtÞ is determined by the EOD and synaptic properties such as rectification
and noise nðtÞ. The former accounts for the fact that many synapses in receptors respond to only
one polarity of an input signal [5,6,10]. This is simply realized by setting to zero all parts of the
forcing that correspond to negative values of the sinusoid. Hence the forcing term iðtÞ of Eq. (7) is
written as
iðtÞ ¼ r0½1þ SðtÞ þ nsynðtÞ	 sinðbtÞH ½sinðbtÞ	 þ gðtÞ: ð9Þ
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Here r0 is the mean EOD amplitude. The signal SðtÞ is defined in Eq. (4); note that this AM
multiplies the mean amplitude r0. The EOD angular frequency is given by b 
 2pfEOD, with fEOD

set to equal to 1 in our paper. The Gaussian white noise nsynðtÞ has zero mean and correlation
function hnsynðtÞnsynðsÞi ¼ 2Dsyndðt � sÞ; we refer to r2 
 2Dsyn as its variance. It is meant to
represent synaptic noise. Some plots below are given for two distinct values of r2. This noise is
constant during one EOD cycle, and jumps to a new value at the next EOD cycle. Qualitatively
similar results have been obtained using Gaussian white noise (not shown).

The other additive noise source gðtÞ is an Ornstein–Uhlenbeck process with correlation time
sadd:
sadd
dg
dt

¼ �g þ nOUðtÞ; ð10Þ
where the intensity of the Gaussian white noise nOU is 2D. The variance of the OU noise is given
by r2

add ¼ D=sadd. Its effect is mainly to add more phase jitter and other more subtle correlation
effects in the firing data [3]. It widens the modes in the interspike interval histograms (ISIH). For
all simulations, the cutoff frequency was set to 100 Hz, and the �constant contrast� amplitude of
the signal was chosen so that its standard deviation was always 0:15r0, based on [16]. Time is in
milliseconds.
4.2. Firing characteristics

We present various aspects of the response from LIFDT to noisy and/or periodic input, and the
dependence of the P -value on certain important parameters. All our simulations use the
parameters: v0 ¼ 0:0 mV, x0 ¼ 0:03 mV, Dx ¼ 0:05 mV, sv ¼ 1:0 ms, sx ¼ 7:75 ms, Tref ¼ 1:0 ms,
b ¼ 2p (corresponding to a 1 kHz EOD), D ¼ 1:758� 10�4 (additive noise intensity), and
sadd ¼ 0:075 ms. We verified that this simplification minimally affected our measures of infor-
mation transfer. For these values, the deterministic baseline firing (i.e. for constant EOD
amplitude) shows a 5:1 periodic pattern – one spike occurs every 5 EOD cycles and P ¼ 0:2. A
sample time course of the voltage and threshold variables for this phase locked pattern is illus-
trated in Fig. 1(left). In this regime, the dynamics are suprathreshold since action potentials can
occur without the presence of synaptic noise or an AM.

With noise (r2 ¼ 0:0256), the periodic 5:1 pattern is perturbed. As a result, skipping occurs
(Fig. 1(right)) leading to ISIHs and interval serial correlations matching those seen in experiments
(not shown, see [2]). The ISIH envelope is bell-shaped, with discrete modes spread over a few
EOD periods with a mean of 5 cycles.

The model behavior in response to AMs is shown in Fig. 2 along with the principal signals
involved in the simulations. The top signal (A) represents the stimulus that is to be encoded
through modulation of the fish�s EOD (B). After rectification of the modulated EOD and addition
of noise, integration of the postsynaptic current leads to the typical dynamics of vðtÞ and xðtÞ
shown in (C). Spikes tend to occur at a higher (lower) rate when SðtÞ is high (low).

Fig. 3 studies the dependence of the P -value on the EOD amplitude in the absence of AMs. As
the EOD amplitude increases, P increases (panel A) following a devil�s staircase relation [9,19].
Because of phase locking, the same P -value may result from different EOD amplitudes and this is
seen as plateaus in an otherwise monotonically increasing function of r0. Plateaus are expected to
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reduce the quality of encoding, because they break the one-to-one relation between the input
amplitude and the output firing rate.

The dotted line of Fig. 3(A) was obtained with a non-zero multiplicative noise variance of
r2 ¼ 0:0256. It is clear from Fig. 3(A) that, apart from washing out the plateaus, noise does not
affect the curve significantly. This is further illustrated in panels (B) and (C) where the mean
P -value remains almost constant as either the intensity of multiplicative (B) or additive (C) noise
increases.

Fig. 4(A) shows the ISIH in LIFDT without noise nor AMs; the model fires periodically every 5
EOD cycles (as in Fig. 1(A)). In panel B, a multimodal bell-shaped ISIH is obtained with synaptic



Fig. 4. Multimodal interval histograms in LIFDT. Top ISIH were computed without AMs while bottom graphics were

made with AMs. No synaptic noise (nðtÞ in Eq. (9)) was used for histograms on the left, while r2 ¼ 0:0256 on the right.

Note that time is in units of EOD cycles.

Fig. 3. P -value in LIFDT. (A) The firing probability per EOD cycle as a function of the mean EOD amplitude shows a

devil�s staircase shape in the deterministic case (––). Plateaus are wiped out by synaptic noise (r2 ¼ 0:0256) (� � �). Each
point is evaluated from a 500 ms simulation. For typical amplitude values of synaptic (r2) (B) and additive

(D ¼ r2
addsadd) (C) noise used in our calculations, P is almost constant. EOD amplitudes are r0 ¼ 0:261 (�) and r0 ¼ 1:2

().
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noise as seen experiments; the firing is no longer periodic and the intervals are spread over a few
periods around the mean frequency (which stays at approximately 5 EOD cycles). Bottom panels
were obtained using the same parameters but with a random AM on the EOD. Panel C shows the
interesting fact that, even without noise, a multimodal ISIH is obtained in the presence of the AM
alone, since the AM perturbs the deterministic periodic behavior. Finally, panel D shows the
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combined effect of both the AM and synaptic noise. The spread of the ISIH is greater than in the
preceding cases.

Finally, tuning curves were calculated without AMs. This novel result is shown in Fig. 5. The
shape of the 1:1 curve agrees with experiment [19]. This tuning curve was realized without internal
noise, and we do not observe the V-shaped curves that we find in deterministic resonators. This
suggests that the LIFDT itself has no preferential driving frequency.
5. Coding in the LIFDT model

We now present results on the effect of EOD amplitude and P -value on the coding fraction in
the LIFDT model. The additive noise intensity D was set to zero; this did not affect our results
qualitatively. One might expect the smoothing effect of P-unit noise (see Fig. 3(A)) to enhance the
encoding of stimuli. The effect of increasing noise amplitude on the coding fraction actually de-
pends on the mean EOD amplitude [2]. For example, in the 5:1 regime studied in the previous
section (P ¼ 0:2, r0 ¼ 0:261) increasing noise results in a lowering of the coding fraction. In this
region the transfer function (Fig. 3) is already smooth enough for the AM to induce changes in the
firing rate even without synaptic noise. Addition of noise simply randomizes the spike times and
lowers the transmitted information. This is the case for most mean EOD amplitudes.

However, if the mean EOD is such that the dynamics are in a large phase locking plateau in
Fig. 3), such as the 2:1 plateau, noise can enhance coding by breaking up the periodic phase-
locked behavior. This was determined using a small enough stimulus so that without noise, the
modulation is not strong enough to perturb the periodic phase locked pattern. The coding is then
almost zero in the deterministic case. With increasing synaptic noise r, the transfer function is
smoothed out and the model starts coding. In other words, internal synaptic noise helps coding in
this case. If r2 is too high, many irrelevant spikes are generated and the coding fraction decreases.

As the carrier mean amplitude r0 increases, the firing rate increases monotonically in the
presence of constant variance synaptic noise and AM. The increase translates into a better
sampling rate of the input signal, thus into a greater coding fraction as shown in Fig. 6. The result
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qualitatively agrees with measurements by Wessel et al. [16]: The coding fraction first increases
and then saturates with increasing EOD amplitude. However, in Wessel et al. [16], the internal
noise could of course not be changed as we do here. We also find that the curve associated with
the larger noise amplitude has lower coding fraction.

From the known relation between the mean EOD amplitude r0 and the P -value (measured
without AM), the results of Fig. 6 are recast into a plot of the coding fraction vs P (Fig. 7). Again,
we find an asymptotically increasing function which is also expected from the experiments in
Wessel et al. [16]. What is of particular interest here is that for a given P -value, there is no unique
value of the coding fraction. Thus P does not completely determine the quality of information
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transfer in this model. It also depends on e.g. the synaptic noise strength and other model
parameters.
6. Modulated point process model of P-units

The model investigated in this section was proposed in Nelson et al. [13], where the in vivo
response of P-units to sinusoidal AMs of the (quasi-sinusoidal) EOD was studied as a function of
the modulation frequency. This lead to a linear filter description of P-unit frequency response.
This filter was then used to transform the stimulus SðtÞ into a time-varying �firing probability�,
which modulates the rate of a stochastic spike generator. Here we investigate the effects of the
baseline firing rate and the spread of the interspike interval histogram on the encoding of AMs in
this model. Note that this point process model class does not have noise-driven dynamics for the
membrane voltage as in the LIFDT case. Nevertheless it reveals interesting coding features that
are independent of such dynamics, such as the effect of mean firing rate and of threshold and
saturation non-linearities.

6.1. Spiking mechanism in Nelson’s model

The linear filter actually consists of three filters in parallel: two first-order high-pass filters and
one constant gain filter. Two time constants sa, sb and three gain terms Ga, Gb and Gc parametrize
the total filter, which in the Laplace domain is
HðsÞ ¼ Gas
sþ 1=sa

þ Gbs
sþ 1=sb

þ Gc; ð11Þ
where s is the complex frequency (l þ ix). The input stimulus is processed through the filter using
Eq. (11). The filter output represents the modulation in P-unit firing rate. To this modulation, the
mean firing rate – a constant term – is added to obtain a time-varying firing rate which fluctuates
(due to the AM) around its mean. The filter output is fed to a clipping non-linearity, which
produces both firing rate saturation (firing rate cannot exceed the EOD frequency fEOD) and
rectification (firing rate cannot be less than zero) observed in the P-units. The clipped rate is
obtained by setting to zero any negative value of the rate, and by setting to fEOD any value of the
rate above fEOD.

The stochastic spike generator is based on a uniform random number generator (see below).
The model accurately describes the frequency response over the range of AM frequencies relevant
to this fish [13]. However, we verified that it does not exhibit the autocorrelation seen in the P-unit
data, nor can it reproduce the tuning curve since it is not driven by a sinusoidal EOD (only the
AM modulates the rate).

6.2. Numerical implementation

Each set of simulations (differing by only one model parameter) used the same random stim-
ulus, as in experiments [16]. The stimulus SðtÞ was generated (like for the LIFDT model) using Eq.
(4), see also [11], with a ¼ 2p=10 ms�1. This signal was sent in parallel to the three filters, and also
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stored with a sampling rate of 0.5 ms for coding fraction calculations. In the time domain, this
amounts to numerically integrating
_xa ¼ � xa
sa

þ Ga

sa
SðtÞ; ð12Þ

_xb ¼ � xb
sb

þ Gb

sb
SðtÞ; ð13Þ

_y ¼ �xa � xb þ ðGa þ Gb þ GcÞSðtÞ: ð14Þ
The parameters are rbase ¼ 300 Hz, sa ¼ 2:6 ms, sb ¼ 210 ms, Ga ¼ 14:1, Gb ¼ 0:47, and Gc ¼
0:67. Simulations were performed using a stochastic Euler–Maruyama integration scheme with
integration step t ¼ 0:005 ms. The baseline firing rate of the neuron rbase was added to the
summed output of these filters yðtÞ so that the firing probability r0ðtÞ fluctuates around this
mean value: r0ðtÞ ¼ yðtÞ þ rbase. Since the model was built based on receptors of the species AL,
as for our LIFDT model, a �typical� value of the mean firing rate is 300 Hz. On the basis of this
value, the amplitude of the incoming stimulus was chosen so that its filtered version (the non-
clipped firing probability) had a standard deviation of 18% of the 300 Hz baserate, as in Wessel
et al. [16]. The rate r0ðtÞ is then put through the clipping non-linearity, which produces the
output firing probability rðtÞ. One can define a normalized time-varying spiking probability
from the ratio pðtÞ ¼ rðtÞ=fEOD which is bounded between 0 and 1.

Then a random uniform deviate b is generated at the end of each EOD cycle, and compared to
the firing probability pðtÞ at that time. If b < pðtÞ, a spike is triggered. A jitter is added to this time
using a random Gaussian deviate, to match the observed phase locking (the width of ISIH
modes). A Gaussian distribution with zero mean and standard deviation equal to 8% of the EOD
period is sufficient to produce the desired jitter. Finally, an absolute refractory period equal to one
EOD cycle is implemented by setting to the value of one EOD period any interval smaller than
this period.

An enhanced version of the spike generator includes an additional parameter m that determines
the spread of the ISIH [13]. At each EOD cycle, the program generates m Bernouilli trials (instead
of only one as above), given the firing rate at that time. A spike is triggered only when m successful
events are encountered, and we keep track of the number of positive results from one period to
another. Suppose for example that at the first cycle, n of the m trials were successful. Then, if
(m� n) events are also successful at the next cycle, a spike will be triggered. If not, the cumulative
number of successes is passed on to the third cycle, and so on. It is thus possible to change the
spread without affecting the value of P (Fig. 8), and to study the effect of this spread on infor-
mation transfer.

The spread of the ISIH (Fig. 8) can be quantified with the coefficient of variation (CV), i.e. the
ratio of the standard deviation to the mean of the distribution. At m ¼ 1, which corresponds to
the basic version of the generator, the shape of the ISIH is similar to histograms observed in
receptors driven by high-amplitude EODs [16]. As m is increased, the CV decreases since the mean
does not change. At m ¼ 8 the bell-shaped ISIH appears more like the histograms observed in the
LIFDT model in the previous section.



Fig. 8. Effect of m on the interspike interval histogram in Nelson�s model. The average ISI has a value of 4 in all cases.

Note that the top histogram is shown at a different scale due to the large number of short intervals.
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The driving signal in the LIFDT model was implemented with constant contrast, i.e. with the
mean EOD amplitude multiplying both the carrier and stimulus amplitudes. Here SðtÞ is filtered
and added to the constant rbase. The standard deviation of SðtÞ is set so that the standard deviation
of the probability modulation yðtÞ is a fixed percentage of the mean probability rbase. For this
contrast to be constant, whenever rbase is scaled from the 300 Hz value, the stimulus entering the
filter must also be scaled by the same ratio. Thus, when rbase is increased, the amplitude of the
input is also increased. And if rbase ¼ 0, the input stimulus would also be set to zero. Our novel
results below distinguish between the �constant contrast� and �constant stimulus� cases. In the latter
case, the amplitude of the input remains fixed even if rbase changes.
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6.3. Firing characteristics

Two parameters are of particular interest in Nelson�s model for our study of stimulus encoding.
The constant baserate rbase and the spread parameter m change the first and second moments of
the ISIH, respectively. For zero stimulus, the output rate is equal to the baserate. The linear
behavior of the firing rate vs baserate is shown by the diagonal line in Figs. 9 and 10. Here P is
simply rbase=fEOD. These figures also show the firing response for, respectively, the constant
contrast and the constant stimulus versions of the model, for two stimulus intensities Dst (see Eq.
(4)). It is observed that the firing rate deviates from the linear response when the baserate is near
its extreme values 0 or fEOD, and even more so for larger stimulus amplitudes. These regions are
where the clipping non-linearity influences the rate rðtÞ.

A closer look at Fig. 9 for the constant contrast version shows firing rates that increase nearly
linearly for rbase 6 600 Hz or so. Such behavior is expected since the stimulus amplitude is scaled
by the ratio (rbase=300) which itself increases linearly starting from zero. Also, our stimulus has
zero mean – and thus when averaged over the whole realization has no effect on the mean firing
rate – which explains the nearly linear behavior of the firing rate in this region. However, non-
linearity increases for larger rbase. When the baserate is near its maximum value, positive portions
of the stimulus are clipped, and will not be encoded. The negative portions are not affected here,
resulting in an overall negative deviation from linearity.

Fig. 9 shows that the firing rate as a function of the baserate for constant stimulus conditions is
linear for midrange values of rbase, since small modulations have zero mean and do not affect the
mean firing rate. However, the effect of the non-linearity is observed now at both ends of the
graph and they are �symmetric�: The divergence at high rate towards smaller values of rbase is
mirrored by the divergence at low rate towards greater values of rbase. The P value is not affected
by rbase, but rather by the �distance� of rbase from the linear regions. At high firing rates, the positive
portions of the stimulus are clipped and P is reduced. Conversely, the negative portions of the
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Fig. 9. P vs baserate in Nelson�s model with constant contrast stimulation. Each point was obtained from the mean ISI

of a 50 s simulation, following a 0.5 s transient.
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stimulus are clipped at very low rate, thus increasing the P -value. Here again, the deviation is
more important as the chosen stimulus amplitude is increased.

6.4. Results with Nelson’s model

We present the effect of the baserate and m on the coding fraction and the mutual information
in the Nelson model. These effects depend strongly on whether the amplitude of the input is kept
constant, or scaled with the baserate (constant contrast). Here we set m ¼ 4. According to Fig. 11
for the constant contrast case, the coding fraction and information rate are zero at zero baserate,
since the stimulus is scaled to zero. As the stimulus amplitude is scaled with increasing baserate,
the probability fluctuations become larger at the generator input. As a result the modulations are
better encoded by the spike generator; the quality of the reconstruction and thus of information
transfer increases with rbase. When rbase is large enough for the positive parts of the stimulus to be
clipped, the coding fraction goes through a maximum and starts decreasing. As rbase approaches
its maximal value, the lowered firing rate – negative fluctuations are no longer counterbalanced by
positive ones (Fig. 9) – combined with the fact that nearly half the fluctuations are simply not
encoded, produces a decrease in coding fraction.

The baserate being a constant value added to the spike generator input, it acts as a noise source
that raises the baseline stochastic firing rate. From this point of view, the effect observed here is
simply stochastic resonance in a modulated point process [17]. A moderate noise intensity first
raises the firing rate, which results in a better encoding. We also observe an optimal value of the
noise for which the coding fraction and information rate are maximum. Finally, the coding
fraction decreases for high noise where random spiking dominates the response.

The behavior is very different for the constant stimulus case. With rbase set to zero, the negative
portions of the modulation are clipped by the rectification. Nevertheless, its positive portions are
encoded, resulting in a low yet non-zero coding fraction. Then for increasing baserate, the effects
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Fig. 11. Coding fraction and information rate vs baserate in Nelson�s model.
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of the rectification disappear, and information transfer increases. At the same time, the contrast
between the stimulus amplitude and the baserate diminishes and more spikes start occurring at
irrelevant times. When this latter effect becomes more important, both the coding fraction and
information rate go through a maximum and start decreasing (around 300 Hz). Note that the
curves for fixed stimulus amplitude are nearly symmetrical around 500 Hz. This suggests that the
removal of spikes by negative fluctuations at high rate in this model has the same effect on
encoding as the addition of spikes at low rates.

Information per spike as a function of the baserate is also very different for the two versions of
the model (not shown). For constant stimulus, information per spike decreases monotonically as
the baserate increases. The rapidly increasing number of spikes compared to the slowly varying
coding fraction underlies this monotonic decrease. For constant contrast, each spike carries the
maximum information around rbase ¼ 500 Hz (half of fEOD), right in the middle of the linear
coding range, as expected.

The effect of m on the information transfer is presented in Fig. 12. As m increases, the fluc-
tuations in the time intervals between successive spikes are averaged out and the model output
Fig. 12. Coding fraction, information rate and information per spike vs m in Nelson�s model. rbase ¼ 300 Hz.
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becomes more regular (CV decreases, and the ISIH becomes narrower). As a result, the infor-
mation transfer improves.
7. Discussion

The LIFDT model reproduces an important number of spike train statistics measured on
P-unit receptors. The suprathreshold regime was considered in our study of weak AM encoding in
this model, i.e. firings occur even without synaptic noise and EOD AMs. The model produces an
inherent monotonic (except for a few phase locking plateaus) relation or transfer function between
constant EOD amplitude and P -value; this relation is further smoothed out by noise. For the set
of parameters in Chacron et al. [2] and which reproduce in vivo measurements, we found that the
information transfer about AMs is almost always better without synaptic noise; adding noise only
randomizes the spikes times and reduce coding quality. However, a beneficial effect of synaptic
noise occurs when a small AM falls within a plateau of the P � r0 relation. Its presence allows
transitions to non-periodic firing patterns, thus allowing information from the stimulus to be
encoded. This effect is reminiscent of yet different from stochastic resonance, since that effect
involves subthreshold forcing.

Here we have found the important result that the quality of information is not completely
determined by P . Two receptors with the same P -values may have different coding fractions, in
particular if their associated ISIH are different. This is because P itself depends on the synaptic noise
strength and other parameters such as the frequency of the EOD.We also investigated the quality of
AM coding in a modulated point process model. Two variants of the models were investigated. In
the first version, the stimulus was scaled with rbase ð/ P Þ to keep a constant contrast at the spike
generator�s input, as in the LIFDT model. It was found that the quality of the reconstruction
increased with the baserate except near the saturation non-linearity where it started decreasing. In
the second version, the stimulus was not scaled with rbase. We found that stimulus reconstruc-
tion quality behaved �symmetrically� for the two manifestations of skipping: Information can be
carried by either triggering spikes at low rates or by strategically preventing some spikes at high
rates.

The enhanced version of the stochastic spike generator (m > 1) revealed interesting results by
allowing the variation of the width of the ISIH without changing P . As m increased, the CV
decreased, the model became more reliable, and each spike could carry more information for an
overall beneficial effect on the transfer of information. The monotonically increasing curves in
Fig. 12 mimick those observed in the simpler numerical model in Gabbiani and Koch [7,8] where
the random-threshold integrate-and-fire model was used. In this latter �Gestri� model, the value of
the threshold is chosen randomly from a given distribution after each firing event. The CV can be
set by adjusting the distribution from which random thresholds are picked. In Gabbiani and Koch
[7,8], it was found that the coding fraction increased as the variability of the ISI distribution
decreased, which is consistent with our findings.

We know that increasing the internal synaptic noise generally induces a shift of the ISIs to
smaller values, but that it also makes the ISIH modes broader. Here we have shown how the
important class of modulated point process models behaves from the point of view of coding, but
also seen that, in order to get biophysical insight into what really influences coding quality,
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dynamical models may be preferable. Both however predict to a similar extent that a higher mean
firing rate is good for coding, at least in the linear regime.
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