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André Longtin a,b,c,*, Jason W. Middleton a,b,c, Jakub Cieniak a,b, Leonard Maler a,c

a Center for Neural Dynamics, University of Ottawa, Ottawa, Canada
b Physics Department, University of Ottawa, MacDonald Hall, 150 Louis-Pasteur, Ottawa, Ont., Canada K1N 6N5

c Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Canada

Received 5 December 2007; received in revised form 20 January 2008; accepted 25 January 2008
Available online 14 February 2008
Abstract

We consider the processing of narrowband signals that modulate carrier waveforms in sensory systems. The tuning of sensory neurons
to the carrier frequency results in a high sensitivity to the amplitude modulations of the carrier. Recent work has revealed how specialized
circuitry can extract the lower-frequency modulation associated with the slow envelope of a narrowband signal, and send it to higher
brain along with the full signal. This paper first summarizes the experimental evidence for this processing in the context of electrorecep-
tion, where the narrowband signals arise in the context of social communication between the animals. It then examines the mechanism of
this extraction by single neurons and neural populations, using intracellular recordings and new modeling results contrasting envelope
extraction and stochastic resonance. Low noise and peri-threshold stimulation are necessary to obtain a firing pattern that shows high
coherence with the envelope of the input. Further, the output must be fed through a slow synapse. Averaging networks are then con-
sidered for their ability to detect, using additional noise, signals with power in the envelope bandwidth. The circuitry that does support
envelope extraction beyond the primary receptors is available in many areas of the brain including cortex. The mechanism of envelope
extraction and its gating by noise and bias currents is thus accessible to non-carrier-based coding as well, as long as the input to the
circuit is a narrowband signal. Novel results are also presented on a more biophysical model of the receptor population, showing that
it can encode a narrowband signal, but not its envelope, as observed experimentally. The model is modified from previous models by
reducing stimulus contrast in order to make it sufficiently linear to agree with the experimental data.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Many senses receive input in the form of amplitude or
phase modulated carrier signals. This is the case for audi-
tory systems throughout the animal kingdom. It is also
the case for primary receptors in the electric sense of
weakly electric fish [27]. The close similarity of coding prin-
ciples between the electrosensory and auditory systems has
been discussed in the literature [6]. For example, in the
auditory system, the primary auditory receptors are tuned
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to specific carrier frequencies. Information about stimuli is
relayed to higher brain via both the frequency content, i.e.
which carriers are present, and the time-varying modula-
tions of the amplitude and phase of these carriers. The elec-
trosensory system is essentially a simplified version of the
auditory system when the fish is alone, since the receptors
are driven by only one carrier. However, in the presence
of other fish, the situation resembles the auditory system
even more, in that different carriers are present along with
their respective modulations.

While we focus herein on processing in the electrosenso-
ry system, the principles and mechanisms outlined below
are applicable to other sensory systems where carriers are
involved, as well as systems without carriers. These electric
fish have a specialized organ in the tail that generates a
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quasi-sinusoidal discharge throughout the life of the ani-
mal. The frequency of this electric organ discharge, or
EOD, is very stable. The resulting oscillating field causes
an oscillating voltage drop across the apical membrane of
the specialized cutaneous ‘‘tuberous” receptors, which in
turn drives neurotransmitter release onto afferent nerves.
The resulting discharge pattern in these nerves is called
the spontaneous (or baseline) activity because this situation
corresponds to baseline conditions.

Distorsions of the amplitude and/or phase of this field
caused by stimuli alter the baseline voltage oscillations,
which in turn perturb the spontaneous discharge of the
receptors [3,18]. This is ‘‘active” electrolocation, in contrast
to passive electroreception that relies on ampullary recep-
tors which many fish possess (including extraordinary sen-
sitive ones as in the shark). The challenge is to understand
how this basic active mode of sensation can allow a ner-
vous system to encode and respond to a range of different
stimuli, all of which must go through the electroreceptors.
The eyes are of little use since they are nocturnal and live in
turbid waters, and they can perform these tasks without
vision. In other words, these receptors are the front end,
and must deal with all incoming signals. The next layer
of cells, known as pyramidal cells, then do the triage on
these inputs, sending the appropriate features to the appro-
priate structures, with the help of interneurons as we will
see.

This paper focusses on one mechanism that rises to the
task of deciphering mixtures of signals: envelope extraction
from narrowband signals. We discuss the biophysical
mechanisms that underlie this extraction, and how it relates
to single cell properties such as mean firing-vs-input bias
(f–I) characteristics and noise level. We show how circuitry
can convey a narrowband signal from one station to the
next along with its associated low frequency envelope.
The relation between this mechanism and suprathreshold/
subthreshold firing, and ghost stochastic resonance in par-
ticular [10], is examined. The circuitry needs a cell that
responds to the frequencies in the narrowband, but funnels
its output through a lowpass inhibitory synapse. Such cir-
cuitry is found in many areas of cortex, and may explain
our ability to extract, and thus perceive, higher order fea-
tures from narrowband signals, such as those associated
with superposition of gratings in the visual system [2,19]
or speech recognition [15,23].

We further discuss how this envelope extraction and
transmission can be gated by the noise and the bias. Since
the extraction leads to power at low frequency, the ques-
tion arises as to whether this power acts as a baseline noise
that masks another signal – such as a prey – that has power
in the same band as the extracted envelope. The analysis of
this situation, carried out in detail here, leads to an interest-
ing effect of signal-to-noise enhancement by noise in the
context of an averaging network of such cells. This effect
is different from stochastic resonance, since it is seen for
a range of values around threshold. Finally we consider
extraction in an even more biophysically realistic context,
namely by simulating the behavior of the afferents. As we
will see, these spike trains have special noise-reducing prop-
erties at low frequencies, due to correlated firing seen in
each cell.

The paper is organized as follows. Section 2 explains
how different time scales of signals can arise using the elec-
trosensory system, and provides background on the cir-
cuitry of this sensory system and its response to these
signals of different time scales. Section 3 summarizes exper-
iments and analyses of envelope extraction in this sense,
after defining input-output coherence and Hilbert trans-
forms. Section 4 discusses this mechanism in the context
of a leaky integrate-and-fire model (LIF) with narrowband
input, and shows the ranges of important parameters that
allow extraction (‘‘envelope gating”). Gating is didactically
reviewed and further analyzed in the context of an averag-
ing network of cells. It is important to realize that our anal-
yses go beyond calculating transmission or extraction of
signals using spectral measures, since they rely on coher-
ence calculations, which can be used to provide a lower
bound on rates of mutual information transmission.
Finally, we present more biophysically realistic computa-
tional results of stimulus and envelope coding in the affer-
ents, a first step in modeling the process up to the
pyramidal cells and beyond.

2. Multiple time scales of stimuli

It is possible to illustrate the challenges that face sensory
systems with carriers by focussing on electroreception. Fur-
ther, understanding how the different signals are extracted
in a carrier-based sense can yield principles for non-carrier-
based senses too, such as vision [19,20]. In the electrosenso-
ry context there are different classes of stimuli. Prey and
navigational cues such as rocks and plants provide low fre-
quency (<20 Hz) input to the receptors. Tail bending, fin,
gill and other body motions also fall in that range. Then
there are social cues. When two fish are in the vicinity of
one another, they each perceive a beat pattern that results
from the superposition of the EOD’s. The beat frequency is
equal to the difference of the two EOD frequencies. In the
brown ghost knife fish (Apteronotus Leptorhynchus) the
EOD is in the range of 500–750 Hz for females, and 800–
1000 Hz for males. The presence of a beat signifies to each
fish that another fish is present, and its frequency informs
about the gender. This can lead to a change in the EOD fre-
quencies according to a protocol known as the jamming
avoidance response (JAR) which varies across the multi-
tude of weakly electric fish species [14].

The next level of complexity involves active communica-
tion signals, in which the fish briefly modulate their EOD
frequency. Same-gender interactions lead to so-called small

chirps in the brown ghost, which are 20 ms increases in
EOD frequency with little changes in EOD amplitude.
Cross-gender interactions produce large chirps, of similar
duration, but which are large increases in EOD frequency
with a concomitant collapse in EOD amplitude [4].
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Finally, there is the situation where many fish swim in
the same area. It has been shown that they prefer to swim
around in small groups of 6–8 individuals under natural
conditions (Eric S. Fortune, personal communication).
This leads to a superposition of 6–8 EOD’s with time-vary-
ing amplitudes at the surface of each fish. Spectrograms of
these signals show that they are narrowband, i.e. possess
spectral power at all the differences of frequencies present
in the mix. Strictly speaking, this power appears as side-
bands of the EOD’s, but we will neglect the EOD’s for
the sake of discussion and concentrate on these lower dif-
ference-frequencies. In fact, the high frequency EOD’s
are not transmitted, but leave their imprint in phase lock-
ing in the afferents and a certain subset of their projection
cells (the deep basilar pyramidal cells).

The combination of difference-frequencies is an example
of a narrowband signal, and it represents the basic ‘‘cock-
tail party” that the fish must decipher (see Fig. 1) –
although it seemingly is further complicated by chirps,
which we do not address here. Further, such narrowband
mixtures have even slower amplitude-modulation compo-
nents, which as we will see can be extracted by the Hilbert
transform. For example, a 40–60 Hz narrowband Gaussian
noise will display amplitude modulations in the 0–20 Hz
range. This is a property of any narrowband signal, inde-
pendent of whether this signal arose from beats between
high frequency components (such as EOD’s in the electro-
sensory context). In contrast, the singular narrowband case
of a single harmonic signal (e.g. a fish alone) does not show
this amplitude modulation (instead it has constant ampli-
tude), while a broadband signal does not have a well-
defined slower modulation either.

Of course, the natural environment where fish are navi-
gating, eating and interacting with other fish provides a
natural mixture of all the cases above. Not only are the fish
subjected to a cocktail party effect due to their proximity,
but they also see other confounding signals that presum-
ably limit their ability to separate out stimuli. Understand-
ing the neural circuitry that implements this separation is
within reach, and holds great promise for helping humans
faced with similar challenges when they have sensory
impairments.
Fig. 1. A sample realization of 40–60 Hz Gaussian noise (blue) will give an env
are shown on the right in the bottom and top panels, respectively. (For interpre
to the web version of this article.)
3. Experimental envelope extraction

3.1. Methods

The signals we are interested in coding are narrowband
(e.g. 40–60 Hz) amplitude modulation of the EOD. Our
approach [20,21] consists in quantifying the linearity of
the encoding of (1) the direct narrowband power into the
spike train, and (2) the envelope of this waveform
(extracted using the Hilbert transform) into the spike train.
The coherence CXY(f) between an input signal X and an
output signal Y is used to quantify this encoding. It is a
function of frequency and varies between 0 for no linear
encoding and 1 for perfect linear encoding:

CXY ðf Þ ¼
j SXY ðf Þj2

SXX ðf ÞSYY ðf Þ
; ð1Þ
where SXY is the cross-spectral density between X and Y,
and SXX and SYY is the autospectral density of X and Y,
respectively. In our context, the input is an analog narrow-
band stimulus S(t) and the output is the spike train of the
cell or model,

RðtÞ ¼
X

i

dðt � tiÞ; ð2Þ
where the sum is over all the spike times. This leads to the
stimulus–response (S–R) coherence CSR. We will also con-
sider the envelope–response (E–R) coherence CER between
the envelope of the stimulus E(t) and the spike train re-
sponse, R(t). We note that the cross-spectrum is related
to the perhaps more familiar transfer function. However,
the coherence further divides by the power of the output
and thus is similar to a signal-to-noise ratio. It can be re-
lated simply to a lower bound measure of mutual
information.

The envelope of the stimulus is extracted via the analytic
signal technique, which associates with a real signal x(t) an
imaginary part y(t); this latter part contains components
phase shifted by 90� using the Hilbert transform H[x(t)]
[23,20,13]:
elope (red) with power in the 0–20 Hz range. Their power spectral densities
tation of the references to colour in this figure legend, the reader is referred
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yðtÞ � H ½xðtÞ� ¼ 1

p
P
Z 1

�1

xðsÞ
t � s

ds; ð3Þ
where P means the Cauchy principal value. In the case of
the narrowband signals that we use, the radial component
of the corresponding analytic signal has an intuitive inter-

pretation. This component is AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
, and

represents the instantaneous amplitude or ‘‘signal enve-
lope” that arises from the interference of spectral compo-
nents with similar frequencies. It is this amplitude that
forms the envelope signal.
3.2. Direct and indirect pathways

The first stages of the electrosensory pathway are orga-
nized as follows. The electrorereptors are spread all over
the body of the fish; homology to the sense of touch is obvi-
ous. They are more concentrated in the head region, which
has been designated as the electrosensory fovea, although
from measurements and modeling of the electric field lines
around the body it is not clear whether the resolution is
actually higher there than in the midbody region [1]. The
afferents that innervate the receptor cells excite pyramidal
cells in the electrosensory lateral line lobe (ELL). From
there these excite the torus semi-circularis (TS), as well as
the nucleus pre-eminentialis (Np) [5]. The latter feeds back
to ELL (direct feedback) via both excitatory and inhibitory
pathways. The torus massively feeds back to Np (the polar-
ity of this connection is not fully established), which feeds
back to ELL as we have just mentioned. Np also excites the
cerebellar structure known as the EGP, which feeds back to
ELL (indirect feedback) again via both excitatory and
inhibitory pathways. The projections from receptors to
ELL are spatially topographic. A local stimulus such as a
prey affects a small part of the skin by causing field line dis-
torsions (if its impedance differs from that of the water);
this in turn affects a few pyramidal cells. A global stimulus
such as a beat and other communication signals affects all
receptors and thus pyramidal cells, though not equally.
Fig. 2. A sample of the 40–60 Hz amplitude modulation given to an electric fi
ELL.
These receptor-to-ELL feedforward projections will be
referred to as direct projections.

The receptors also excite interneurons know as ovoid
cells. These cells have very large receptive fields, meaning
that their firing rate changes only when global stimuli
change. These ovoid cells display very good S–R coherence
CSR(f) up to high frequencies (200 Hz or so when 0–200 Hz
modulations are given), which suggests that they are made
to process broadband input. Fig. 2 shows a spike train
measured in vivo from an ovoid cell in response to a nar-
rowband 40–60 Hz modulation of the EOD. As mentioned
earlier in relation to Fig. 1, we see here that such input
actually has a well-defined mean frequency, and a slower
random ‘‘envelope” modulation. Spikes tend to occur on
the crests of this input, as well as on crests of the envelope.

When given narrowband input such as 40–60 Hz, it
shows very good S–R coherence in this range (and of
course approximately zero coherence outside this range).
It turns out that this cell also has excellent E–R coherence
CER under the same conditions. The data, not shown, are
similar to those shown for a pyramidal cell in Fig. 3. Pyra-
midal cells thus show, like ovoids, good S–R and E–R
coherence, at least for global signals. Interestingly, this is
not the case for the P-unit receptor that projects to both
the ovoid and the pyramidal cell (not shown). These recep-
tors behave too linearly (a fact demonstrated in [26,24]) to
be able to extract any envelope, as we will see that this
requires nonlinearity [20,10].

Where do the pyramidal cells get the ability to respond
to the low-frequency envelope of the signal? Not from the
receptor cells, since they do not have this property.
Another clue comes from Fig. 4: if the stimulus is local,
they lose their ability to respond to the envelope. And
another clue still: the ovoids project to the pyramidal cells,
although through a slow GABAB inhibitory synapse. Such
a projection has been considered paradoxical, since the
ovoids can respond to very high frequencies, but certainly
can not transmit high-frequency information through such
a slow bottleneck. The conclusion is that the ovoids actu-
ally extract the envelope, which allows them to have good
E–R coherence. They further pass on the slow envelope to
sh (bottom) and the spike train response of an ovoid cell recorded in the



Fig. 3. In global stimulus geometry an E-type pyramidal cell, as expected,
has high pass filtering characteristics when stimulated with broadband, 0–
100 Hz, Gaussian noise (inset). S–R coherence is shown in blue, while E–R
coherence is shown in red. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. In local stimulus geometry an E-type pyramidal cell has low pass
filtering characteristics when stimulated with broadband, 0–100 Hz,
Gaussian noise (inset). S–R coherence is shown in blue, while E–R
coherence is shown in red. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this
article.)
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the pyramidal cell through the slow synapse. This is
why the pyramidal cell exhibits good E–R coherence. In
fact, the pyramidal cell responds well to both the direct
narrowband signal as well as its envelope, and presumably
the next stations such as torus and Np use the part that
they need for processing. It has also been shown that the
feedback pathways to the pyramidal cell do not provide
the E–R response ability [20].

This circuitry, involving a direct feedforward excitatory
projection and an indirect projection via an interneuron
with a GABAB synapse, is present in many parts of the
brain, including cortex. Hence envelope extraction, also
known as higher-order feature extraction, can be supported
in those areas. We next look at the conditions for such
extraction at the single cell level; this in turn leads to a pre-
diction of effects at the network level.

4. Modeling single cell envelope gating

In another study [21] we have explored the biophysics
of envelope extraction from narrowband signals. This
was done using an in vitro preparation rather than the
in vivo preparation discussed up to now. The in vitro sit-
uation is free from potential confounding effects due to
circuitry and synapses. One can focus on the single cell
properties that allow envelope extraction. More specifi-
cally, this was done by injecting the narrowband stimulus
directly into the cell. For technical reasons, this is easier
to explore in pyramidal cells from in vitro slice prepara-
tions of the ELL – even though our results stated above
point to the ovoids (presynaptic to these cells) as the cells
that actually perform this extraction in vivo. Our results
reveal generic biophysical aspects of this extraction
procedure.

It has long been suggested that rectification plays an
important role in extraction [12,19]. The f–I curve of a neu-
ron has a natural rectification at rheobase: signals above
threshold can modulate the firing rate, while those below
are cut out. Fig. 5 shows this situation for a narrowband
stimulus of interest, using an adiabatic assumption in which
the (perhaps stochastic) firing rate instantaneously tracks
changes in the injected current bias. Note however that the
EOD is no longer present hereafter – we deal just with the
narrowband signal injected intracellularly, as well as its asso-
ciated low-frequency envelope. Fig. 5 shows that when the
input signal straddles rheobase, the output firing rate has a
low-frequency envelope. This would not be the case if the
whole signal was mapped into firing rate using a linear part
of the curve to the right of rheobase, i.e. for a higher bias: the
absence of rectification would yield small fluctuations in the
firing rate, and no envelope would be present.

Fig. 6 shows a caricature of the expected power in the
spike train of a neuron in response to a narrowband input.
The direct signal power in the input appears in the output.
Because of nonlinearity, power at the harmonics of the nar-
rowband is also seen, and the more so the stronger the rec-
tification is, i.e. the more nonlinear the f–I curve is. We also
see the envelope power at low frequency, with roughly the
same bandwidth as the direct signal. Hence, this power in
the output will depend on the nonlinearity, which is
affected mainly by the bias current (distance to rheobase)



Fig. 5. A narrowband signal drives the input bias to a neuron near
rheobase. The F–I curve acts as a static transfer function, mapping the
signal to a time-varying firing rate. Under these conditions, the output
firing rate (top right) is a rectified version of the input (bottom left). This
envelope is seen here using a running average of the output rate over the
fast time scale (thick line).

Fig. 6. The spectral power of the rate in Fig. 5 contains the same
narrowband frequencies as the input, as well as the low frequencies of the
slow time-varying envelope of this input.

Fig. 8. The averaged values of envelope-response (E–R) coherence CER

over the frequency range of the narrowband signal as a function of input
current for D = 0.001 and 0.05. The effect of stochastic resonance (SR) can
be seen for small input bias values, i.e. additional noise increases input–
output coherence. Otherwise, additional noise decreases E–R coherence.
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and the noise which linearizes the f–I curve (see e.g. [11]). A
linear system would not produce any output at frequencies
not present in the input.
Fig. 7. A sample of the 40–60 Hz amplitude given to a LIF neural model (top) a
and in the suprathreshold regime (bottom).
We now show how S–R and E–R coherence depend on
these parameters using the leaky integrate-and-fire neuron
model. This analysis has been shown to explain the exper-
imental data from the pyramidal cells with in vitro current
injection [21]. The model is

s
dV
dt
¼ �V þ I þ

ffiffiffiffiffiffi
2D
s

r
nðtÞ þ SðtÞ; ð4Þ

where S(t) is the injected narrowband signal and n(t) is
Gaussian white noise. The S–R coherence averaged over
the frequency range of the narrowband signal for this mod-
el follows a sigmoidal shape, increasing from zero to one as
the bias is increased, as expected (see [11,21] and references
therein). It can be greater than zero even for subthreshold
stimuli via noise-induced firing (stochastic resonance oc-
curs in this range as we show below).

However, this sigmoidal behavior is not seen for the E–
R coherence. Fig. 7 shows two examples of spike trains
from this model, one for a bias near threshold, and the
other above threshold. In this latter case many firings are
seen, but not necessarily in a manner that encodes the
amplitude of the envelope into an instantaneous firing rate
nd the spike train responses when the input bias is set at rheobase (middle)
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(i.e. not clearly in a rate-coding manner). Fig. 8 shows
rather a unimodal shape of CER as a function of the bias
current, i.e. as a function of the parameter that sets the
operating point of the neuron (the mean rate). The best
CER occurs near rheobase, where rectification is strong.
Below rheobase, there is not much firing to represent an
envelope; above it, the system behaves more linearly, so
CER is low. Further, Fig. 8 shows that as the noise
increases, there is a drop in the quality of the linear encod-
ing of the envelope (CER) for suprathreshold biases. On the
other hand, an increase is seen for subthreshold biases.
This latter effect where coherence increases with noise is
stochastic resonance [11]. Together these two effects of
noise and bias could have been predicted from the results
on ghost stochastic resonance in the context of superposi-
tion of two or more harmonics of a signal (but without
the fundamental) [10].

Fig. 9 plots CER versus the intensity of the internal
noise, for both a subthreshold and suprathreshold bias.
The external stimulus strength is held fixed. In the sub-
threshold case, the E–R coherence is insensitive to noise
for lower noise intensities. A resonance is seen for moder-
ate noise intensities, and the curve joins up with the one for
the suprathreshold case at higher noise intensities. This sto-
chastic resonance seen here for a narrow band of frequen-
cies [11] is a consequence of noise-induced firing in the
system for subthreshold stimuli, such that the noise assists
in coding the input – without noise there would be spikes
only for large positive excursions of the narrowband stim-
ulus, and consequently poor representation of this signal
and low coherence. We also see a simple monotonic decay
of coherence in the suprathreshold bias case, starting from
CER values that are higher than for the subthreshold case.
Increasing noise thus removes E–R coherence. The reso-
nance reflects what is seen below threshold (leftmost part)
Fig. 9. Coherence between the spiking output and the envelope of the
narrowband input averaged over the frequency range of the band as a
function of noise intensity. The open triangles show the E–R coherence
when the input of the LIF is set at rheobase (I = 0.1). The monotonic
decreasing property of the ER-coherence in this firing regime shows that
there is no conventional stochastic resonance (SR). The open circles show
the E–R coherence when the neuron is in the subthreshold regime. The
peak of ER-coherence between D = 0.01 and D = 0.1 indicates that, as
expected, the system exhibits stochastic resonance in the deep subthresh-
old regime.
in Fig. 8, while the monotonic decay reflects the supra-
threshold case in Fig. 8.
5. Modeling network envelope gating

5.1. Summing or averaging?

The motivation for this section comes from the observa-
tion that the power in the envelope, resulting from the
proximity of other fish, lies in the same low frequency
range as that associated with prey and navigational cues.
Consequently, in the presence of other fish, any envelope
power will lower the detectability of such prey and cues.
How can these fish detect them when they live alongside
other fish? More generally, one can also ask whether any
new features appear when summing networks are process-
ing narrowband input.

Perhaps if the noise level increases, the envelope detec-
tion will diminish, lowering the noise floor at low frequen-
cies; other signals in that range could then be detected
better. This is indeed the case, but only relative to the other
spectral features such as the direct power in the narrow-
band range (not shown; see [21]); in absolute terms, the
noise has gone up everywhere because there is just more fir-
ings, many of which are uncorrelated with the input. In
other words, adding noise causes the whole spectrum to
shift upward. Intuitively, this can be understood by the fact
that the high-frequency limit of the spike train power spec-
trum is given by the mean firing rate (see e.g. [17]). A stim-
ulus of constant strength, such as a 10 Hz sinusoidal signal,
would still be hard to detect given the increase in the noise
floor, and thus decrease in the signal-to-noise ratio.

An averaging network would normalize this summed
input by a 1/N factor:

RavgðtÞ ¼
1

N

XN

j

X
i

dðt � tj
iÞ ð5Þ

where tj
i is the i-th firing time of the j-th neuron. Such aver-

aging is often assumed in neural network theory (see e.g.
[25]). The common assumption is one of synaptic normal-
ization, where the strength of a synapse onto a postsynap-
tic neuron goes as the inverse of the total number of
synapses onto this neuron. What then happens to the noise
floor when the spiking outputs are summed and divided by
N? Fig. 10 shows the resulting power spectrum of such an
averaged response Ravg(t), obtained using N LIF neurons
in parallel. Each LIF has the same parameters as used
above, shares the same narrowband input, but has its
own internal noise source nj(t). Spectra are shown for
two intensities of the intrinsic noise. Note that the bias is
at rheobase. For both cases, the spectra show power in
the narrowband, as well as at harmonics of that band,
and at the envelope frequencies. This is similar to Fig. 6
using the spectral power of the rate of firing (from a single
neuron), rather than the spike train as is used here. But for
higher noise, the envelope power is much reduced, as are



Fig. 10. The power spectral density of the average spike train, Ravg(t),
with N = 50 identical LIF neurons with independent uncorrelated noise
for D = 0.005 (dashed line) and D = 0.5 (solid line). The noise floor at low
frequencies is paradoxically reduced with the addition of intrinsic noise, so
that the power of a small amplitude, low frequency harmonic input (as in
Fig. 12) is more visible.

Fig. 12. The SNR of the averaged spike train, Ravg(t), measured at the
frequency of the sinusoidal input signal (10 Hz), shows a non-monotonic
behavior as a function of noise intensity, D (solid line). This effect is due to
the noise shaping that results from an increased intrinsic (and uncorre-
lated) noise followed by network averaging. This phenomenon is different
than stochastic resonance, as demonstrated by the SNR curve for the
single unit with the same parameters (dashed line). There is no strong non-
monotonic behaviour of the SNR as a function of noise intensity.
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the harmonics of the narrowband. The stronger noise has
linearized the f–I curve of each cell; these cells are no longer
able to produce information at the envelope frequencies.
5.2. Suprathreshold gating resonance

Let us now insert a low frequency signal that falls in the
band associated with envelope power. Fig. 11 shows that
the signal rises above a higher noise floor (lower SNR)
when the noise is weak than when it is strong (note that
the signal peak is the same in both cases). This leads us
to vary the noise intensity to see how the SNR behaves.
Results are shown for a single neuron and for an averaging
network of N = 50 neurons in Fig. 12. Apart from statisti-
cal fluctuations, the result for the single cell show a mono-
tonically decreasing SNR. This is consistent with Fig. 9,
where at rheobase, the increased noise decreases the E–R
coherence. However, the whole spectrum shifts upward
because of the increased firing rate; the net result is an
increased noise floor, and decreasing SNR. However, for
Fig. 11. The power spectral density of the average spike train, Ravg(t),
with N = 50 identical LIF neurons with independent uncorrelated noise
for D = 0.005 (solid line) and D = 0.5 (dashed line), in the presence of an
additional low frequency harmonic input at 10 Hz. The noise floor is
indicated by the arrow in both cases.
the averaging network, the SNR is non-monotonic as a
function of noise intensity, and there is in fact an optimal
noise to detect the 10 Hz signal. The increased noise washes
out the nonlinearity in the f–I curve, reducing envelope
power. Yet the total power of the summed spike trains
increases because all cells are firing more. Then the averag-
ing brings the noise floor back down, and we see a good
signal detection.

For the single cell, we discussed how noise and bias cur-
rent can determine the strength of the envelope power, i.e.
how they can gate the presence of the envelope in the out-
put. Here, for an averaging network, one finds an optimal
noise to detect a signal in the same band as the envelope.
Noise can then gate the strength of this signal component
by getting rid of the competing envelope. This effect is
not stochastic resonance, as it is not limited to subthresh-
old inputs, neither for the narrowband nor the harmonic
signal. Rather, it is seen in the neighborhood of rheobase
where envelopes can be encoded in the first place, i.e. where
E–R coherence is good (Fig. 8).

6. Gating in the presence of realistic synaptic input

Here we begin an investigation into a biophysically more
realistic analysis of envelope gating. Ultimately we would
like a model of the whole sensory periphery with the rele-
vant circuitry and spiking dynamics. The precise details
to include should be dictated by the problem under inves-
tigation. For envelope gating, it seems important to under-
stand how the spiking of the receptor afferents can support
the envelope extraction, as they are the main vehicle for
information about the input that is used by the ovoid cells.
Specifically, as discussed in Section 3.2, it has been shown
[20] that the spike trains from the receptor afferents show
good coherence with the narrowband signal, but not with
its envelope.
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The model for a single p-unit electroreceptor afferent is
based on our earlier modeling studies [7] based in part on
the earlier probabilistic model in [22]. The more recent
implementation in [9] was first used because parameters
are adjusted in a way that the threshold recovery after spik-
ing produces negative correlations between successive
interspike intervals, and the model displays the proper
highpass filtering, without explicitly putting in this filtering
as in [22]. The equations read
I iðtÞ ¼ ½SðtÞ þ A0� sinð2pfEODtÞH½ðSðtÞ þ A0Þ sinð2pfEODtÞ�
� ½1þ rniðtÞ� ð6Þ

sV
dV i

dt
¼ �V i þ I i ð7Þ

sh
dhi

dt
¼ h0 � hi ð8Þ
Fig. 13. Simulation (for 100 s) of baseline P-unit membrane potential using a l
sampling rate of 20 kHz. Baseline means that there is no input signal other than
Same as in (A–C) but with r = 0.002. (A and D) Membrane potential, V(t), and
1 realization and (E) 20 realizations, with time measured in EOD cycles. (C a
shuffled ISIs (circles). Parameters used: sV = 1 ms; sh = 14.5 ms; fEOD = 700 H
where Ii(t) is the input to the i-th receptor, Vi is its trans-
membrane potential, and hi its time varying threshold for
firing. A firing event occurs when the voltage meets the
threshold. After each spike, the voltage is reset to zero,
and the threshold is incremented by a fixed amount Dh.
So the memory of past firings is conveyed via the threshold,
which allows for non-renewal firing. A long interval will
tend to be followed by a short and vice-versa. This is a
deterministic property of the system [8], which is expressed
by the noise. r controls the intensity of the intrinsic neuro-
nal white noise n. S(t) is the narrowband signal, and fEOD is
the frequency of the EOD. The parameters chosen produce
a spike on 20 percent of the cycles.

While this model provides good baseline statistics, we
have found that it does not reproduce the experimental
results on envelope coding. We have found (not shown)
that it produces both good S–R and E–R coherence. We
hypothesized that the reason for this is that it is operating
eaky integrate-and-fire model with dynamic threshold producing data at a
the constant-amplitude EOD. (A–C) Internal noise intensity r = 0. (D–F)
threshold, h(t). (B and E) Interspike interval histogram obtained from (B)

nd F) Interspike interval autocorrelation (squares) and autocorrelation of
z; A0 = 0.2613 mV; h0 = 0.03 mV; Dh = 0.05 mV.
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too much in a nonlinear regime. Our results thus predict
that parameters that produce the baseline statistics and
envelope coding (i.e. lack thereof) require a more linear
P-unit. This can be achieved by increasing the noise and
bias (into the suprathreshold regime) and decreasing the
stimulus contrast (in comparison to [8]). Other properties
still agree with experimental results (interval histogram
and interval correlation – Fig. 13E and F). We present
our results in the following Figures. In the last one
(Fig. 15) we contrast results from a more linear and a less
linear model, to show that nonlinearity can bring on good
envelope coding.

In the absence of intrinsic noise this model exhibits a
complex phase locking pattern made mostly of 6–7 inter-
vals of 5 EOD cycles followed by an interval of 4 EOD
cycles, as shown in Fig. 13A. Such phase locking patterns
are expected from such models [7], and the interval distri-
bution and the correlation between successive interspike
Fig. 14. Simulation with EOD amplitude-modulating stimulus, S(t), taken as
with standard deviation at 15% of EOD amplitude. (A) Stimulus, S(t). (B) Lo
analytic signal via the Hilbert transform. (C) Input, I(t), to a P-unit. (D) R
realization of one single model P-unit. (F) Interspike interval histogram from
signal on the EOD.
intervals is highly structured (Fig. 13B and C). Fig. 13D–
F shows the same model but with intrinsic noise with a
level that produces stochastic phase locking with realistic
interval distributions and interval correlation [7], in partic-
ular, the negative correlation at lag one (long and short
intervals alternate statistically).

Fig. 14 shows the response of the afferent model to a
narrowband signal and to its envelope. The firing rate of
the P-unit is increased slightly (spikes on 22 percent of
the cycles as opposed to 20 without the modulation), as
expected [24], and the interval histogram is broader. One
also sees Fig. 15 plots the S–R and E–R coherence for a
single cell, averaged over many presentations of the same
frozen-narrowband-noise stimulus, for two different stimu-
lus contrasts (stimulus standard deviation divided by EOD
amplitude). The averaging is possible because the P-unit
does not respond the same way to the same signal, due
to its intrinsic noise which differs across realizations. It is
a narrowband Gaussian noise process with power in the 40–60 Hz range
w-frequency envelope, E(t), of the stimulus, taken as the amplitude of the
aster plot of spike trains from 20 realizations. (E) Spike train from one
the P-unit firing in the presence of the amplitude-modulating narrowband



Fig. 15. Coherence estimates, averaged over 20 realizations, between the spike train response, R(t), and (A and B) the stimulus, S(t), leading to CSR(f), and
(C and D) the envelope, E(t), leading to CER(f). Standard deviation of S(t) at (A and C) 15% and (B and D) 30% of EOD amplitude.
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clear from the spike times in Fig. 14 that firings occur
mainly on the crests of the narrowband signal; they are
not correlated so much with the envelope (a longer data
set would make this point clearer). This point is obvious
from Fig. 15A and C, where the P-unit codes for the nar-
rowband signal (good S–R coherence in Fig. 15A), but
not its envelope (poor E–R coherence in Fig. 15C). The
values of coherence are very similar to the ones found
experimentally. Fig. 15B and D are obtained for the same
system except the stimulus contrast is twice as strong.
Interestingly, E–R coherence now becomes appreciable,
as seen from the increase in the 0–20 Hz band. This illus-
trates that nonlinearity in the f–I characteristic can be
expressed by a larger stimulus which explores more of this
f–I curve. In summary, the novel analysis presented here
shows that this model reproduces experimental results on
baseline firing statistics and envelope coding qualitatively
and quantitatively.

7. Conclusion

We have presented an analysis of envelope encoding in a
sensory pathway. The mechanism we have exposed [20,21],
and detailed herein, is based on low-noise peri-threshold
processing. If the cell doing the extraction is further
expected to transmit information only about the slow enve-
lope, then it can do so using a slow synapse. This is what
the ovoid cell does via its slow GABAB connection to the
pyramidal cell in the electrosensory system. It could also
send the narrowband signal with good linear encoding
qualities through a fast synapse, but this requires that it
behave linearly, which is not the case under the low-noise
peri-threshold conditions for envelope transmission. So in
some sense the transmission of direct signal or envelope
are at odds with one another. The electrosensory system

solves this problem by sending the narrowband signal directly

to the pyramidal cells, and the envelope comes via the ovoid

cells.
This coding is naturally applicable to carrier-based sen-

sory systems, where the lower-frequency envelope can be
extracted. In the case of the electrosensory system, we pre-
sented an even more elaborate context in which the mixture
of high-frequency EOD’s of interacting fish produces a nar-
rowband mixture of moderate beat frequencies which are
transmitted by the electroreceptors (and the EOD’s them-
selves are not transmitted); this narrowband mixture has
a higher-order feature in the form of a low-frequency enve-
lope. It is clear however that the mechanism does not
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require a carrier to begin with: any narrowband signal will
have an envelope that could be extracted by this mecha-
nism. The results are thus applicable to non-carrier-based
senses as well, and to other parts of the brain, sensory or
other, remotely located with respect to primary receptors.

The single LIF model can be made to extract envelopes
of narrowband signals if the noise is low and the signal is
peri-threshold. In this case it behaves similarly to the single
pyramidal cells in vitro (not shown: see [21]) used to study
envelope extraction. These cells were used to study the
dynamics of the firing mechanism that lead to envelope
extraction, even though in the real fish, this extraction
has been shown to occur in the ovoid cells which connect
to the pyramidal cells via a slow interneuron. This is
because it is simpler to record from these pyramidal cells
in vitro, without the confounding effects of realistic synap-
tic input. In particular, such input will add much noise, and
consequently will make it difficult for such a cell to extract
envelopes in vivo. This is why the pyramidal cells are not
able to extract envelopes on their own in vivo, but rely on
an indirect feedforward pathway via the ovoids. This
enables them to respond to the direct signal as well, and
with good coherence.

We have also shown results for an LIF model with
dynamic threshold for the P-unit afferents (i.e. the electro-
receptors). This model requires noise to produce the sto-
chastic phase-locked firing characteristic of the baseline
activity. This model has a smooth f–I curve (not shown)
due to the noise, and furthermore, it processes signals in
its suprathreshold regime – in fact Fig. 13 shows that
without any input the cell fires periodically in a phase
locked manner. Consequently, this cell is not expected
to do envelope extraction, but is expected to respond to
the direct narrowband input. This is indeed what
Fig. 15 reveals. This is also manifest in Fig. 14, where
the spike train is seen to care more about (i.e. to do better
rate-coding of) the narrowband modulations rather than
the slow modulations of the envelope. This qualitative
and quantitative agreement with experiment for both
baseline firing statistics and S–R/E–R coherence required
that the model be put into a more linear regime, by suffi-
ciently reducing the stimulus contrast, or by increasing
noise intensity and/ or current bias beyond threshold
(data not shown).

Many species of weakly electric fish exhibit a jamming
avoidance response, in which interacting fish move their
respective EOD frequencies until a more comfortable sep-
aration is reached. What is the measure used by the fish
to stop changing their frequencies, beyond the obvious
desire to achieve a higher frequency beat? Does this have
to do with the envelope power being somehow minimized?
Is there an optimal modulation depth for the beat? Is it in
the precise way that beats interfere with communication
signals such as small and large chirps? Answers to these
questions may also depend on the naturalistic amplitude
and phase stimulation on the fishes’ bodies, which is cur-
rently under closer scrutiny [16].
Further, what underlies the maximal sensitivity of the
JAR? In Eigenmannia for example, the maximal response
of the JAR occurs for frequency differences of 5 Hz or
so. The reasons for this maximal sensitivity are not known.
It would be interesting to correlate the ability to extract
envelopes with the features of the jamming avoidance
response. Likewise future work could also explore how
the fish can actually behave in the detection experiment
based on the set-up of Figs. 10 and 11. How is the response
to a simple low-frequency stimulus impaired by envelope
power? Hopefully we will obtain behavioral and electro-
physiological answers to this question. Finally it will be
crucial to build more realistic models of the electrorecep-
tors coupled to the pyramidal and ovoid cells, to under-
stand how more realistic features, such as intrinsic
interval correlations in the receptor firing activity or the
synaptic input and its plasticity, can reveal more surprises
about parallel coding of signals and their envelopes and
other multiscale spatiotemporal inputs.
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