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Spike train patterning and forecastability
André Longtin*®, Daniel M. Racicot
Département de Physique, Université d’Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada KIN 6N5
Abstract

Theories of neural coding rely on a knowledge of correlations between firing events. These correlations are also
useful to validate biophysical models for the neural activity. We present a methodology for validating models based
on the assessment of linear and non-linear correlations between variables derived from the spike train. The firing
pattern of an electroreceptor is analyzed in this framework. We show that a purely stochastic model fails to capture
the essential correlations between interspike intervals, even though it reproduces the interval histogram and certain
spike train spectral features. However, a biophysical model, based on the Fitzhugh-Nagumo equations with noise,
does exhibit many of the correlations seen in the data, including those between successive firing phases.
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1. Introduction

Neurons communicate mostly using propagated
action potentials. The codes used for this purpose
are not well known. To properly constrain theo-
ries of neural coding and information processing,
it is important to characterize interspike interval
(ISI) patterning and correlations. These are func-
tions of the inputs to the neuron and of the
non-linear dynamics of its conductances. A
knowledge of these dynamics provides insight into
the nature of ISI correlations. In turn, the nature
of ISI correlations will influence the extent to
which the timing of spikes determines firing in
postsynaptic neurons. Correlations between dy-
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namical variables governing neural activity also
imply a certain degree of forecastability. Alter-
nately, measures of forecastability can provide
insight into the origin of ISI correlations (Long-
tin, 1993a). This forecastability, i.e. the function
relating future ISI’s to past ISI's, can be linear or
non-linear.

The goal of this paper is to present a method-
ology for validating biophysical models of neural
activity using the assessment of linear and non-
linear correlations between ISI's. Our working
hypothesis is that a good model for an ISI se-
quence should reproduce its main correlations
(Longtin, 1993a). Our study builds on recent work
(Longtin and Racicot, 1996) which contrasts lin-
ear and non-linear ISI analyses, and makes care-
ful use of ‘surrogate data’ techniques (Theiler et
al. 1991) in the context of point processes. Surro-
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gate data sets preserve some features of the raw
data, such as the interval histogram (ISIH) or
autocorrelation or both, but are otherwise ran-
dom. In the context of spike trains, surrogate data
techniques allow one to ascribe measured corre-
lations to specific features of the data. Here we
build simple models for the firing activity and
generate spike trains from them. These serve, in
some sense, as ‘biophysical’ surrogate data sets.

We illustrate our approach by analyzing spike
trains from primary afferents of electroreceptors.
These exhibit aperiodic phase locking or ‘skip-
ping’, a firing pattern seen in many sensory neu-
rons (Longtin, 1995). Our study aims to de-
termine whether stochastic forces are present
(Holden, 1976) and whether ISI correlations de-
cay quickly. This knowledge will increase our un-
derstanding of the biophysics of the receptors and
axonal spike generating zones, and of how physi-
cal stimuli modify the autocorrelation and cross-
correlation of afferent ISI’s. The methods of as-
sessment of ISI correlations are reviewed in Sec-
tion 2, and are applied to electroreceptor data in
Section 3. We then apply the same correlation
analyses to a stochastic model in Section 4 and to
a biophysical model in Section 5. The comparison
between firing phase correlations for the data and
the models is also presented in Section 5, and the
paper concludes in Section 6.

2. Linear or non-linear correlations?

Correlations in neural point processes can be
studied using either the spike train, seen as a
sequence of delta functions at the firing times, or
the ISI sequence derived from the spike train
(Moore et al. 1966). The ISIH is independent of
the temporal properties of the spike train. Tem-
poral information is revealed by autocorrelation
functions and power spectra. The absence of tem-
poral correlations between firing times produces
flat spike train and interval power spectra. Devia-
tions from flatness imply correlations, which can
be used to forecast future ISI’s, using for example
an auto-regressive moving average (ARMA)
model. Non-linear forecastability goes beyond
such simple linear stochastic models by revealing
non-linear relationships between successive ISIs.

Further, it is a characteristic of the non-linear
dynamics of firing, i.e. a dynamical invariant
(Farmer and Sidorowich 1987).

Here the nearest-neighbor non-linear forecast-
ing method described in Sauer (1994) is used. A
sequence of N ISIs (I, I,,..., I) allows us to
construct an m-dimensional embedding X, =
(I, _ps1s---» I, 1s 1,). The idea behind non-lin-
ear forecasting is to find a function F which maps
a neighborhood of each point on an ISI ‘trajec-
tory’ into the image of that neighborhood in the
embedding space: ¥, ., =F(I,_,,.1,---» L,_ 1, I,).
We will be interested in predicting only the next
ISL I, ,, vsing the previous m ISI’s. The pre-
dicted interval f is the average of the /,, ;’s over
all nearest neighbors in the embedding space,
which correspond to similar sequences of m suc-
cessive ISI’s. We impose that neighborhood sizes
comprise one percent of the total number of
ISI’s. A normalized prediction error (NPE) is
computed by first averaging the squares of all the
prediction errors (f—I)* over the whole data set,
and then dividing this result by the average error
incurred by predicting the mean of the ISI se-
quence, I:
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We will compute the NPE for m = 1-8. An NPE
value close to zero signifies that there is pre-
dictability; a value near one signifies there is little
predictability, and one may as well forecast the
mean /. Linear correlations can fool non-linear
forecasting algorithms by giving NPE values less
than one (Tsonis and Elsner, 1992). It is impor-
tant, therefore, to also compute the NPE for
surrogate data sets.

3. Data from electroreceptor afferents

We illustrate our approach using a spike train
from a primary afferent of an electroreceptor of
the weakly electric fish Apteronotus leptorhynchus.
The fish produces an AC electric field (called
EOD), the modulations of which are used to
locate food and communicate with other fish.
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This rhythm drives the electroreceptors on the
skin of the fish. Action potentials are recorded
from the afferent axon from this receptor in the
absence of EOD modulations. The receptor is
thus driven by an almost perfectly periodic elec-
tric field. Under these conditions, the afferent
axon fires near a preferred phase of this stimulus,
but ‘skips’ an apparently random integer number
of stimulus cycles between firings.

The first 60 ISI’s are shown in Fig. 1A. The
ISIH, with peaks at integer multiples of the EOD
driving period (1.51 ms), is shown in Fig. 1B. The
return map of successive ISI’s in Fig. 1C reveals
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clusters of points having a slight stretch in a
direction of negative slope, a signature of phase
locking (Longtin and Racicot, 1996). The autocor-
relation of successive ISI’s in Fig. 1D decays to
zero within two lags. The negative correlation at
lag 1 suggests an alternation between long and
short ISD’s, i.e. between long and short skips. The
NPE for the raw data is plotted in Fig. 2. It is
significantly less than one for all m. It also differs
from the NPE for surrogates obtained by shuf-
fling the raw ISI sequence. It is only slightly lower
than the NPE for surrogates having the same
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Fig. 1. (A) Interspike interval (ISI) versus interval number from extracellular recordings of a primary afferent neuron of a weakly
electric fish (data provided courtesy of Joseph Bastian, U. Oklahoma). (B) ISIH for the data shown in (A). The 9165 intervals are
discretized in 300 bins between 0 and 15 ms. (C) Return map of 9165 successive IST’s. (D) Autocorrelation of successive ISI's

estimated using 50 lags.
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Fig. 2. Upper panel: Normalized prediction error (NPE) ver-
sus embedding dimension m for the data in Fig, 1. The NPE is
shown for the raw ISI sequence, and for an average of 10
shuffled surrogates and 10 amplitude-adjusted phase-rando-
mized surrogates. The two-¢ error bars for the surrogates are
smaller than the size of the symbols used. Lower panel: NPE
versus m for the neuron firing phases, along with the NPE for
the intervals and phases from the FHN model (Egs. (4-6)).

(‘amplitude-adjusted’ phase-randomized surro-
gates: see Theiler et al., 1991), suggesting a small
amount of non-linear predictability (Longtin and
Racicot, 1996).

4. A stochastic model with same ISIH

We can gain insight into the neural dynamics
underlying this ISI data by considering a stochas-
tic process that mimicks its ISIH. The process
generates random ISI’s, each interval I being the
sum of a discrete Poisson variable I, and a
Gaussian variable I;. I, represents the number
of skipped stimulus cycles between two spikes. It
labels the ISIH peak number and determines its
height. The I, distribution is not necessarily

monotonic. Its single parameter can be adjusted
such that the second peak is larger than the first,
as is sometimes seen in biological data. I; ac-
counts for the firing phase jitter, which does not
have any cycle-to-cycle correlations (Section 5.2).
The variance o? of I; determines the width of
individual ISIH peaks. The stochastic process I,
which could embody a biophysical model for e.g.
the ISIH peak shapes and heights, does not have
the linear ISI correlations of the raw data, since
by construction I; and I, have zero autocorrela-
tion and cross-correlation. Consequently, the
probability distribution P(I) of intervals is the
convolution of the Gaussian and discrete Poisson
distributions: P(I)=Py,(Ip) * P;(I;). If I, fol-
lows the distribution

<

k
Pp(Ip) =€ ¥ 778(I,—kT,), (2)

where T, is the EOD period, the resulting nor-
malized distribution for 7 is

2 V2 s g —nT,
P(I)= —rerf
(I (mrz) ngln!e c —

-1

= ak 29 g2
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k=1""

The sum starts at k=1, i.e. the first peak at the
origin is discarded. We adjust ¢ and a (the
mean of /,) to obtain an ISIH similar to that in
Fig. 1B. The resulting ISIH is shown in Fig. 3A, in
which the ISD’s are in units of 7,. A sequence of
2048 ISI's is generated using these parameters.
The return map for this sequence is shown in Fig.
3B. The power spectrum of the associated spike
train (not of the ISI sequence!) is shown in Fig.
3C. This spectrum is similar to that in Fig. 3D for
a shuffled version of the raw data. Thus, this
stochastic model has similar phase locking
properties as the shuffled neuron data. The peaks
in the spectrum of the raw spike train (not shown)
are higher and sharper than those in Figs. 3C-D
since, in the raw data, the firings keep in step with
the stimulus, resulting in negatively-sloped clus-
ters (Longtin and Racicot 1996). The shuffling, as
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Fig. 3. Firing statistics of a stochastic model for the data in Fig. 1. I, has period T =1 and mean a = 1.0. /; has zero mean and
o=0.1. (A) ISIH constructed from 2048 intervals. (B) Return map of successive ISI's. (C) Power spectrum of the spike train
constructed by averaging 50 spectra from as many realizations of the stochastic model. Each spectrum was calculated from a 204.8 s
data set. (D) Spike train power spectrum from a randomly shuffled version of the raw ISI sequence in Fig. 1, obtained by averaging

103 spectra, each using a 0.303 s window.

well as this model, produce clusters that are more
symmetric (compare Fig. 1C to Fig. 3B). Not
surprisingly, this stochastic model has an NPE
equal to one.

5. A biophysical model
5.1. Noise-induced skipping
We next consider a more realistic model for

action potential generation, the Fitzhugh-Nagumo
equations (FHN) with periodic and stochastic

forcing (Longtin, 1993b):

e-c(il—lt}=v(u—a)(1—u)—w+n(t) 4)
%—=v—dw—[b+rsin([3t)] (5)
%? = —An+ AE(E). (6)

The periodic forcing is added to the recovery
variable w, in order to match previous studies of
forcing without noise (see Alexander et al,, 1990).
For frequencies higher than those used here, the



116 A. Longtin, D.-M. Racicot / BioSystems 40 (1997) 111-118

forcing should instead be added to v. Since £(¢) is
zero-mean Gaussian white noise with (£ (£)¢
(5))=2Dé& (¢t—s), n(t) is an Ornstein-Uhlen-
beck process, characterized by its correlation time
t.=A"! and its variance DA. The parameters,
which are not meant to match the experiment
precisely, are such that in the absence of periodic
forcing and noise, the system is excitable. The
separation between the fixed point and the
threshold is set by b; as b increases with r=0, a
Hopf bifurcation to periodic firing occurs, with
period 0.77. For the parameters chosen, this time
scale has a negligible influence on ISI correla-
tions. Also, the periodic forcing alone can not
induce spikes.

The parameters D (noise intensity) and the
amplitude r can be adjusted until an ISIH similar
to that in Fig. 1B is obtained (Fig. 4A). This
regime can not produce a second peak smaller
than the first and third peaks as in Fig. 1B, a
feature which is atypical for simple noise-induced
firing (Longtin, 1995), and which may arise be-
cause other behaviors are sampled by the noise in
the electroreceptor. This model also exhibits the
slanted clusters in the return map (Fig. 4B), a
consequence of the genuine phase locked nature
of these dynamics. This implies that a ‘deviate’
variable (Longtin, 1993a), measuring which side
of an ISIH peak an ISI falls, should exhibit a
negative correlation (Longtin and Racicot, 1996).
The FHN data indeed exhibit this correlation, as
well as a sharp spike train power spectrum similar
to that of the raw data (both not shown). How-
ever, the FHN data has a flat ISI autocorrelation,
and thus differs in this respect from the raw data
(Fig. 1D). Finally, the NPE of ISI’s from this
model is close to one (Fig. 2), again different
from the value of = 0.85 obtained for the raw
data. This is due in large part to the flat ISI
autocorrelation.

5.2, Forecasting the firing phases

We now investigate correlations between suc-
cessive phases at which the primary afferent and
the FHN model fire. For the FHN model, the
phase measures the time between a spike and the
preceding maximum of the sinusoidal stimulus.
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Fig. 4. ISIH (A) and ISI return map (B) for the Fitzhugh-
Nagumo model (Egs. 4-6) of the data in Fig. 1. Parameters
are a=05b=012,d=1,r=0.06, e =0.005, =375, D=
6x107% and A=100. A fixed step (0.0025) fourth order
Runge-Kutta method was used to generate 2048 ISPs. The
spiking threshold was set at 0.5, and an absolute refractory
period of 0.25 was used to reject false spikes.

For the EOD data, the phase is the time between
a spike and the zero-crossing of the EOD stimu-
lus immediately preceding it. The return map of
successive phases is shown in Fig. 5A for the
FHN model and Fig. 5B for the raw data. Both
phases have insignificant serial correlation, linear
(not shown) or non-linear (NPE=1 — see Fig.
2). This implies that the firing probability versus
phase in a given cycle does not vary from cycle to
cycle. The FHN model thus captures this feature
of the raw data. Note that it is possible (in the
case of the raw data) for successive ISI’s to be
negatively correlated in the absence of phase
correlations. This requires a detailed explanation
that will be given elsewhere. Finally, the EOD
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Fig. 5. Return map of firing phases for the Fitzhugh-Nagumo
model (A) and for the raw data in Fig. 1 (B).

period was found to fluctuate between 1.46 and
1.56 ms, with a negative correlation at lag one
(not shown). Although ten times smaller than the
fluctuations in phase, these fluctuations may af-
fect ISI correlations, and account for some of
their non-linear forecastability.

6. Conclusion

Our proposed approach to studying spike train
generation and patterning is based on the com-
parison of analyses of ISIH’s and ISI correlation
on data from neurons and from biophysical mod-
els of these neurons. In the context of surrogate
data-based assessments of non-linearity (Theiler
et al,, 1992), these models serve as ‘biophysical
surrogates’, and correspond to more refined ‘null
hypotheses’ about the firing dynamics. Specifi-
cally, we have found that a purely stochastic model
can reproduce the ISIH and certain features of

the ISI return map and spike train power spec-
trum from an electroreceptor primary afferent. A
model for noise-induced skipping, based on the
Fitzhugh-Nagumo equations, exhibits even more
features of the raw data by also producing phase
locked behavior (slanted clusters in the return
map) and uncorrelated firing phases. However,
this model did not show negative correlation
between successive ISI’s and an NPE value below
one, in contrast with the raw data. Possible rea-
sons for this are that the receptor and/or affer-
ent is dynamically more complex than Egs. (4-6)
(the power spectra difference is similar to that
between Figs. 3C and 3D). Also, Egs. (4-6) may
not adequately model the refractory behavior at
the frequencies used. The issue of whether ISI
correlations have any functional significance for
this fish can only be resolved by recording postsy-
naptically. Meanwhile, our approach will be use-
ful to validate biophysical models for the trans-
duction process, and already points to the impor-
tance of noise in this process.
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