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A globally coupled network of ON and OFF cells is studied using neural field theory. ON cells increase their
activity when the amplitude of an external stimulus increases, while OFF cells do the opposite given the same
stimulus. Theory predicts that, without input, multiple transitions to oscillations can occur depending on
feedback delay and the difference between ON and OFF resting states. Static spatial stimuli can induce or
suppress global oscillations via a Andronov-Hopf bifurcation. This is the case for either polarity of such
stimuli. In contrast, only excitatory inputs can induce or suppress oscillations in an equivalent network built of
ON cells only even though oscillations are more prevalent in such systems. Nonmonotonic responses to local
stimuli occur where responses lateral to the stimulus switch from excitatory to inhibitory as the input amplitude
increases. With local time-periodic forcing, the unforced cells oscillate at twice the driving frequency via
full-wave rectification mediated by the feedback. Our results agree with simulations of the neural field model,
and further, qualitative agreement is found with the behavior of a network of spiking stochastic integrate-and-
fire model neurons.
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I. INTRODUCTION

Autonomous and driven responses of networks are a focus
of much current research in biological physics. The interplay
of feedforward and feedback connections, of both excitatory
and inhibitory type, are strong determinants of dynamical
behaviors �1,2�. In particular, the modeling of spatially ex-
tended neural systems with such connections has received
increasing attention as they exhibit a host of interesting dy-
namical phenomena. Mechanisms have been found for tran-
sitions between equilibria and nonhomogeneous states in
space and/or in time �see, e.g., �3�, and references therein�.
Propagation and processing delays in biological networks
further expand the range of dynamical possibilities �4–6�.
Responses to simple localized inputs can lead to localized
structures such as bumps and breathers �3,7�. A main chal-
lenge lies on modeling responses to static �8� or moving
spatial stimuli �9� which are relevant to neural networks.
Stochastic spatiotemporal stimuli with varying degrees of
spatial correlation, as they occur in naturalistic situations,
have also begun to receive attention �10,11�. Another is the
inclusion of multiple types of cells, which complicates the
bifurcation analysis greatly. For example, two-population
systems are under study �3,12–15�, where cells in one popu-
lation have similar properties and connections to other cells.

Sensory systems are a common context in which to model
responses of networks to localized spatiotemporal inputs. In
many sensory systems however, the cells are divided into
ON- and OFF-type cells. The firing rate of an ON �OFF� cell
is proportional �inversely proportional� to the amplitude of
an external stimulus. The effect of this division on the afore-
mentioned dynamical phenomena has not been studied. ON
and OFF cells can similarly drive other cells further along
the sensory pathway, but external input to OFF cells is in-

verted �e.g., by interneurons� in comparison to ON cells. For
example, ON �OFF� pyramidal cells �also called E and I
cells, respectively� in the electrosensory lateral line �ELL�
lobe of weakly electric fish, which provide the prime moti-
vation for our model below, increase �decrease� their firing
rate when the electric field at the primary receptors in their
receptive field increases �decreases� �16,17�. ON and OFF
cells also occur in many other sensory pathways including
visual �18�, auditory �19� and pain processing pathways �20�,
where they further shape receptive fields.

All these pathways further involve recurrent connections
from higher nuclei back to ON and OFF cells �10,21�. The
role of feedback is a major question in neuroscience, and its
answer is likely complicated even by most basic ON/OFF
cell properties. In particular, oscillatory activity has been re-
ported in the ELL when there is sufficient spatial correlation
in stimuli. This is thought �10,11� to be important for cat-
egorical coding, where spatially correlated stimuli are caused
by the presence of other fish �and oscillations ensue� while
spatially uncorrelated stimuli relate more to prey �and oscil-
lations do not ensue�. It has further been shown �22� that
such gamma-range oscillations enhance the directional sen-
sitivity of neurons in the electrosensory system. Since very
few lateral connections exist within ELL, the interplay be-
tween rhythmic activity and recurrent signals from higher
nuclei back to ELL is of prime importance to understand
how such inputs generate oscillations. As this component of
feedback circuitry is part of many senses, our analysis pro-
vides a picture of the dynamical effects that can be attributed
to this basic skeleton of those sensory systems, as opposed to
other pieces of circuitry specific to different senses, such as
local connections.

Thus our analysis on driven recurrent networks of ON and
OFF cells is particularly motivated by experiments in elec-
troreception, where an increase in the spatial correlation of a
stimulus causes oscillatory firing activity, an effect requiring
feedback and successfully modeled using ON cells only
without local connectivity �10,11�. The fact that OFF cells*jlefe076@uottawa.ca
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are equally involved means that an increase in stimulation
does not necessarily increase the feedback signal since ON
and OFF cells respond in opposite directions to that input.
This raises the question of whether transitions between fixed
points and oscillations can still occur and what specific dy-
namical effects this arrangement might lead to. Our results
below show that transitions to oscillatory activity for con-
stant inputs can indeed occur when both ON and OFF cells
are present. Further, we predict the paradoxical autonomous
and driven responses of delayed feedback networks of ON
and OFF cells.

II. MODEL

We focus on the simplest case of a one-dimensional �1D�
layer of intercalated ON and OFF cells. We follow the basic
connectivity scheme of the electrosensory system, in which
each cell, regardless of type, is coupled identically to every
other cell via global delayed feedback �16�. This feedback is
provided in reality by a distant population to which the ON
and OFF cells project; we assume for simplicity that this
population sustains the same activity without further process-
ing and feeds it back to all cells in the 1D layer. Since the
delayed coupling connectivity is all to all, there is no spatial
dimension in the autonomous model. However, the spatial
stimulus will impose a spatial dimension, i.e., a topology.
Our analysis quantifies how opposing responses of these
populations to spatiotemporal input I�x , t� affects activity
patterns in the ON-OFF layer. The mean somatic membrane
potentials or “activities” uon�x , t� and uof f�x , t� obey

D̂onuon�x,t� = A�t − �� + I�x,t� ,

D̂of fuof f�x,t� = A�t − �� + Vo − I�x,t� , �1�

where D̂j = �1+aj
−1�t� with synaptic response time aj

−1. Vo
�R sets the asymmetry between ON and OFF spontaneous
rates. ON and OFF cells produce the same feedback �strength
and polarity� to all cells �10�. This global delayed feedback
which acts at “3” in Fig. 1 is

A�t − �� = k�
�

dy��onfon�uon�y,t − ���

+ �of f fof f�uof f�y,t − ���� ,

where, for j=ON, OFF,

f j�u� � �1 + e−��u−hj��−1 �2�

is the firing rate function with threshold hj and gain �. The
finite spatial domain is �, while � j is the relative proportion
of j type cells in the population. The delay ��0 accounts for
processing and axonal conduction times. We set k=1 for ex-
citatory and k=−1 for inhibitory feedback. Specific ON/OFF
neural systems will deviate more or less from this generic
configuration, but understanding their driven recurrent dy-
namics requires first analyzing this generic case. Further
elaborations on this basic circuitry, such as the presence of
local connectivity seen in other senses, are briefly discussed
below.

III. STEADY-STATE ANALYSIS

To set the stage, we examine the case where, with I�x , t�
=0 and no feedback, ON units do not fire �ūon	0� while
OFF units do �ūof f 	Vo�. This can be adjusted with Vo to suit
specific systems. Note however that this information on Vo is
difficult to obtain in vivo since the observed firing rate is a
combination of the spontaneous activity of the cell and the
feedback onto this cell from all cells. The spontaneous rate
can be obtained in certain experiments if the feedback can be
turned off, e.g., either surgically or pharmacologically, and
this “open-loop” knowledge will help calibrate the neural
model by adjusting its bias Vo.

The asymmetry Vo plays an important role, seen by per-
forming a bifurcation analysis of �1� in the �� ,h� parameter
space, as well as a function of the delay �, for the homoge-
neous and autonomous case I�x , t�=0. Solutions of Eq. �1�
are spatially uniform and implicitly determined by

ūon = k
�

2
�f�ūon� + f�ūof f�� ,

ūof f = k
�

2
�f�ūon� + f�ūof f�� + Vo. �3�

For simplicity, we chose �on=�of f =1 /2, aon=aof f =1, and
hon=hof f �h so that we may write the firing rate functions f
without subscripts.

A. Excitatory feedback k=1

For excitatory feedback k=1, no oscillatory solutions are
possible. In this case, for Vo=0, varying � passed the value
4 /� causes a supercritical pitchfork bifurcation only when
ūon= ūof f =h=� /2. Otherwise, if h�� /2, saddle-node bifur-
cations occur. The dynamics are thus organized around a

FIG. 1. Sensory processing with feedback. �1� For simplicity,
ON cells receive external input I�x , t� directly; OFF cells are iden-
tical but receive inverted input via an interneuron �not shown�.
Apart from feedback, there are no connections between neighboring
or distant cells, inspired from the architecture on the electrosensory
lateral line lobe. �2� ON/OFF activity projects to higher brain. �3�
The summed activity A�t� drives ON/OFF cells after a delay �.
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cusp point. However, when Vo�0 with � fixed, multistabil-
ity ensues as the activation threshold h is varied, with new
fixed points arising via saddle-node bifurcations. We do not
analyze this case is greater detail since our main focus below
is on inhibitory feedback.

B. Inhibitory feedback k=−1

For inhibitory feedback k=−1 and for Vo=0, the unique
fixed point can bifurcate to a stable limit cycle at an appro-
priate delay �5,6� �see Fig. 2�a��. Letting Vo�0 introduces
two distinct instability domains instead of one, as seen in
Fig. 2�a� in the h−� space. Thus multiple transitions to os-
cillations are possible. In fact, defining ūon= ūof f −Vo� �̄ al-
lows us to recast Eq. �3� more simply as �̄=F��̄�
�k �

2 �fon��̄�+ fof f��̄��. Thus, Vo�0 amounts to introducing
two effective thresholds hon�Vo , Io=0�=h and hof f�Vo , Io=0�
=h−Vo �Figs. 2�b� and 2�c��. The presence of asymmetry
Vo�0 creates two distinct spontaneous firing rates for ON
and OFF populations but does not alter the system threshold
per se. This change in variable above is used to represent
these different activities by a single state, resulting in a one-
dimensional fixed point but which exhibits two “effective”
thresholds. The input breaks locally the symmetry introduced
by this change in variable and the ON and OFF activities
cannot be represented by a single point. From this perspec-
tive, plotting stationary firing rate F versus stationary activity
�̄ reveals two distinct regions where oscillations emerge
through Hopf bifurcations surrounded by fixed points �pla-
teaus�. Steep regions correspond to oscillations of the activ-
ity of the ON and OFF population around their respective
thresholds hon and hof f. Given a fixed point �̄, each popula-
tion will respond to input with a different sensitivity and be
driven in and out of oscillation by inputs of different ampli-
tude. Oscillations always reach all cells due to feedback.

IV. RESPONSES TO STATIC INPUTS

The results of the last section lay the foundation for un-
derstanding how ON and OFF units integrate spatiotemporal

signals. From now on, we set k=−1 and illustrate responses,
first in a regime near the Hopf �large �� and then in the
fixed-point regime �small ��. Stimuli are always applied to
ON and OFF cells evenly.

Spatially uniform input I�x�= Io linearly shifts the steady
state defined by Eq. �3�. This is equivalent to threshold modi-
fications, hon=h− Io and hof f =h−Vo+ Io, such that hon=hof f
−Vo+2Io. More importantly, a static nonuniform input
I�x , t�= I�x� induces in the steady state a nonhomogeneous
solution that satisfies

ūon�x� = A�ūon, ūof f� + I�x� ,

ūof f�x� = ūon�x� + Vo − 2I�x� , �4�

where we have made the dependence on uon and uof f explicit.
An input may induce a transition from fixed point to oscilla-
tions �Hopf� by moving the variable R across its critical
value Rc at the bifurcation defined by

tan���Rc��� + ��Rc� = 0 �5�

for ��R�=
R2−1 where R= ��on��dyf��ūon�y��
+�of f��dyf��ūof f�y���; if �R��1, ��R� corresponds to the
frequency at the bifurcation. The network allows the transi-
tion from fixed point to global oscillation as a response to an
input of sufficient amplitude. Transition to oscillatory behav-
ior is caused by local units approaching the neighborhood of
the feedback activation threshold h represented by the
shaded area in Figs. 2�b� and 2�c�, leading to higher values of
the variable R.

Figure 3�a� demonstrates the effect of the amplitude of a
pulse on the variable R defined above. The pulse is a piece-
wise homogeneous signal that has an amplitude of Io over a
spatial width �= �x2−x1� but is set to 0 elsewhere. For Io=0,
R sits in a local minima for which R	Rc and ON and OFF
populations have stationary firing rates. When a localized
input drives the system, R increases as the locally excited
units approach the activity level h.

Figure 3�b� illustrates the activity increase in both ON and
OFF subunits for some stimulated site located at x=y with
respect to the activation curve f , in the spirit of Figs. 2�b�
and 2�c�. Figure 3�c� illustrates the same for ON units only.
In each case, the stimulated ON population increases its ac-
tivity toward the threshold, resulting in an increase in the
value of R. According to this picture, if the pulse amplitude
is high enough, the curve R�Io� crosses the critical value
defined by Eq. �5� and oscillatory activity appears throughout
the network. Note that if the pulse amplitude increases fur-
ther, the value of R decreases. Thus, if the pulse amplitude is
too high, no oscillatory response will be seen.

Our analysis also reveals that oscillations are less preva-
lent in an ON/OFF system compared to one with ON cells
exclusively �labeled thereafter as ON/ON�, in the sense that
they occur over a smaller volume of pulse amplitudes and
widths. This can be seen in Fig. 3�a� by the larger area oc-
cupied by the curve above the critical line R=Rc in the
ON/ON case compared to the ON/OFF case. Further, ON/
OFF nets can exhibit oscillations for either positive or nega-
tive inputs. As one can see in Fig. 3�a�, the ON/OFF network
allows R to cross the instability threshold Rc for both positive

FIG. 2. Oscillatory regimes in the threshold-delay parameter
space. Shaded regions, delimited by instability curves, correspond
to global temporal oscillations. The shape of these regions is
changed by the asymmetry Vo between ON and OFF subpopula-
tions, introducing two effective thresholds in the system ��b�–�c��;
the shaded boxes mark limit cycle behavior. Parameters are k=−1,
�=25, � j =0.5, and �=1.
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and negative pulse amplitudes, while the ON/ON network
only does so for positive amplitudes. This result is intuitively
expected given the distinct rectification properties of ON and
OFF cells.

Interestingly, for some parameters, global oscillations are
stable for I�x�=0, and the reverse transition is observed, as
shown in Fig. 5. We emphasize that distinct ON and OFF
populations allow such an instability to occur even if their
effective thresholds are not identical. Furthermore, letting an
input spatial profile tend to a constant recovers the homoge-
neous problem described by asymmetry-induced instabilities
as in Fig. 2, where limit cycles are only allowed in restricted
regions of the �h�Vo , Io� ,�� parameter space.

A. Numerical simulations

We numerically test these predictions using spatially lo-
calized bump stimuli which are biophysically relevant. In
Figs. 4 and 5 we consider the response of Eq. �1� to I�x , t�
= Io�2
�−1exp�−�x−xo�
−1� if t1	 t	 t2 and 0 elsewhere. In
Fig. 4, the bump drives the sensory layer for t� t1, and sta-
tionary activities lose their stability when the variable R sat-
isfies Eq. �5�. Global oscillations appear across the network,

FIG. 3. Impact of local stimulation. �a� Variable R as a function
of a localized pulse amplitude. The amplitude of the pulse is Io over
a spatial width of �=0.6 and is zero otherwise. Increasing the am-
plitude will cause the value of R to change, for a network made of
equal numbers of ON and OFF cells �ON/OFF� and one built
uniquely of ON cells �denoted by ON/ON�. In both cases, crossing
the critical value Rc causes a Andronov-Hopf bifurcation and the
resulting limit cycle becomes stable. Other parameters are Vo=0.0,
h=0.1, �=25, and � j =0.5. �b� Schematic of local effects of excita-
tory stimulation in the activity for some driven site x=y in a ON/
OFF network. In this example, prior to the input, both ON and OFF
units have the same activity denoted by the dark square. Local
inputs shift activity states toward �respectively, away from� the
threshold h for the case of ON units �respectively, OFF� units.
Changes in the variable R, and thus the resulting oscillations, are
essentially due here to the change in activity of the ON cells �open
circle� since the activity of the OFF cells is negligible �dark circle�.
�c� Similar behavior occurs in a ON/ON network, but the activities
simultaneously approach the threshold, resulting in a greater in-
crease in R, as shown in part �a�. The opposite occurs for inhibitory
pulses.

FIG. 4. Oscillatory response triggered by a static input bump.
ON �left� and OFF �right� populations responding to a localized
positive bump. Gray shading encodes relative activity amplitudes.
�b� Central �black� and lateral �gray� response of ON and OFF
populations, showing the time evolution of the solutions inside and
outside the pulse. The input triggers oscillations from stationary
activity states. Parameters are Vo=0.0, �=1.8, h=0.12, �=25, and
� j =0.5. The bump has an amplitude Io=0.6 for t� �20,35�, and is
set at 0 otherwise. �c� Equivalent phenomenon in a stochastic spik-
ing network of N=1000 integrate-and-fire neurons equally spaced
on the spatial interval �0,1�. ON cells demonstrate oscillatory firing
rates, while OFF cells are inhibited in the subthreshold regime.
Parameters are Vo=0, � j =0.5, �=1.8, D=2.0, and hon=hof f =1,
with �=0.2 and g=−0.05. The refractory period is �ref =0.1. The
membrane and synaptic time constants are a=�m=1. The input am-
plitude is 2.0 for 20	 t	35 and 0 otherwise. The bump length
scale is set at 
=0.6. �d� Mean firing rate variations in time of ON
and OFF cells from LIF simulations. Changes in the cell mean
firing rate are shown both inside �black� and outside �gray� the
bump. Mean firing rate is stationary prior to stimulation. The bump
triggers global firing rate oscillations. A time window of ten inte-
grating steps was taken to approximate the frequencies. Note that
time, here and in the following figures, is in arbitrary units which
can be mapped to physiological time scales. The firing rate is ex-
pressed in spike /�m.
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modulating the structure of the bump-shaped responses. The
reverse mechanism occurs at t= t2 when the bump disap-
pears, and where ON and OFF stationary activities recover
their stable fixed-point behavior. In Fig. 5�a�, the opposite
phenomenon is observed. Prior to the bump, limit cycles are
stable for the chosen parameters until t= t1. The global equi-
librium �Eq. �4�� becomes stable during the input and loses
stability at input offset as the boundary defined by Eq. �5� is
crossed again.

This behavior is further qualitatively reproduced in simu-
lations of noisy spiking networks of leaky-integrate-and-fire
neurons �LIF� with all-to-all coupling. Our aim is to show
that a simple generic form of this model adapted to the ON/
OFF context can show qualitatively similar behavior to that
of the neural field model. Our goal is not to provide a de-
tailed representation of experimental data nor a detailed cor-

respondence between the LIF and the neural field formula-
tion. The respective ON and OFF membrane potentials v j

on

and v j
of f in a population of N cells obey

�m

dv j
on

dt
= − v j

on + g
ti

��ti − �� + � + �t� + I�j,t� ,

�m

dv j
of f

dt
= − v j

of f + g
ti

��ti − �� + � + �t� + Vo − I�j,t� ,

with Gaussian white noise �t� of intensity D, feedback gain
g, spiking times of all neurons �ti� and bias current �. The
synaptic response function is given by ��s�=ae−as whenever
s�0 and zero otherwise. The synaptic time constant a is
here set to 1. The membrane time constant �m is also fixed to
1. The asymmetry Vo and input amplitude Io must be tuned in
order to reach the appropriate membrane potential correspon-
dence between the neural field and LIF formulations of net-
work dynamics. Indeed, our numerical experiments suggest
that a close relationship exists between both model formula-
tions, but its full determination is not the aim of the current
work. Figure 5�b� shows the firing rate oscillations vanish
across the domain as the input is turned on. The input causes
the feedback to reach a critical amplitude, bringing cells sub-
threshold and thus inhibiting network activity. Pyramidal
cells in the electrosensory system can increase their firing
rates more than tenfold in response to a stimulus so large
variations are physiological. The specific mean firing rates
observed in our simulations, as well as the frequency of the
emerging firing rate oscillation via the Hopf bifurcation, are
consequences of the specific choices of the synaptic time
constant �set throughout to a=1� as well as the membrane
time constant �set throughout to �m=1� and the delay. For
example, lower firing rate oscillation frequencies are ob-
served for larger delay values �not shown�. If time units are
scaled such that 1 �time unit�=10 ms, as the physiologi-
cally relevant delay range suggests, one obtains firing rate
oscillation frequencies around 50 Hz, as observed in experi-
mental studies on the electrosensory system �10,11,23�.

B. Central and lateral responses

We next consider network responses to input for smaller
delays, i.e., in the fixed-point regime. For Vo�0, the re-
sponse to a local pulse, where I�x , t�= Io for x� �x1 ,x2� if
to	 t	 t1 and Io=0 otherwise, might alter feedback in non-
intuitive ways. Indeed, asymmetry between ON and OFF
populations induces, lateral to the pulse, a nonmonotonic re-
sponse as Io increases �Fig. 6�a��. As input increases, the
contribution of the stimulated cells to the global feedback is
first reduced, then enhanced. The behavior of both ON and
OFF cells shown in Figs. 7�a� and 7�b� illustrates the phe-
nomenon in Figs. 6�a� and 6�b�. For a small pulse, the mag-
nitude of global feedback drops: lateral activity goes up. For
a larger pulse, ON activity increases further, OFF activity
remains low as for the small pulse, and global feedback is
stronger: lateral activity is now less than before the pulse.
This is a consequence of the feedback component A�t� vary-
ing nonmonotonically with respect to Io, which is reflected

FIG. 5. Bump-shaped stimulus removing global oscillations. �a�
As in Fig. 5, ON �left� and OFF �right� cells responses to a localized
positive bump are shown. �b� Central �black� and lateral �gray�
dynamics shows the damping of the oscillations as the input is
turned on. Parameters are Vo=0.0, �=1.1, h=−0.05, �=25, and
� j =0.5. The bump has an amplitude Io=0.2 for t� �20,35�, and is
set at 0 otherwise. The bump length scale is set here at 
=0.1. �c�
Equivalent phenomenon in a stochastic spiking network of N
=1000 integrate-and-fire neurons equally spaced on the spatial in-
terval �0,1�. Other parameters are Vo=0, � j =0.5, �=1.1, D=1.0,
hon=hof f =1, and �ref =0.1 with �=0.8 and g=−0.06. The mem-
brane and synaptic time constants are a=�m=1. The input ampli-
tude is 0.5 for 20	 t	35 and 0 otherwise. �d� Mean firing rate as a
function of time for both ON and OFF cells, inside �black� and
outside �gray� the input bump. A time window of ten integrating
steps was taken here as well. The firing rate is expressed in
spike /�m.
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by the lateral response behavior plotted in Fig. 6�a�. The
magnitude of this effect depends on the choice of parameters,
especially the feedback gain, which can be adjusted to am-
plify the excitatory and inhibitory responses. The central re-
sponse will, however, always be more important than the
lateral response. This phenomenon is also observed in our
integrate-and-fire network, where the lateral firing rate first
increases then decreases when the input amplitude is aug-
mented, as shown in Fig. 8. We further note that excitatory
feedback �k=+1� alone brings solutions away from the
threshold; response curves are monotonic. Small excitatory
feedback in parallel with dominant inhibitory feedback is
equivalent to a small change in the gain k, as long as solu-

tions maintain their stability properties for k	0 �not shown�.

V. RESPONSE TO TIME-PERIODIC STIMULI

More paradoxical effects are seen in the fixed-point re-
gime with stimuli of the form I�x , t�= I�x�sin��ot�, where
2� /�o is large compared to the synaptic �1 /aj� and feedback
��� time scales. For a local pulse I�x�= Io for x� �x1 ,x2� and
I�x�=0 elsewhere, we observe a lateral discrepancy in the
dominant frequencies of the population activity �Fig. 9�. In-
terestingly, this is a spatial change in oscillatory mode, but
without any space dependent connectivity. The feedback in-
tegrates input from both ON �+I�x , t�� and OFF �Vo− I�x , t��
cell populations which, for periodic input, are in antiphase.
Given the form of the firing rate function, each of these
feedback components is roughly a half-wave-rectified ver-
sion of the input oscillating at frequency �o. The sum of
these two components produces a feedback that fulfills the
role of a second forcing term, driving the system globally at
frequency 2wo as a full-wave rectified version of the input.
This rhythm always appears regardless of whether the peri-
odic pulse drive is local or global. However, inside the pulse,
the direct input competes with the feedback, producing a
dominant rhythm at �o for sufficiently large Io. Outside the
pulse, only the global feedback-driven rhythm at 2�o is seen.

Further, near to the Hopf regime �e.g., for larger delays�, a
time-periodic pulse of large amplitude and/or spatial extent
will induce a sequence of Hopf bifurcations as the condition
in Eq. �5� is cyclically fulfilled. The result is a complex
waveform that includes bursts relating to the Hopf-induced
limit cycles �not shown�. Their analysis will be presented
elsewhere.

VI. DISCUSSION

We have performed a bifurcation analysis of a neural field
of ON and OFF cells with all-to-all delayed coupling. For
excitatory coupling we have found multistability between
homogeneous fixed-point states. Paradoxical effects are pre-
dicted to occur in such networks with inhibitory coupling, on
which we have put more emphasis. Our work was directly
inspired by the configuration of the electrosensory system in
which local connections are weak compared to delayed feed-
back connections. Localized inputs near the Hopf regime can
turn oscillations on or off. Compared to equivalent networks
made fully of ON cells, we have shown that such nets exhibit
transitions to oscillations over a narrower range of param-
eters that characterize the pulse input—namely, its width and
strength. However, the ON/OFF network is shown to exhibit
such transitions for both stimulus polarities. Our work sup-
ports the observation of oscillations in the electrosensory
system seen with spatially correlated inputs �10,11� when
both ON and OFF cells are present. A next step is to extend
our analysis to stochastic spatiotemporal stimuli to show
how, as in those studies, the spatial correlation of a stochastic
input can bring on gamma-range oscillations and whether the
Hopf curve behaves as shown here for localized pulse inputs.

In the fixed-point regime, localized inputs produce mono-
tonic or nonmonotonic input-output relations. Local time-

FIG. 6. Response vs Io outside the pulse is nonmonotonic. In-
hibitory feedback decreases, as OFF activity massively decreases,
but then increases, as ON cells are locally recruited by the pulse and
continue to increase their rate. Note that the magnitude of the re-
sponse depends on the choice of parameters, especially the feed-
back gain �k� �here set to 1�, but is smaller than that in the central
response. �b� Response vs Io inside the pulse �central ON cell� is
monotonic but with two slopes. The same nonmonotonic feedback
effect as in �a� occurs but is compensated by Io. The difference
between the curves in �a� and �b� is simply Io. Note that for central
OFF cells, the response curve is monotonically decreasing, due to
the inhibitory effect of the incoming pulse. The pulse amplitude is
Io for x� �0.35,0.75� and t� �20,25�, and 0 otherwise, Vo=0.3, h
=0.05, �=25, �=0.2, and � j =0.5, with random initial conditions.
�c� Schematic description of local effects of stimulation for some
driven site x=y, resulting in nonmonotonic lateral response. The
variable used here is �̄ in order to represent the asymmetrical solu-
tions uon and uof f by a single state with two distinct thresholds.
Given the parameters considered, the fixed point �̄=F��̄� before the
pulse �dark square� is located in the plateau between hof f =h−Vo

and hon=h but closer to hof f. By analogy to the initial formulation
�i.e., without �̄�, the stimulation puts uonf and uof f in different parts
of the response curve. As the input drives the units, the activity of
the OFF cells �dark circle to the left� is inhibited and crosses the
threshold hof f, while ON cells �dark circle to the right� are not
excited sufficiently to reach their response threshold hon. The cu-
mulative effect across all stimulated sites generates a decrease in
the amplitude of the inhibitory feedback and lateral activity in-
creases. �d� As the input amplitude increases further, the activity of
the ON cells crosses hon and augments the amplitude of the inhibi-
tory feedback, leading to a lateral decrease in activity.
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periodic forcing leads to coexisting network oscillations at
different frequencies in the sense that we can see one gamma
frequency centrally, where cells are in the receptive field of
primary receptors �such as electroreceptors projecting to
ELL� receiving the pulse stimulation, while another fre-
quency is measured laterally to the pulse. In fact, experi-
ments have been proposed �24� to measure these nonmono-
tonic lateral as well as frequency doubling effects, especially
to see the spread in the range of gamma frequencies that
ensues.

Another direction of interest is to consider how local con-
nectivity interacts with the global delayed loop considered
here. Our results are qualitatively and numerically un-
changed �not shown� if nondelayed inhibitory feedback is
also present, mimicking local connectivity. The same is true
when moderate positive delayed feedback is present at the
same time as the negative all-to-all delayed feedback consid-
ered here. A deeper analysis of the dynamical effects caused
by such additional circuitry is beyond the scope of our study
and is left for future work. Local connectivity makes the

system truly spatial to begin with, rather than only in the
presence of a stimulus as is the case in the present study.

We note that all-to-all networks of stochastic LIF neurons
have been analyzed using a mean field analysis �25� in which
the field contributed by all cells affects the mean bias and the
noise level of each cell. They have found oscillatory behav-
ior when inhibition is sufficiently strong, which is in line
with our findings using neural field theory and with our nu-
merics on the neural field and the LIF’s. Because of the
all-to-all coupling, including sparse random coupling, their
theory is also without space, as is ours. Although we con-
sider only excitatory or inhibitory connections in isolation,
our work goes beyond their study by considering that ON
and OFF cells both receive external input and respond in
opposite directions to it. Further we consider the effects of
time-varying inputs. It will be of interest to develop their
theory or that in �11� to see how the noise influences the
effects that we describe. It will also be of interest to see what
are the prime determinants of the oscillation frequency in
delayed nets of all-to-all coupled ON and OFF cells as a

FIG. 7. Response of the ON and OFF cells to a localized discontinuous pulse of amplitude Io in the fixed-point regime. Here, for Io

=0, OFF cells are firing and ON cells are almost silent. The initial decay seen in the time course of the ON cells is caused by this choice of
initial conditions. �a� ON �left� and OFF �right� populations activity in response to the pulse. Here Io=0.1	Vo. Activity of all cells increases.
�b� The pulse amplitude is increased to Io=0.4�Vo; lateral activity now decreases. The pulse is identical as in Fig. 6.
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function of the balance of excitation and inhibition, the noise
level, and of the relative time scales of excitatory and inhibi-
tory networks, as has been investigated for autonomous �26�
and driven networks �30�.

As mentioned in the Introduction, ON and OFF cells are
found in most sensory pathways and in conjunction with
feedback. The simple circuit investigated here can thus serve
as a stepping stone toward understanding responses to inputs,

including the onset of oscillations, in other senses, since the
oscillation mechanism discussed here is accessible to these
senses. Oscillations in the visual system induced by spatially
correlated stimuli have been argued to rely mainly on local
circuitry in cortex. Further, locally generated oscillations can
be amplified by a recurrent loop such as the thalamocortical
loop �21�. This is clearly different from the electrosensory
system where the feedback loop is important �see also work
on the nucleus isthmi in the visual tectum by Wessel et al.
�27�� As these resulting temporal oscillations are thought to
be of particular significance for higher cognitive functions
�28,29�, their continued dynamical analysis in the context of
more biophysically detailed driven networks of ON and OFF
cells is further warranted.
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FIG. 8. Nonmonotonic lateral response of OFF cells to a spa-
tially localized pulse in a LIF network. �a� A spike plot of a network
of N=1000 cells, qualitatively reproducing the results shown in Fig.
6 and 7 is shown. Smaller input amplitudes �left� generate an exci-
tatory lateral response, while the response for larger amplitudes
becomes inhibitory �right�. �b� Time evolution of the firing rate both
inside �black� and outside �gray� the pulse. As the input amplitude
increases from 0.6 to 1.7, the lateral response changes from excita-
tory to inhibitory, and the firing rate first increases and then de-
creases. �c� Central �black� and lateral �gray� firing rate as a func-
tion of the input amplitude Io, qualitatively reproducing the results
shown in Figs. 6�a� and 6�b�. The lateral response exhibits the same
nonmonotonicity, while the central response is monotonically de-
creasing, as expected from center OFF cells. Given this parameter
set, OFF cells are in the suprathreshold regime due to the choice of
a high value of Vo, while the ON cells are maintained in the sub-
threshold regime where they fire at a very low rate �not shown�. The
nonmonotonic response of the ON cells can be appreciated in the
neural field model �Fig. 7� because the activity is plotted �rather
than spike times�, and this activity can take values below the thresh-
old. Parameters are Vo=1.2, � j =0.5, �=0.1, D=1.0, and �ref =0.1.
�=0.1, h=1.0, and g=−0.9. The input has an amplitude of Io be-
tween �0.25,0.85� for 20	 t	35 and zero otherwise. A time win-
dow of ten integrating steps was taken to compute the firing rates.
The firing rate is expressed in spike /�m.

FIG. 9. Lateral frequency doubling effect. �a� Spatially inhomo-
geneous responses of ON �left� and OFF �right� populations to local
periodic forcing with Io=0.5 over the region x� �0.35,0.75� and
zero elsewhere for 15	 t	45. �b� Time evolution of the activity of
ON and OFF cells inside �black� and outside �gray� the time-
periodic pulse, showing the central-lateral response discrepancy. �c�
Associated time evolution of the feedback signal A�t�, showing that
combined ON and OFF contributions make the recurrent compo-
nent oscillate at twice the input frequency. Parameters are �o=0.9,
Vo=0.05, h=0.0, �=25, �=0.4, and � j =0.5.
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