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Stochastic two-delay differential model
of delayed visual feedback effects

on postural dynamics
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We report on experiments and modelling involving the ‘visuo-postural control loop’ in the
upright stance. We experimentally manipulated an artificial delay to the visual feedback
during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms.
Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure
(COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision
and proprioception. A novel ‘drifting fixed point’ hypothesis was used to describe the
fluctuations of the COM with the COP being modelled as a faster, corrective process of
the COM. The model was in good agreement with the data in terms of probability density
functions, power spectral densities, short- and long-term correlations (Hurst exponents)
as well the critical time between the two ranges.

Keywords: postural sway; negative feedback; continuous control; two time delays;
stochastic; multi-fractal

1. Introduction

Delays are an important feature of any biological control system. The feed-
forward propagation of neural activity from sensors to the central nervous system,
as well as from the central nervous system to muscles, can involve delays of
hundreds of milliseconds. Delays complicate all control tasks involving sensors
and effectors in any feedback configuration. This is because the controller, even
if distributed, typically has a delayed response to errors detected between the
desired and current states of the system. The study of such control systems
with one or many feedback loops, and their robustness to sources of random
fluctuations, is receiving ever more attention (Stepan 2009).
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424 J. Boulet et al.

The postural control system is a canonical example of a neurological control
system. Understanding its function is particularly important in the clinical realm,
for example in the context of ageing. In fact, the control of posture degrades as
we get older, and an understanding of the components of this control system
and how they change with age is of paramount importance. In addition to delays
in visual processing, there are delays of the order of hundreds of milliseconds
in the purely proprioceptive control of posture based on mediated feedback
from the muscles that apply torque to the ankle and other joints of the lower
limb. Visual cues are important for stabilizing what is essentially an inverted
(multisegmented) ‘pendulum’, and this visual processing also involves large
delays.

It is essential to be able to perturb the healthy postural control system to gain
a better understanding of its function, and of its dysfunction under pathological
conditions. While it is not readily possible to extend or shorten the proprioceptive
delay, it is possible to extend the visual delay, as has been done in the two
recent studies of posture control (Rougier 2004; van den Heuvel 2009). This
same strategy has also been used to study finger position control (Glass et al.
1988). It is known that symmetric systems with an unstable equilibrium, such as
the inverted pendulum, can exhibit many different behaviours as parameters are
changed. This is because their dynamics are organized around a co-dimension
two bifurcation known as a Takens–Bogdanov bifurcation (in its symmetric
version; see Redmond et al. (2002)), which arises when a pitchfork bifurcation
meets a Hopf bifurcation. That same work showed how chaos may develop as
nonlinearities are changed, adding a potential deterministic source of variability
in the associated control problems. The addition of a second delay, as we do
here to account for visual feedback, brings us into an unexplored dynamical
territory.

In this paper, we first report new experimental measurements of posture control
in healthy humans in which the visual delay is artificially increased by as much
as 1 s. The variable that was measured and extensively analysed was the centre-
of-pressure (COP) recorded using a force plate. We computed the probability
densities of the fluctuations in anterio-posterior (AP) deviations from an upright
position, as well as their spectral properties and Hurst exponents across delay
conditions. This goes beyond the works of van den Heuvel et al. (2009), which
concentrated on how the low- and high-frequency components of the sway behaved
as a function of delay. Additionally, we summarize a novel dynamical model of
postural control mediated by proprioceptive and visual feedback, which is based
on the inverted pendulum. Thus, the model incorporates two delays associated
with the corresponding control loops: proprioception and vision. The model also
includes noise, which appears to be essential to simulate the ‘random walk’
executed by the COP. More noise is added to the slowly and randomly wandering
fluctuation of the equilibrium position of the model to replicate the ongoing
corrections to the position as the body shifts position during postural tasks.
By making these fluctuations state-dependent, a better qualitative agreement
between the model and the data is found. Postural fluctuations are known to
exhibit different short- and long-term correlations (Collins & De Luca 1994). Here,
our model was thus used to explore the stability of the system as a function of its
delays, especially in terms of the cut-off between regimes of short- and long-range
correlations.
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Numerous models of postural dynamics have been proposed over the past
two decades. Chow & Collins (1995) used an elastic-pinned polymer, modelled
with a stochastic partial differential equation. Their model accounted for the
characteristic mean-squared displacement and correlation functions typically
seen in postural sway; however, it lacked an explicit control mechanism, which
is our primary interest here. Kiemel et al. (2002) used high-order linear and
optimal control theory models to estimate postural states. Higher order models
require many parameters and thus are very complex. These models make use
of Kalman filters and, therefore, states are evaluated instantaneously, lacking
any minimal processing delay. Moreover, Frank et al. (2000) adopted the so-
called vector-integration-to-end-point model to describe the COP dynamics,
which was originally proposed by Bullock & Grossberg (1988) to explain the
emergence of typical properties of reaching such as a speed-accuracy trade-off and
a bell-shaped velocity profile. They identified the COP as a to-be-controlled (or
to-be-minimized) difference between the actual position and the target position
(in quiet stance the origin) and implemented the distinction between short- and
long-term correlations by letting the drift coefficient of its dynamics depend on
its correlation function (which led to a superdiffusive short-term regime).

A simpler approach to modelling postural control was based on the dynamics
of the inverted pendulum. The validity of the inverted pendulum as a model
for the upright quiet stance has been studied by Gage et al. (2004) and
Winter et al. (1998), showing the relationship between COP and the centre-
of-mass (COM). Eurich & Milton (1996) and Milton et al. (2009) have
extended this approach to include noise, i.e. they treated the system as a
stochastic delay differential equation. In both cases, the control was delayed and
discontinuous since it was dependent on a constant threshold of ‘displacement’.
This produces coexisting oscillations around each threshold, which were not
evident in the data, but the more realistic global fluctuations due to noise-
induced switches had Hurst exponents that agreed with the experiment. In
the same context, a simple continuous control model was proposed by Yao
et al. (2001). More recently, Stepan (2009) has worked on delay effects in
the human sensory system while balancing. Also, recent developments show
stabilizing effects of noise (Cabrera 2005; Milton et al. 2008). The analysis
of stochastic delay differential equations in the context of posture control
may benefit from techniques such as small delay approximations (Guillouzic
et al. 1999), or two-state approximations if and when bistability is present
(Tsimring & Pikovsky 2001).

To summarize, we focus on a two-delay stochastic differential equation to
understand how generic features of the postural sway are related to several
system parameters. Apart from providing a proper testing ground for the
potential impact of vision on posture control, this approach allows for probing
more deeply the boundary between the short-term, persistent (non-corrective)
fluctuations and the more long-term, anti-persistent (corrective) fluctuations, for
example determining how it depends on delays in the control loops and on the
noise sources. Section 2 describes the experimental methods (data acquisition
and analysis). Section 3 presents the empirical findings as a function of delay
conditions: time series, standard deviations, power spectra, probability density
and Hurst exponent estimates. Finally, the model is developed and analysed in
§4 and we conclude in §5.
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2. Methods

(a) Experiment

Eight men and six women aged 25.6 ± 3.0 yr with masses and heights of 72 ± 11 kg
and 173 ± 9 cm, respectively, participated in the experiment approved by the
University of Ottawa Ethics Review Board. They signed an informed consent
prior to participation. Participants had no cognitive or physical impairments.
A participant’s task was to stand on a force plate (Advanced Mechanical
Technology, Inc.) with their feet at a comfortable separation as straight as possible
with their hands at their side in an upright stance. For visual conditions they
looked at a 48 cm (19 inch) display, which showed a black background and a red
dot at the centre representing the fixed target. A smaller white dot represented
their COP and was displayed in real-time or with additional visual delay under
experimental control. The experiment consisted of six conditions: eyes closed, and
eyes open with delayed visual feedback of 0, 250, 500, 750 and 1000 ms. There
were five trials for each condition, with a total of 30 trials per subject. Each trial
lasted 120 s.

All footwear other than that with elevated heels or ankle constrictions was
allowed. Participants stood on the same area on the force plate for all trials.
Markers were placed on the force plate as a reminder of foot positions from trial
to trial. Initial foot positions were determined before the first trial by finding
the area on the force plate where participants stood upright and maximized the
overlap of their COP with the target with minimal effort. Previous studies by
van den Heuvel et al. (2009) and Rougier (2004) used instead the mean position
of the COP’s first second of the trial as the target. The problem with that
approach is that 1 s may not be enough time for initial COP transients to settle
and consequently a less ‘balanced’ target might be used. That is, our technique
aimed to find a better centred subject-specific target.

(b) Data analysis

Force plate data were sampled at 1000 Hz for AP and medio-lateral (ML)
components. We will consider only the AP data in this article. These data
were down-sampled offline to 100 Hz for analysis in MATLAB (The Mathworks,
Natick, MA, USA). Afterwards, 4 s at the beginning and 1 s at the end were
removed to discard transients for a total of 115 s. Probability density functions
(PDFs) were computed on the first three consecutive 30 s blocks, each with its
mean removed. For every one of the six conditions, the PDFs were averaged
over the three blocks for each subject, then across trials and finally across
all participants. Power spectral densities (PSDs) were computed similarly via
the Welch periodogram function with a non-overlapping Hamming window.
Standard deviations were computed with the same partitioning. Mean-squared
displacements were computed in 10 s blocks and averaged over 10 blocks per trial.
They were averaged over all trials per participant and then over participants.
A similar treatment of mean-squared displacement was given by Collins &
De Luca (1993). The first quantity estimated from the mean-squared displacement
was the critical time τc, defined as the first time that the Hurst exponent crossed
H = 0.5. We note that this also defines the boundary between the aforementioned
two regimes of persistent and anti-persistent behaviour. A linear regression was
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Figure 1. COP time series for (a) no vision, (b) 0 ms delay and (c) 750 ms delay. Grey line, data;
black line, model.

then applied to the log–log of the mean-squared displacement K (τ ) versus lag τ
on [0.1, τc] and [τc, 10] s, where the slopes of the fit were divided by 2 to give Hs
and Hl, respectively. The slopes were divided by 2 for fractional Brownian motion
(fBm) 〈[�r(τ )]2〉 ∝ τ 2H (Mandelbrot & Van Ness 1968; Newell et al. 1997).

3. Results

For the sake of legibility, results for the data and the model are presented
simultaneously in the figures below, even though the model will only be presented
in §4. First, let us refer to figure 1, which shows the COP for (i) no vision,
(ii) 0 ms delay, and (iii) 750 ms delay, where all the time series were mean-centred.
The condition with no vision was noticeably less stationary than the conditions
with visual feedback, which suggested that visual feedback acted as an additional
stabilizing and, probably, a corrective mechanism. By and large, figure 2 confirms
this observation by displaying the mean (across participants) standard deviation
of the COP time series for all experimental conditions; error bars represent the
standard deviation over all participants and trials. It is interesting to note that,
within error, the standard deviation varied little across visual delays.

To disentangle effects in different time scales, figure 3 presents the mean PSD,
Srr(f ), averaged over participants for the same conditions as in figure 1. There
was more power at lower frequencies for the no vision condition, since there
appeared to be a slow, drift-like process (see also figure 1). A feature seen across
all conditions was the ‘elbow’ in the middle of the curve, which divided the
spectrum into two 1/f α-type regimes. This is characteristic of a multi-fractal
one (Mandelbrot & van Ness 1968). If we proceed by assuming that the no vision
condition has more drift, as suggested by the time series and the PSD, then its
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Figure 3. PSDs for (a) no vision, (b) 0 ms delay and (c) 750 ms delay. Grey line, data; black
line, model.

PDF, Pr , should have a relatively larger variance. Figure 4 clearly demonstrates
this fact, whereas the two PDFs for visual feedback conditions were approximately
the same regardless of delays (only two are shown here). We then computed
the mean-squared displacement K (τ ), and, from it, the short- and long-term
correlations quantified via the corresponding Hurst exponents, Hs and Hl, as well
as the critical time, τc. We note that for ordinary Brownian motion (oBm) H = 0.5
holds, since 〈[�r(τ )]2〉 ∝ τ

(∝τ 2H
)
. Figure 5 shows a schematic representation of

the calculation of these quantities. Not only did we see multi-fractal behaviour
in the PSDs, but also in the mean-squared displacement. Therefore, it can be
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detected from the time and frequency domains. Figure 6 shows the average values
of Hs, Hl and τc across all participants. In fact, the Hurst exponents agreed with
previous studies; i.e. Hs is between 0.5 and 1 and the range of Hl is from 0 to 0.5
for all conditions. Collins & De Luca (1995) have shown a significant difference
between eyes open and eyes closed conditions for Hl. Similarly, figure 6 reveals
a clear difference in the long-term Hurst exponent for the no vision and visual
feedback conditions. The critical times, however, were the quantities of most
interest since they define the boundaries of distinct control regimes (Collins &
De Luca 1993). Across all conditions, even without vision, the critical times are
approximately 0.5 s. Therefore, it appears that the artificial visual delay was not
a major contributor to the value of τc.
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data; grey line, model.

4. Model

(a) Inverted pendulum dynamics

In the models of Yao et al. (2001) and Eurich & Milton (1996) for the postural
sway along the AP direction, the body is likened to an overdamped, inverted
pendulum, which is considered as the ‘plant’ (see also below and Werness &
Anderson (1984)). From figure 7, the inverted pendulum is a rigid mass-less rod
connected to a point of mass m, and L is the distance from the origin to the
COM. From this, one can obtain the moment of inertia I = mL2. There also exists
a viscous damping force at the origin (not shown) proportional to the angular
velocity. In combination, this leads to an equation for the rotational equilibrium
in the yz-plane, where θ is the angle in that plane measured from the vertical
direction

I θ̈ + βθ̇ − mg L sin θ = 0. (4.1)

One can simplify equation (4.1) by assuming that the sway angle θ does not
deviate any greater than 5◦, rendering a small angle approximation to first order
from the Taylor expansion proper, sin θ ≈ θ + O(θ3), which yields

I θ̈ + βθ̇ − mg Lθ = 0. (4.2)

As indicated above, Werness & Anderson (1984) stated that postural sway is
overdamped for healthy participants with eyes open that here provided the
condition βθ̇ � I θ̈ . Because of θ = y/L, equation (4.2) reduces to ẏ = mgLy/β.
Henceforth, we will replace y with r and ε = mgL/β and write

ṙ = εr . (4.3)

Phil. Trans. R. Soc. A (2010)

 on December 14, 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Stochastic two-delay differential model 431

z

g

Figure 7. Inverted pendulum free-body diagram where x represents ML and y, AP.

Since we were restricting the dynamics to a first-order system, the potential
function can be given as V (r) = ar2, that is, the only stable position can be
r = 0, otherwise r diverges. This type of stability may generally be referred to as
unstable equilibrium where any perturbation from the equilibrium will move the
system away from this point. In terms of the inverted pendulum, the only stable
state refers to the completely upright state.

(b) Noise

Postural perturbations for quiet standing are traditionally modelled
with Gaussian white noise denoted as ξ(t), which is a wide sense stationary
process. This means that the first and second moments remain constant over
time. Mathematically, its mean is 〈ξ(t)〉 = 0 and the autocorrelation function is
Rξξ (t − t ′) = 〈ξ(t)ξ(t ′)〉 = δ(t − t ′), whereas the PSD is Sξ (f ) = 1; the latter
follows via the Wiener–Khintchine relation. To avoid confusion with other works,
it should be noted that, in this paper, all Gaussian white noise processes have a
variance equal to 1.

(c) Feedback

The previously described inverted pendulum dynamics is intrinsically unstable
at its fixed point. However, when observed experimentally, quiet standing appears
fairly stable, and suggests that there must be a stabilizing mechanism, which
exists to counteract this phenomenon (Eurich & Milton 1996). In the framework of
continuous stochastic delay equations (see also Yao et al. 2001), a self-stabilizing
model should be of the form

ṙ = εr + f (r) + √
2Drξr , (4.4)

where Dr is a one-dimensional diffusion constant. In the same context, for eyes
open, Yao et al. (2001) proposed that the feedback function f (r) should take the
form of a smoothed on–off switch at some delayed time τprop for proprioception
at the ankles, and, therefore, equation (4.4) becomes

ṙ = εr − κ tanh
[
r(t − τprop)

ρ

]
+ √

2Drξr , (4.5)

where κ is the strength of the proprioceptive feedback and ρ is a characteristic
length scale (which we set equal to 1 m). Since r 	 ρ, we may linearize
equation (4.5) about its fixed point r∗ = 0, which gives
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ṙ = εr − κr(t − τprop) + √
2Drξr . (4.6)

Redmond et al. (2002) showed that the deterministic part of such systems has a
Takens–Bogdanov bifurcation as its core organizing centre. In addition, Küchler &
Mensch (1992) proved that the stationary solution regime of equation (4.6) can
be described in terms of ε, κ and τprop (where Dr � 0), where all parameters are
positive (for the remainder of the paper as well) and κ > ε as follows:

τprop < τcrit = cos−1(ε/κ)√
κ2 − ε2

. (4.7)

If this condition is not satisfied, a sub- or supercritical Hopf bifurcation will
appear with angular frequency ωcrit = √

κ2 − ε2 (Mackey & Nechaeva 1995). In
fact, since such oscillations are not manifested in the time series or PSDs of
the experimental data, it is likely that this condition is satisfied. Equation (4.6),
however, cannot reproduce both eyes closed and eyes open conditions since the
eyes closed condition is non-stationary owing to a slow drift process as seen from
the time series and PSDs in figures 2 and 3a. To explain this drift process, we
turn to Zatsiorsky & Duarte (2000), who make reference to a migrating reference
point (rambling), which we shall refer to dynamically as a ‘drifting fixed point’.
This drifting fixed point may be modelled as an independent Wiener process,
which is also a position, by adding it to equation (4.6),

ṙ = εr − κr(t − τprop) + √
2Drξr + s (4.8)

and
ṡ = √

2Dsξs, (4.9)

where Ds is a second diffusion constant and ξr (t) and ξs(t) are independent
Gaussian white noise processes.

We further wished to include visual feedback to explain both eyes closed and
eyes open data in a single model. Comparing figures 2–4, we noticed that the drift
process seemed negligible for the eyes open case when compared with that for the
eyes closed one. Hence, we proposed, as earlier, to model the visual feedback
similarly to the proprioceptive feedback. The visual feedback, however, must be
corrective, i.e. directed towards the origin. Including this as part of equation (4.9)
to minimize drift results in a doubly delayed Langevin equation. This inclusion
reduces power in the PSDs at low drift frequencies, and the variance of the PDFs
decreases, as seen experimentally. Equation (4.9) then becomes

ṡ = −γ tanh[r(t − τvis)] + √
2Dsξs. (4.10)

We note that this equation is still valid for eyes closed since we may simply
choose γ = 0. As for the visual delay τvis, it is composed of two parts: an intrinsic
minimal visual delay, and the experimental perturbative delay which is 0, 250,
500, 750 or 1000 ms. For all simulations we used 200 ms for the minimum visual
processing delay. A further reduction can be made to equation (4.10), again by
the linearization of the hyperbolic tangent function using the similar argument,
i.e. s 	 1 m, and upon redefining ar

.= √
2Dr and as

.= √
2Ds the final form of

the model is
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ṙ = εr − κr(t − τprop) + arξr + s (4.11)

and
ṡ = −γ r(t − τvis) + asξs. (4.12)

Figures 1–6 refer to these equations as the ‘model’. Again, s is the drifting fixed
point. It is called this because (deterministically), when ṡ = 0, r∗ = 0, but if,
temporarily, ṡ �= 0, r∗ = s/(κ − ε). Hence, the fixed point of r drifts as a function
of the slow fluctuations of s. When γ = 0 (no visual feedback), s is just the
Wiener process and, thus, non-stationary; otherwise, vision acts as a corrective
mechanism that keeps the drifting fixed point stationary. As one would expect,
with relatively small visual delays, compared with the large delays, the system is
more corrective as seen by the lower long-range Hurst exponents (figure 6a,b), yet
the short-term Hurst exponents do not vary significantly across all visual delay
conditions as well as without vision.

(d) Comparison of the model with the data

Figure 1 shows how the model replicates the experimental data in terms of the
fast corrective r-dynamics and the s-dynamics for the no visual and delayed visual
feedback cases with non-stationarity and stationarity, respectively. The standard
deviations of the realizations of r in figure 2 show a similar pattern to the data
as well. All PSDs of the model in figure 3 display the same two regimes similar to
the data, and although the quantitative agreement is not strong, it is acceptable
for this coarse level of modelling. Figure 4 shows that the model has the same
PDF as the data for the no vision case and for the delayed visual feedback. In
particular, the variance is similar except for a higher peak at the origin.

Further, as figures 5 and 6 illustrate, the addition of the delayed visual feedback
term to the s-dynamics produces lower values of the anti-persistent Hurst
exponents (Hl) with respect to the no vision condition as seen in the experimental
data. Additionally, in figure 6 the short- and long-term Hurst exponents are all
in the same range for the model and the data. However, this is not true for the
critical times, where the model has larger values than the data. Nevertheless, the
values of τc for the model are less than 1 s, which agrees with previous studies.
Moreover, the critical times are flat across all visual delays, similar to the data.

(e) Range of parameters

When simulating the model, we used subject-specific parameters for ε, κ and
τprop. We attempted to model each participant in the experiment individually:
ε = mgL/β, where m denotes the participant’s mass, L represents the distance
from the force plate to the COM, which is approximated by dividing the
participant’s height by 2, and the damping coefficient β could be given by Winter
et al. (1998). To fulfil κ > ε, we fixed κ = 1.5ε and τprop = 0.6τcrit. As stated earlier,
τvis = 200 + {0, 250, 500, 750, 1000} ms and γ = 0.2 s−1 for all participants. Finally,
the noise coefficients were ar = 1.8 × 10−3 and as = 1.2 × 10−3 m s−1/2. The choice
of these parameters was made simply to fit the model to the data in terms of all
results shown earlier. The stability of the two-delay model was, however, far from
being known in any detail. Therefore, we performed a numerical stability analysis
on r(t) in terms of τprop and τvis, where solutions with a standard deviation
greater than 1 m are unbounded. Otherwise, we attempted to detect a fixed
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Figure 8. For all time series τvis = 0.5 s and (a) τprop = 0.2 s, (b) τprop = 0.365 s and (c) τprop =
0.450 s. (d) Stability diagrams: white, fixed point solution; black, marginally stable solution; grey,
unbounded solution.

point or a marginally stable oscillation (since the system is linear). To detect a
marginally stable oscillation we computed the mean of the PSDs in the range of
ωcrit/2π ± 0.1 Hz. If this value was greater than the mean of the PSDs in the range
[0, ωcrit/2π − 0.1] Hz, and greater than some threshold value of 10−4 m2 Hz−1, it
was labelled as a marginally stable oscillation; otherwise it was a fixed point
solution.

Figure 8 shows the resulting numerically determined stability diagram. We
chose typical parameter values for ε = 2 and κ = 1.5ε = 3 Hz, and the noise
coefficients were ar = as = 0 m s−1/2 since we were investigating the deterministic
case. Solutions were computed for 1210 s and the first half of each solution
is discarded to remove transients. Initial history functions were constant and
lasted for 1 s, where r0 = 0.001 and s0 = 0 m. We then decided to investigate the
stability of the two-delay subspace within the experimentally realistic range of
τprop = [0, 0.5] and τvis = [0, 1.2] s. It is clear that the model was stable in our
experimental regime, since τprop did not exceed approximately 0.35 s and the
maximum value of τvis was 1.2 s. One may also notice that the marginally stable
oscillatory regime acts as a small boundary region separating the stationary and
unbounded solution regimes.

(f ) Further analysis

(i) Dependence of the critical time on delays

Let us recall figure 6c, where we have the critical time τc in relation to
the experimental visual delay. This figure shows that τc is almost constant;
however, we used the model to gain a better understanding of τc in terms

Phil. Trans. R. Soc. A (2010)

 on December 14, 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Stochastic two-delay differential model 435

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4

0.5

0

–0.5
τ v

is
 (

s)

log τc (s)

τprop (s)

Figure 9. Critical time τc as a function of proprioceptive delay τprop and visual delay τvis. White
on this figure indicates that τc does not exist between 0.1 and 10 s. The same parameters are used
here as in figure 8, but with noise.

of τprop and τvis. We averaged the values of τc over 25 realizations. Figure 9
reveals that the critical time is predominantly a function of the proprioceptive
delay, τprop.

(ii) Another interpretation of the relationship between COM and COP

We next compared the model’s outcome with the empirical time series. Shown
in figure 10a is a single realization of s(t). Contrasting this to a typical realization
of r(t) in figure 1a, one may notice that s(t) does not oscillate as fast as r(t). If
comparing the respective PSDs in figures 10b and 3c, Srr(f ) appears greater than
Sss(f ) between approximately 0.1 and 1 Hz. Hence, it seems that s(t) is a low-pass
filtered version of r(t).

If we assume that r(t) represents the COP and s(t) the COM, then this
phenomenon has already been reported by Winter et al. (1998), Caron et al.
(1997) and Zatsiorsky & Duarte (2000) from a biomechanical perspective. Yet,
our model is defined in the time domain by equations (4.11) and (4.12). Thus,
because of the time-delayed term in equation (4.12), one may interpret s(t) as an
exponentially decaying memory process of r(t).

(iii) Alternative models

During the process of model identification, we have tried numerous models,
including

ṙ = εr − κr(t − τprop) − γ r(t − τvis) + arξr , (4.13)

where all variables and parameters have the same meaning as above. One problem
with this model is that it undergoes large oscillations as τvis increases. The other
problem is that there exists no mechanism to produce the drift-like process for
eyes closed conditions. Another alternative is
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Figure 10. (a) A sample realization of s(t) for experimental visual delay of 750 ms and (b) its
corresponding PSD.

ṙ = εr − κr(t − τprop) − γ r(t − τvis) + arξr + s (4.14)

and
ṡ = −εs + asξs, (4.15)

where ε 	 ar , as. Even when ε is this small, the PDFs remain very narrow relative
to the data and the power is much lower at low frequencies than in the data when
there is delayed visual feedback.

5. Concluding remarks

We have presented new experimental data on posture control in healthy subjects
in the presence of visually delayed feedback. The data reveal that the visual
feedback reduces the standard deviation of the postural sway, as expected from
Collins & De Luca (1995), but it is not sensitive to the visual delay in the
range investigated. This contrasts with the low-frequency behaviour, seen in
van den Heuvel et al. (2009). We have also shown how the critical time separating
the persistent and anti-persistent behaviours is well defined in the data, and,
furthermore, that it is not very sensitive to the visual delay. We have proposed
a novel modelling approach to such two-feedback posture control using a system
of stochastic delay differential equations with two delays and noise, as well as a
drifting fixed point meant to represent the slower fluctuation of the COM. The
model qualitatively reproduces the main characteristics of our empirical findings
with physiologically motivated parameter choices. The model further shows how,
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generically, the combination of the delayed feedback and noise produces the
proper diffusive short- and long-term fluctuations. Finally, it enables us to show
how the critical time is mainly a function of proprioceptive delay.

We thank James Jun and Maarten van den Heuvel for the very informative discussions which aided
us with the experimental apparatus.
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