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We examine the effects of paired delayed excitatory and inhibitory feed-
back on a single integrate–and–fire neuron with reversal potentials em-
bedded within a feedback network. These effects are studied using bi-
furcation theory and numerical analysis. The feedback occurs through
modulation of the excitatory and inhibitory conductances by the previous
firing history of the neuron; as a consequence, the feedback also modifies
the membrane time constant. Such paired feedback is ubiquitous in the
nervous system. We assume that the feedback dynamics are slower than
the membrane time constant, which leads to a rate model formulation. Our
article provides an extensive analysis of the possible dynamical behaviors
of such simple yet realistic neural loops as a function of the balance be-
tween positive and negative feedback, with and without noise, and offers
insight into the potential behaviors such loops can exhibit in response to
time-varying external inputs. With excitatory feedback, the system can be
quiescent, can be periodically firing, or can exhibit bistability between
these two states. With inhibitory feedback, quiescence, oscillatory firing
rates, and bistability between constant and oscillatory firing-rate solu-
tions are possible. The general case of paired feedback exhibits a blend
of the behaviors seen in the extreme cases and can produce chaotic firing.
We further derive a condition for a dynamically balanced paired feed-
back in which there is neither bistability nor oscillations. We also show
how a biophysically plausible smoothing of the firing function by noise
can modify the existence and stability of fixed points and oscillations of
the system. We take advantage in our mathematical analysis of the exis-
tence of an invariant manifold, which reduces the dimensionality of the
dynamics, and prove the stability of this manifold. The novel computa-
tional challenges involved in analyzing such dynamics with and without
noise are also described. Our results demonstrate that a paired delayed
feedback loop can act as a sophisticated computational unit, capable of
switching between a variety of behaviors depending on the input cur-
rent, the relative strengths and asymmetry of the two parallel feedback
pathways, and the delay distributions and noise level.
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1 Introduction

Feedback is ubiquitous in both the central and peripheral nervous systems
(Cajal, 1909). From simple reflex arcs in the spinal cord to sensory informa-
tion processing, feature extraction, attention, and motor control, feedback
circuitry is involved. Feedback loops can occur in isolation, in series, in par-
allel, or even in nested configurations. Their activity can be modulated by
external input, and in turn they can modulate the activity of other neural
circuits. The delay time for feedback activity to circulate around a loop can
vary considerably from milliseconds to hundreds of milliseconds, depend-
ing on axonal propagation delays, synaptic kinetics, dendritic integration,
and the integration and latency of the firing mechanism.

In many cases, the feedback activity is a significant component of the
total conductance of the cell (Berman & Maler, 1999). It can thus affect the
membrane time constant and the input integration properties of the cell
(Nelson, 1994). Experimental and modeling studies of recurrent loops in
neurophysiology include analyses of feedback between the thalamus and
the cortex (see, e.g., Contreras, Destexhe, Sejnowski, & Steriade, 1996; Des-
texhe, 1994; Murphy, Duckett, & Sillito, 1999), between the different areas
of visual cortex (Crick & Koch, 1998), within the hippocampus (Traub &
Miles, 1991; Ermentrout & Kopell, 1998), and in the electrosensory system
(Berman & Maler, 1999; Doiron, Chacron, Maler, Longtin, & Bastian, 2003).

Our article concerns the mathematical analysis of the activity of a neu-
ron embedded in a paired feedback network, which is common and de-
fined as follows. The neuron of interest projects to a population of cells,
and these in turn project back to it (and its neighbors, to which it is very
weakly coupled) via both inhibitory and excitatory recurrent connections.
Each feedback pathway is assumed to have its own distribution of delays
and minimal delay, but is driven by the same firing activity: that of our
neuron of interest. We wish to understand the dynamics of this paired feed-
back system, as well as the effect of noise on these dynamics. Our analysis
will first consider separately the effects of negative (inhibitory) and pos-
itive (excitatory) feedback, and then study the dynamics as a function of
the balance between (or relative strength of) these two kinds of feedback.
We assume throughout our work that the feedback activity is in the form
of a rate rather than spikes and that it produces currents via conductance
changes at synapses with reversal potentials.

Our main motivation is to understand the kinds of behaviors exhibited
by these nets, from which one can record experimentally under a variety of
stimulus conditions and isolate the effect of various feedback loops (Doiron
et al., 2003; Murphy et al., 1999). Much of the inspiration comes from the
known feedback circuitry in the electrosensory pathways of the weakly
electric fish Apteronotus leptorhynchus (Bastian, 1990; Nelson, 1994; Berman
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& Maler, 1999), which combines recurrent excitation and inhibition in the
paired manner described above (the so-called direct pathway). Such paired
loops are spatially localized, are in fact arranged in parallel, and are also
in parallel within global paired and spatially diffuse feedback circuitry; it
is also clear that these loops are nested within other ones involving other
nuclei.

Recurrent inhibitory feedback or “negative feedback” has received much
attention due to its involvement in regulatory control (Stark, 1968; Glass &
Mackey, 1988; Longtin & Milton, 1989), adaptation (Fohlmeister, 1979; Er-
mentrout, Pascal, & Gutkin, 2001), hippocampal circuitry (Traub & Miles,
1991; Mackey & an der Heiden, 1982; Eurich, Mackey, & Schwegler, 2002),
and spike pattern generation (Diez-Martinez & Segundo, 1983; Foss & Mil-
ton, 2000). Recurrent excitation or “positive feedback” has also been stud-
ied in many contexts, such as spike pattern generation (Pakdaman, Vibert,
Boussard, & Azmy, 1996) and the multistability in the activity of neocorti-
cal circuits (Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Hahnloser,
Sarpeshkar, Mahowald, Douglas, & Seung, 2000). There have also been stud-
ies of so-called mixed feedback in which the feedback can be either positive
or negative depending on the current state of the firing activity. Such feed-
back can give rise to regular and irregular patterns of firing activity (Mackey
& an der Heiden, 1982; Glass & Mackey, 1988; Longtin & Milton, 1988; Glass
& Malta, 1990). It is also known generally that reciprocally coupled popu-
lations of excitatory and inhibitory neurons can exhibit oscillatory activity
even in the absence of delays (see, e.g., Dayan & Abbott, 2001); in fact, the
early work of Wilson and Cowan (1972) showed that feedback excitation
without delays can lead to bistability in firing rates and that feedback inhi-
bition without delay can lead to oscillations in the firing rates. Reciprocally
connected excitatory and inhibitory neurons with more biophysical detail
display similar features as well as other interesting switches to bursting
or low-frequency firing (Latham, Richmond, Nelson, & Nirenberg, 2000),
can exhibit chaos (Hansel & Sompolinsky, 1992), and can even support the
propagation of slow pulses in the presence of delays (Golomb & Ermentrout,
2002).

The relevance of delayed feedback or feedback with slow synapses has
further been shown in the context of memory and learning in real neu-
rons (Ernst, Pawelzik, & Geisel, 1995; Brunel, 1996; Kistler & van Hemmen,
1999; Knight 2000; Seung, Lee, Reis, & Tank, 2000) and artificial neural net-
works (Sompolinsky & Kanter, 1986; Marcus & Westerwelt, 1989; Herz, Li,
& van Hemmen, 1991). Some progress has even been made on the analysis
of delayed recurrent networks with noise for learning (Herz et al., 1991;
Brunel, 1996) and working memory (Wang, 1999). Delayed feedback has
also been studied in some detail in the context of coupled neural oscilla-
tors and of nonneural excitable systems as well (see, e.g., Kunysz, Shrier, &
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Glass, 1997). Plant (1981) was a pioneer in this area, analyzing the dynamics
of the FitzHugh-Nagumo neuron model with delayed positive or negative
self-feedback. More recently, Giannakopoulos and Zapp (2001) considered
one inhibitory and one excitatory neuron, coupled to each other and them-
selves, with delay; from the point of view of the excitatory neuron, this
loop provides delayed inhibitory feedback. There have also been analyses
of delay-induced oscillations and frustrations in neural nets with delays
(Belair, Campbell, & van den Driessche, 1996), as well as of multistability in
nets with single delays (Foss, Longtin, Mensour, & Milton, 1996), multiple
delays (Shayer & Campbell, 2000) or multiple loops (Campbell 1999; Glass
& Malta, 1990). Traveling waves in pulse-coupled integrate-and-fire neu-
rons with delays have been found by Bressloff and Coombes (1999). The
same authors have also found that rhythmic bursting patterns can occur
in asymmetric networks of linear integrate-and-fire neurons with additive
synaptic inputs (i.e., without reversal potentials), when there was a mixture
of inhibitory and excitatory synaptic coupling (Bressloff & Coombes, 2000a).

Despite all these studies, delayed paired feedback, especially in the pres-
ence of noise, has not received much attention from the dynamical point of
view, even though it is frequently encountered (Crick & Koch, 1998; Mur-
phy et al., 1999; Berman & Maler, 1999; Hahnloser et al., 2000). Here we
combine both delayed feedback with the ability to change independently
the strengths of the excitatory and inhibitory components of the feedback in
the context of a neuron embedded in a network. These feedbacks can have
different properties, such as different strengths, integration and synaptic
timescales, and propagation delays. Recurrent excitation and inhibition,
and as we will see under certain conditions, mixed feedback are special
cases of this paired feedback.

Our article provides a general framework for analyzing paired feedback
with delays and noise due, for example, to synaptic activity. It reveals that as
a whole, the paired feedback loop forms a sophisticated computational unit
in comparison with a single neuron due to the wide variety of firing patterns
it can exhibit. This is true even if the dynamics of the neuron at its core are
of the simple leaky integrate-and-fire type. As feedback loops are often
arranged in series or parallel configurations, they can be seen as forming
networks of coupled interacting elements that in turn perform perhaps more
sophisticated computations. A first step toward understanding or designing
such networks in vivo or in silico is to fully analyze the dynamics of a
general paired delayed feedback loop, as we do here. Our work ultimately
provides a formalism to analyze the activity in deterministic and stochastic
neural feedback loops as a function of model parameters, such as strength of
feedback and the distribution of propagation and activation delays involved
in each path.

The article is organized as follows. Section 2 derives the generic model of
neural delayed feedback used throughout our work. The constant equilibria
(fixed points) of this model are analyzed in section 3. The dynamics of the
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model for the simplest kind of feedback kernel (exponential) with a fixed
minimal delay are analyzed in section 4, first for excitatory feedback alone
and then inhibitory feedback alone, then by smoothly varying the feedback
from one case to the other. The possible chaotic solutions in this case are
also presented in this section. The next simplest case in which the delay
kernel exhibits a maximum later than the minimal delay is then analyzed in
section 5. In this case, the strongest determinant of the firing dynamics is not
the minimal delay but rather some time earlier in the past. As in section 4,
results are presented first for excitatory and inhibitory feedback alone and
then for paired feedback. Section 6 extends the results to kernels whose lo-
calization in time can be arbitrarily narrow (the extreme case corresponds
to a delta function at a lag equal to the minimal delay plus another fixed
delay). Departures from the symmetric cases of equal delays and feedback
kernel (i.e., memory) decay rates are briefly analyzed in section 7 for expo-
nential and higher-order kernels. The influence of noise on the behavior of
the paired feedback loop is then analyzed using a biophysically plausible
model in section 8. A conclusion and a look at future problems completes
the letter in section 9. Our bifurcation analysis in sections 4 and beyond is
supplemented by DDE-BIFTOOL, a public domain Matlab package for the
bifurcation analysis of smooth delay-differential equations.

2 Model

In our model, a neuron in population 1 (from which one can record) projects
to neurons in population 2, which in turn project back excitatorily and in-
hibitorily to neurons in population 1 (the inhibition typically arises from
interneurons). The neurons in population 1 are weakly coupled in the case
of the electric fish (Berman & Maler, 1999), so this coupling is neglected in
our study. We further take into account the fact that there is a minimal time
for neural activity to propagate around a neural loop, which brings a finite
minimal delay into the problem. Beyond this minimal delay, there is an ex-
tra time delay that follows some distribution. For example, in the weakly
electric fish Apteronotus leptorhynchus, the positive and negative feedback
loops starting from an electrosensory lateral line lobe (ELL) pyramidal cell,
projecting to the Pd nucleus and subsequently back to the ELL, involve a
minimal delay of about 12 msec, plus a distribution of delays with a mean
of around 13 msec as well; thus, there is a mean delay of approximately
25 msec (Berman & Maler, 1999; Doiron et al., 2003). Thus, the excitatory
and inhibitory feedback activities to the neuron of interest in population 1
are a function of its past firing activity. This is the general generic case that
we study; the specifics of the distribution of delays, such as the minimal
time and width of the distribution, will vary from case to case. The relative
strengths of the two feedbacks can depend on the temporal properties of
the input from primary sensory neurons and other factors. In our study, the
dynamics of the paired feedback is investigated as a function of the balance
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between the loops (i.e., their relative strengths), regardless of the cause of
this balance, and as a function of the input (nonfeedback) bias current.

The neuron model we use at the core of the feedback loop is a leaky
integrate–and–fire neuron with reversal potentials whose governing equa-
tion is

C
dV
dt

= I + gL(VL − V) + ge(Ve − V) + gi(Vi − V) (2.1)

with reset and threshold values Vr and Vθ , respectively; that is, if V(t−) = Vθ ,
then V(t+) = Vr. C is the capacitance, I is the input current, and gL, ge, and
gi are the leak, excitatory, and inhibitory conductances, respectively. VL is
the leak potential, and Ve and Vi are the excitatory and inhibitory reversal
potentials, respectively. We assume that there is an absolute refractory pe-
riod τr—that V = Vr for a time τr after each firing. The instantaneous firing
rate of model 2.1 is

f (t) ≈ H(Vss(t) − Vθ )

{
τr − C

gtot(t)
ln
[

Vθ − Vss(t)
Vr − Vss(t)

]}−1

, (2.2)

where H is the Heaviside function,

gtot(t) = gL + ge(t) + gi(t) (2.3)

and

gtot(t)Vss(t) = gLVL + ge(t)Ve + gi(t)Vi + I. (2.4)

This approximation for the firing rate is due to the fact that an equality in
equation 2.2 is appropriate only if all quantities in equation 2.1 are constant
(apart from the voltage). Here, however, we assume that the conductances
ge and gi are functions of time, since they are affected by feedback activity
(see below). This activity is also assumed to vary on a timescale slower than
the membrane time constant in the leaky integrate-and-fire (LIF) model.
The timescale of the feedback activity is a function of both the response
properties of the population 2 cells (Pd nucleus in the case of weakly elec-
tric fish, of V1 neurons in the case of the visual system which project back
to LGN neurons) and the feedback synapses. Since the total conductance,
and thus the membrane conductance, depends on the feedback input, this
assumption is all the more justified the stronger the feedback activity is.
This assumption of relative slowness will allow us to directly use the deter-
ministic firing function of our model, equation 2.2, in a rate description, as
done in other contexts (Ermentrout, 1994; Bressloff & Coombes, 2000b; and
Hansel & Mato, 2001, for the quadratic integrate-and-fire model).
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To implement feedback in the model, equation 2.1, we assume that the
excitatory and inhibitory conductances depend on the firing frequency of
the neuron at times in the past. Specifically, we write ge and gi as

ge(t) = βe

∫ t−τe

−∞
Gme

e (t − s) f (s) ds (2.5)

gi(t) = βi

∫ t−τi

−∞
Gmi

i (t − s) f (s) ds, (2.6)

where the feedback kernels Ge and Gi are described below. We are assuming
here a homogeneous population of neurons that communicate mainly via
feedback (directly or via another population), and the firing function f (t)
drives this feedback activity. This function f can be seen as the population
instantaneous rate under asynchronous conditions, obtained by summing
all spike trains from all the cells. Since all cells are identical as a first ap-
proximation, they all receive the same time-dependent synaptic input, and
each of their behaviors is governed by equations 2.5 and 2.6 in conjunction
with equation 2.2. The feedback gains βe, βi account among other things for
the number of neurons summing their output. The firing frequency, equa-
tion 2.2, is thus a good approximation to the population instantaneous rate
for slowly varying inputs.

The feedback kernels are chosen as

Gme
e (t) =

{
ame+1

e
me!

(t − τe)
me exp [−ae(t − τe)] if τe < t

0 if τe > t
(2.7)

and

Gmi
i (t) =

{
ami+1

i
mi!

(t − τi)
mi exp [−ai(t − τi)] if τi < t

0 if τi > t.
(2.8)

The function Gme
e (t) is zero until time τe, after which it rises to a maximum

before decaying back to zero from above. τe (and also τi below) represents the
minimal delay for activity to propagate around the loop. This value can be
set to zero in our formalism, as is often done in modeling neural circuitry and
neural networks, but our analysis is valid for any (zero or positive) τe and
τi. Note that the total mean delay is τe,i + (me,i +1)/ae,i. Thus, ge(t) is a scaled
convolution of the firing frequency f (t) in the past with the convolution
kernel Gme

e (t). This convolution smoothes f (t) and is meant to mimic the
effect of the output of the neuron exciting another cell or collection of cells,
which then project back in a paired fashion to the neuron under study. Note
that ge(t) depends on f only at times earlier than t − τe. Similar statements
hold for gi(t). The coefficients βe and βi are the nonnegative strengths of the
excitatory and inhibitory feedback, respectively. In practical situations, τi is
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often greater than τe, since the inhibitory feedback loop is often formed by
excitatory feedback returning not only to the neuron but impinging as well
on an interneuron that inhibits the neuron. The inhibitory loop can thus
include extra axonal and synaptic delay times. As inhibitory loops can also
exist independently from excitatory ones, our results are developed for the
general case that does not assume an ordering of τe and τi.

Because of the form of the convolution kernels 2.7 and 2.8, we can derive a
recursive formula for their derivatives (an der Heiden, 1980). The derivative
of equation 2.7 when τe < t is

ame+1
e

(me − 1)!
(t − τe)

me−1 exp [−ae(t − τe)]

− ame+2
e

me!
(t − τe)

me exp [−ae(t − τe)], (2.9)

so we can write

[Gme
e ]′(t) = aeGme−1

e (t) − aeGme
e (t) (2.10)

This is true for all integer me > 1. Thus, differentiating equation 2.5, we
obtain

dge

dt
= βe

∫ t−τe

−∞
[Gme

e ]′(t − s) f (s) ds

= βe

∫ t−τe

−∞
[aeGme−1

e (t − s) − aeGme
e (t − s)] f (s) ds. (2.11)

Defining

yme−1(t) ≡
∫ t−τe

−∞
Gme−1

e (t − s) f (s) ds (2.12)

and using equation 2.5, we can write equation 2.11 as

dge

dt
= ae[βeyme−1 − ge]. (2.13)

Differentiating equation 2.12 and using equation 2.10, we obtain

dyme−1

dt
=
∫ t−τe

−∞
[Gme−1

e ]′(t − s) f (s) ds (2.14)

=
∫ t−τe

−∞
[aeGme−2

e (t − s) − aeGme−1
e (t − s)] f (s) ds (2.15)

= ae[yme−2(t) − yme−1(t)] (2.16)
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if me > 1. This process can be repeated for yme−2 and so on, and terminates
when me = 1. In this case, we have

y0(t) =
∫ t−τe

−∞
ae exp [−ae(t − s − τe)] f (s) ds, (2.17)

so that

dy0

dt
= −ae

∫ t−τe

−∞
ae exp [−ae(t − s − τe)] f (s) ds + ae f (t − τe)

= ae[ f (t − τe) − y0(t)]. (2.18)

Thus, combining equations 2.13 and 2.16 for me > 1 and equation 2.18, we
have me + 1 equations:

dge

dt
= ae[βeyme−1 − ge] (2.19)

dyme−1

dt
= ae[yme−2 − yme−1] (2.20)

...

dy1

dt
= ae[y0 − y1] (2.21)

dy0

dt
= ae[ f (t − τe) − y0], (2.22)

where, if not indicated, the variables on the right-hand sides are evaluated
at time t. A similar process can be undertaken for gi, resulting in a further
mi + 1 equations:

dgi

dt
= ai[βizmi−1 − gi] (2.23)

dzmi−1

dt
= ai[zmi−2 − zmi−1] (2.24)

...

dz1

dt
= ai[z0 − z1] (2.25)

dz0

dt
= ai[ f (t − τi) − z0]. (2.26)

Equations 2.5 and 2.6 are integral equations relating the conductances ge(t)
and gi(t) to f (t). Because of the form of Gme

e and Gmi
i , we have been able

to derive a set of equivalent delay differential equations that govern the
dynamics of ge(t) and gi(t). Recalling that f (t) is a function of ge(t) and gi(t)
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through equation 2.2, equations 2.19 through 2.26 form a closed system.
They will be a valid description of the dynamics of equations 2.1, 2.5, and
2.6, provided the spiking dynamics of the neuron occur on a fast timescale
relative to the timescale of the feedback delay and of the time evolution of
the conductances associated with the feedback activity.

One way to think of equations 2.19 through 2.22 is that y0 is a low–
pass filtered version of f (t − τe), yi is a low–pass filtered version of yi−1 for
i = 1, . . . , me −1, and ge is a low–pass filtered version of yme−1, with strength
βe. The delayed quantity ge(t − τe) is then used in determining f (t − τe) via
equations 2.2 and 2.4. Equations 2.23 through 2.26 can be interpreted in a
similar way. We now consider the fixed points of 2.19 through 2.26.

3 Fixed Points

We first analyze the equilibria of our model dynamical system. This can
be done in the general case of arbitrary parameters. At a fixed point of
equations 2.19 through 2.26, the frequency f is no longer a function of time,
so let us write equation 2.2 as

f (ge, gi) = H(Vss − Vθ )

{
τr − C

gtot
ln
[

Vθ − Vss

Vr − Vss

]}−1

, (3.1)

where gtot and Vss are given by the time–independent versions of equa-
tions 2.3 and 2.4, respectively. From equations 2.19 through 2.21, we see
that

ge = βeyme−1 and yme−1 = yme−2 = · · · = y0 ≡ y (3.2)

at a fixed point, and from equations 2.23 through 2.25 that

gi = βizmi−1 and zmi−1 = zmi−2 = · · · = z0 ≡ z. (3.3)

From equations 2.22 and 2.26, we see that

y = f (βey, βiz) and z = f (βey, βiz), (3.4)

that is, y = z, so to find fixed points of the system 2.19 through 2.26, we
need only find the roots of

y = f (βey, βiy), (3.5)

where f (ge, gi) is given by equation 3.1. If y∗ is a root of equation 3.5, then
the fixed point for the system 2.19 through 2.26 is of the form

[ge, yme−1, . . . , y0, gi, zmi−1, . . . , z0]

= [βey∗, y∗, . . . , y∗, βiy∗, y∗, . . . , y∗]. (3.6)
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Note that the fixed points of equations 2.19 through 2.26 do not depend on
τe, τi, ae, or ai. This is to be expected, as these parameters affect only the time
course of the convolution kernels 2.7 and 2.8.

4 Exponential Kernels (m = 0)

We now consider a simple case of exponential feedback kernels Ge and Gi,
corresponding to the m = 0 case. We will analyze this case first for excitatory
feedback alone, then inhibitory feedback alone, then with paired feedback
(both excitatory and inhibitory). The results will be discussed as a function
of the balance between the two kinds of feedback. Our analysis will allow
us to smoothly connect the dynamics in the two limiting cases. We choose
τe = τi ≡ τ and ae = ai = a for simplicity; asymmetric cases are discussed
in section 7. The convolution kernels are

Ge(t) = Gi(t) =
{

a exp [−a(t − τ)] if τ < t
0 if t < τ.

(4.1)

This means that, for m = 0, the memory of the past decays exponentially.
Note, however, that there still is a minimal delay τ , so we expect delay-
differential dynamics even in this simplest m = 0 case. The delayed dynam-
ics simply become ordinary differential equations when the physiological
situation dictates that this minimal delay can be neglected (i.e., τ = 0). Sub-
stituting these expressions for Ge(t) and Gi(t) into equations 2.5 and 2.6 and
differentiating with respect to time, we obtain

dge(t)
dt

= a[βe f (ge(t − τ), gi(t − τ)) − ge(t)] (4.2)

dgi(t)
dt

= a[βi f (ge(t − τ), gi(t − τ)) − gi(t)]. (4.3)

Note that we can rescale time in equations 4.2 and 4.3 so that either a = 1
or τ = 1. From now until specified below, we assume that time has been
rescaled so that a = 1.

If neither βe nor βi is zero, we see that

d
dt

(
βegi

βi
− ge

)
= −

(
βegi

βi
− ge

)
; (4.4)

that is, the difference between ge and βegi/βi decays exponentially in time
to zero, and thus the line ge = βegi/βi is attracting. It is also invariant, since
on this line (using equation 4.3),

dge

dt
= βe

βi

dgi

dt
(4.5)
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= βe

βi
[βi f (ge(t − τ), gi(t − τ)) − gi(t)] (4.6)

= βe f (ge(t − τ), gi(t − τ)) − ge(t), (4.7)

which is just equation 4.2. Thus when βi �= 0, the attractor of the system 4.2
and 4.3 with paired feedback lies on the line ge = βegi/βi and is governed
by the single delay differential equation,

dgi(t)
dt

= βi f (βegi(t − τ)/βi, gi(t − τ)) − gi(t). (4.8)

If βi = 0, we have the single equation,

dge(t)
dt

= βe f (ge(t − τ), 0) − ge(t). (4.9)

The stability of this invariant manifold for the m = 1 and for the m > 1 cases
will be proved in theorems 1 and 3, respectively.

4.1 Excitatory Feedback Only. We first consider the case of only excita-
tory feedback; we set βi = 0. Fixed points of equation 4.9 satisfy

g = βe f (g, 0). (4.10)

Below we will denote such fixed points by ĝ. For each value of I, f (g, 0) is
zero for g < [gL(VL − Vθ ) + I]/(Vθ − Ve) and monotonically rises from zero
as g is increased past this value. Since Vθ − Ve < 0, increasing I decreases
the value of g at which f (g, 0) switches from being zero to being nonzero.
When f (g, 0) is nonzero, it is concave down. These properties imply that
equation 4.10 may have more than one solution, depending on the value of I.

For the rest of the article we use the typical parameter set shown in Table 1.
Note that τr is the absolute refractory period, not a delay, even though it acts
as a delay. Its effect is taken into account directly by its inclusion in the firing
function, equation 2.2. We see that g = 0 is always a solution of equation 4.10
(for which the firing frequency is zero) when (I + gLVL)/gL < Vθ . For the
parameters above, this is equivalent to I < Ic ≡ 0.6. As suggested above, the
presence of excitatory feedback means that equation 4.10 may have more
than one solution. In particular, it may have nonzero solutions when I is
less than Ic. This is shown in Figure 1, where we plot f as a function of I for

Table 1: Model Parameters.

C gL Vi VL Vr Vθ Ve τr

1 0.5 −0.3 −0.2 0 1 1.2 0.05
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Figure 1: Dynamics of excitatory delayed feedback. Firing frequency as a func-
tion of I for equation 4.9 for βi = 0, βe = 3. Other parameters are given in Table 1.
The upper branch is stable, the middle branch unstable, and the zero solution
that exists for I < 0.6 is stable. The frequency is bounded from above by 1/τr.
Here τe = 1.

the parameter values βi = 0, βe = 3. We see that for −0.75 < I < 0.6, equa-
tion 4.10 has three solutions, two of which are nonzero. The two nonzero
solutions are destroyed in a saddle–node bifurcation as I decreases through
∼ −0.75. In Figure 2, we show the results of following this bifurcation in the
βe, I plane (βe is the strength of the excitatory feedback). We see that as βe
is increased, the range of I values over which there is bistability increases.
This bistability disappears when the feedback strength goes to zero, as ex-
pected from our knowledge of leaky integrate-and-fire dynamics. Further,
as βe increases, nonzero frequency fixed points can exist for lower and lower
values of I as compared to the case without feedback.

4.1.1 Stability. We now investigate the stability of the fixed points of
equation 4.9. Its linearization about a fixed point ĝ is

dx
dt

= βed1x(t − τ) − x(t), (4.11)
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Figure 2: The curve of saddle-node bifurcations of fixed points of equation 4.9
for βi = 0 (recurrent excitation only). Other parameters are given in Table 1.
There is also a curve of bifurcations of fixed points along the line I = Ic = 0.6,
corresponding to the annihilation of the zero fixed point (see Figure 1). Thus,
the horizontal distance between the curve and the I = Ic curve is a measure of
the width of the bistability region. This width grows with βe.

where x = ge − ĝ, and d1 is the derivative of f with respect to its first ar-
gument, evaluated at (ge, gi) = (ĝ, 0). Note that d1 is nonnegative. Defining
A ≡ βed1 and looking for solutions of the form x = Beλt for some constant
B, we find that λ satisfies

λ + 1 = Ae−λτ . (4.12)

We have the following well–known theorem regarding the roots of equa-
tion 4.12, which we state without proof (Guglielmi & Hairer, 1999; Hayes,
1950; Stépán, 1989).

If and only if A < 1 and

τ <
cos−1 (1/A)√

A2 − 1
, (4.13)
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then all roots of equation 4.12 have negative real part, and the fixed point ĝ
of equation 4.9 is asymptotically stable.

By plotting βe f (g, 0) as a function of g for various values of I, it is clear that
the frequency as a function of I must look like Figure 1, at least for βe small
enough. It is also clear that 0 < A = βed1 < 1 for points on the upper branch
of solutions, so these will always be stable. Similarly, A = 0 for the zero
solution, when it exists, and 1 < A for the middle branch. Thus, excitatory
feedback produces the possibility of multistability and of firing for I < Ic, as
shown in Figure 1. A similar result for a sigmoidal function f was shown by
an der Heiden (1980). In summary, the dominant feature of purely excitatory
feedback with a minimal delay and exponentially decaying memory beyond
this delay is bistability between a quiescent state and a periodically firing
state.

4.2 Inhibitory Feedback Only. We now consider the opposite limiting
case of purely inhibitory feedback. The equation of interest is 4.8, with βe =
0, that is,

dgi

dt
= βi f (0, gi(t − τ)) − gi(t). (4.14)

Fixed points of equation 4.14 satisfy

gi = βi f (0, gi), (4.15)

and since f (0, gi) is a nonincreasing function of gi, we see that inhibitory
feedback cannot produce multistability; that is, for each I, there is only one
fixed point of equation 4.14. A similar result for a sigmoidal function f was
shown in an der Heiden (1980). It is straightforward to show that nonzero
solutions of equation 4.15 are possible only for Ic < I.

4.2.1 Stability. The linearization of equation 4.14 about a fixed point ĝ
is

dx
dt

= βid2x(t − τ) − x(t), (4.16)

where d2 is the derivative of f with respect to its second argument, evaluated
at the fixed point (ge, gi) = (0, ĝ). Note that d2 is nonpositive. Defining
A = βid2 and substituting x = Beλt into equation 4.16, in a similar way
to that done in section 4.1.1, we see that λ satisfies equation 4.12, with the
newly defined A.

Assuming that we are above firing threshold, that is, Ic < I, we see that
A < 0. Thus, for this parameter range, there are no bifurcations at which
the eigenvalue λ = 0. As I is decreased toward Ic, A tends to −∞. We prove
below that as A does this, there is an infinite number of distinct values
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of A at which pairs of roots of the characteristic equation 4.16 cross the
imaginary axis and acquire a positive real part. The crossing of the first
such pair brings on a Hopf bifurcation; the subsequent crossing of the other
pairs alters the shape of the oscillation of the firing frequency: the closer the
real parts of the root pairs are, the more the oscillation resembles a square
wave. Similar behavior is seen in singularly perturbed delay-differential
equations (see, e.g., Mensour & Longtin, 1998). Accordingly, such solutions
can be qualified as bursting, since spikes occur in clusters separated by
periods of quiescence. It is important to realize that such bursting solutions
are due to the network, that is, to the feedback loop, since the core integrate-
and-fire neuron with reversal potentials cannot burst autonomously. If, for
large enough I, −1 < A < 0, the fixed point of equation 4.15 will be stable,
and as I is decreased, it will lose stability through the first of the Hopf
bifurcations.

To study Hopf bifurcations in equation 4.14, we substitute λ = iω into
equation 4.12, separate real and imaginary parts, and obtain the two equa-
tions

A cos (ωτ) = 1 (4.17)

and

A sin (ωτ) = −ω. (4.18)

Note that for equation 4.17 to be satisfied, we require 1 ≤ |A|.
From equations 4.17 and 4.18, we have that

τ = cos−1 (1/A) + 2nπ√
A2 − 1

(4.19)

at a Hopf bifurcation for some nonnegative integer n, and the frequency of
oscillation (at the bifurcation) is given by ω = √

A2 − 1. We claim that for
a fixed 0 < τ and any n ∈ {0, 1, 2, . . .}, there is an A ∈ (−∞, −1) such that
equation 4.19 is satisfied. To see this, note that equations 4.17 and 4.18 imply
that cos−1 (1/A) ∈ (π/2, π). Thus, for any n ∈ {0, 1, 2, . . .}, the function
cos−1 (1/A) + 2nπ is a monotonically increasing function of A, bounded
below by 2nπ +π/2 and bounded above by 2nπ +π , for A ∈ (−∞, −1). The
function h(A) ≡ 1/

√
A2 − 1 is positive and monotonically increasing in the

same interval, with limA→−∞ h(A) = 0 and limA→−1− h(A) = ∞. Thus the
range of the function on the right-hand side of equation 4.19 is (0, ∞) for
A ∈ (−∞, −1), and we have proved our claim.

It follows that for a fixed 0 < τ , there is an infinite number of distinct
values of A, indexed by the integer n, satisfying equation 4.19, and thus
an infinite number of values of I, accumulating from above at Ic, at which
there is a Hopf bifurcation. Note that the most positive value of A at which
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Figure 3: Dynamics of inhibitory delayed feedback. Frequency as a function of I
for equation 4.14 with βe = 0 and βi = 1. Dashed line: unstable fixed point; solid
line: stable fixed point; open circles: maximum and minimum frequency over
one oscillation of gi (stable). There is a subcritical Hopf bifurcation at I ≈ 0.98.
Other parameters are given in Table 1, and τi = 1.

equation 4.19 is satisfied occurs for n = 0, and it is at this value that the
fixed point loses its stability. This gives the condition 4.13.

In Figure 3, we show frequency as a function of I for βe = 0 and βi = 1.
Simulations were performed using the software package dde23 by
Shampine and Thompson (2000). At the right, we see the branch of fixed
points, which loses stability through a Hopf bifurcation as I is decreased.
This is a subcritical bifurcation, and we conjecture that there is a branch
of unstable periodic orbits emanating from this bifurcation and joining the
branch of stable oscillations shown, in a saddle–node bifurcation of peri-
odic orbits. We could not follow this conjectured branch of unstable periodic
orbits with DDE–BIFTOOL, since this software is written under the assump-
tion that the functions involved are differentiable everywhere, which is not
the case for equation 3.1 (Engelborghs, Luzyanina, & Samaey, 2001).

The maximum frequency over one oscillation of the firing rate (open
circles in Figure 3) appears to jump at I = Ic = 0.6. This is a result of using
discrete values of I when calculating this quantity. Simulations suggest that
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the maximum frequency during one oscillation tends to zero as I tends to
Ic from above and that this curve has infinite slope at I = Ic. The actual
frequency of oscillations in gi also tends to zero as I tends to Ic from above,
and simulations suggest that the period of oscillation scales as − log (I − Ic)

as I tends to Ic from above (not shown). Both of these results are due to the
nonsmoothness of the firing function f at I = Ic.

We note as well that the range of input current values over which the
unstable fixed point occurs (the dashed line in Figure 3) can be made smaller
by decreasing the inhibitory feedback strength βi; the lower bound of this
range is, however, always at Ic = 0.6. Thus, for smaller βi, the oscillation
should be seen only near the onset of firing; past the vicinity of this onset,
one would see only constant firing rates, as for the usual leaky integrate-
and-fire model in open loop. Interestingly, however, there will always be an
oscillation not only for large βi, but also no matter how small βi is, or how
small the minimal delay is; one can, in fact, always bring I closer to Ic to
see the oscillation. This is due to the fact that the effective feedback gain is
A, which involves not only βi but also the value d2 of the derivative of the
firing function f with respect to its second argument. There will always be
an I close enough to Ic (with I > Ic) such that d2 is sufficiently negative (i.e.,
for a Hopf bifurcation to have occurred).

In Figure 4, we show the curves of Hopf bifurcations and conjectured
saddle-node bifurcations of periodic orbits in the I, βi plane. The conjectured
curve was found by following a periodic orbit as I was increased until the
system suddenly switched to a fixed point (see Figure 3). For parameter
values between the two curves in Figure 4, the system 4.14 is bistable, with
both a fixed value of gi and periodic oscillations of it being stable.

4.3 Paired Feedback. To investigate the effects of paired feedback on
the firing of the leaky integrate-and-fire neuron, we keep the total amount
of feedback constant but move smoothly from purely excitatory feedback
to purely inhibitory. We do this by introducing a parameter φ ∈ (0, 1) and
writing

βe = φβ and βi = (1 − φ)β, (4.20)

where, loosely speaking, β is the total feedback gain. Substituting this into
equation 4.8, we obtain

dgi(t)
dt

= (1 − φ)β f (φgi(t − τ)/(1 − φ), gi(t − τ)) − gi(t) (4.21)

for φ �= 1. The extreme cases, φ = 0 and φ = 1, have been discussed above.
In Figure 5, we show the situation for β = 1. We see that the bifurcation
curves meet at the point (I, φ) = (0.6, 0.8667). For this value of φ, φc, the two
types of feedback are balanced in the sense that there is neither the bistability



Dynamics of Paired Delayed Feedback 2797

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

I

β i

Hopf
Snpo

Figure 4: The curve of Hopf bifurcations (solid line) and conjectured saddle–
node bifurcations of periodic orbits (dashed line) for equation 4.14 with βe =
0 (inhibitory feedback only). Other parameters are given in Table 1. There is
bistability between the two curves.

induced by excitatory feedback nor the oscillations induced by inhibitory
feedback. This particular value of φc is determined by the threshold and
reversal potentials and is the solution of

φcVe

1 − φc
+ Vi = Vθ

1 − φc
. (4.22)

Recalling that the attractor of equations 4.2 and 4.3 lies on the line ge =
βegi/βi = φgi/(1 − φ), it can be shown that if equation 4.22 holds and I =
Ic = gL(Vθ − VL), then Vss is equal to Vθ for all gi and a plot of

(1 − φc)β f (φcgi/(1 − φc), gi) (4.23)

as a function of gi is just the zero function. Perturbing φ from φc breaks this
degeneracy, and by plotting equation 4.23 as a function of gi in a neighbor-
hood of (I, φ) = (Ic, φc), we see that only for φc < φ and I < Ic do we obtain
multiple steady states of equation 4.21.
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Figure 5: Curves of Hopf bifurcations (dashed line), conjectured saddle–node
bifurcations of periodic orbits (dash–dotted line), and saddle–node bifurcations
of fixed points (solid line) for (4.8) with β = 1 and the parametrization (4.20).
Other parameters are given in Table 1. Two other bifurcation curves are not
shown; see the text. The line φ = 0 corresponds to Figure 3 (inhibition only),
and the line φ = 1 corresponds to a slice at βe = 1 in Figure 2 (excitation only).

Note that in Figure 5, there are two other bifurcation curves not shown:
one is the line (I, φ) ∈ 0.6 × [0.8667, 1], along which the stable fixed point at
the origin and the unstable fixed point on the middle branch are destroyed
(see Figure 1). The other is the line (I, φ) ∈ 0.6 × [0, 0.8667], along which the
branch of oscillatory solutions created in the Hopf bifurcation are destroyed.

4.3.1 Chaotic Solutions. For strong enough feedback it is possible that
equation 4.21 can have chaotic solutions. Motivated by the results of Mackey
and Glass (1977), we choose parameters so that

(1 − φ)β f (φg/(1 − φ), g) (4.24)

is a unimodal function of g, for example, β = 7 and φ = 0.85 (see Figure 6).
By choosing an appropriate delay (in this case, τ = 8), chaotic solutions of
equation 4.21 are observed (see Figure 7).
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Figure 6: The function 4.24 for β = 7, φ = 0.85 and I = 1. The dashed line is the
diagonal. Other parameters are given in Table 1.

5 Gamma-Type Kernels with m = 1

We now move on to the case when m = 1. The delay kernel 2.7 now rises
smoothly from zero at τe to its maximum at time τe + 1/a, before decaying
back to zero. A similar statement applies for Gmi

i . We still assume that ae =
ai = 1, and τe = τi = τ . The governing equations are

dge

dt
= βey0 − ge (5.1)

dy0

dt
= f (ge(t − τ), gi(t − τ)) − y0 (5.2)

dgi

dt
= βiz0 − gi (5.3)

dz0

dt
= f (ge(t − τ), gi(t − τ)) − z0 (5.4)
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Figure 7: A chaotic solution of equation 4.21 for I = 1, β = 7, φ = 0.85, τ = 8.
Note that the frequency is zero during some time intervals. Other parameters
are given in Table 1.

where, if not specified, the functions on the right-hand sides are evaluated at
time t. Similar to the case m = 0, we have a theorem regarding the existence
of an attracting invariant manifold.

Theorem 1. If both βi and βe are nonzero, then the attractor of equations 5.1
through 5.4 lies on the attracting invariant manifold on which y0 = z0 and ge =
βegi/βi. Thus, the dynamics on the attractor are governed by the system

dgi

dt
= βiz0 − gi (5.5)

dz0

dt
= f (βegi(t − τ)/βi, gi(t − τ)) − z0. (5.6)

Proof. Define s to be s ≡ (y0 − z0)
2 + (2/β2

e )(ge − βegi/βi)
2. Note that s is

zero only on the manifold mentioned above. Now

ds
dt

= −2[(y0 − z0)
2 + (2/βe)(ge − βegi/βi)(z0 − y0)

+ (2/β2
e )(ge − βegi/βi)

2]. (5.7)
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Now the right-hand side (r.h.s.) of equation 5.7 is negative except when s is
zero, and thus trajectories approach the manifold on which s = 0. By consid-
ering the time evolution of (z0 − y0) and of (ge − βegi/βi) from equation 5.1
through 5.4, it is clear that the manifold is invariant.

Note that if either βe or βi is zero, we only need consider half of the
variables.

The linearization of equations 5.5 and 5.6 about a fixed point is

dx1

dt
= βix2 − x1 (5.8)

dx2

dt
= [βed1/βi + d2]x1(t − τ) − x2, (5.9)

where d1/2 is the derivative of f with respect to its first/second argument,
evaluated at the fixed point. Looking for solutions of the form [x1 x2]T =
Beλt, where B ∈ R2 and xT denotes the transpose of x, we find that λ satisfies

λ2 + 2λ + 1 − (βed1 + βid2)e−λτ = 0. (5.10)

Note that this equation is still valid even if βi = 0, as an analysis of equa-
tions 5.1 through 5.4 shows. Equations such as 5.10 arise in the analysis of
linear oscillators with delayed feedback (Campbell, 1999; Stepán 1989).

Defining A ≡ βed1 + βid2, we have a theorem regarding the roots of
equation 5.10:

Theorem 2. If either −1 < A < 1, or A < −1 and

τ <
cos−1 [(2 + A)/A]√−A − 1

, (5.11)

then all roots of equation 5.10 have negative real part.

Proof. When A = 0, the only roots of equation 5.10 are λ = −1, so the
corresponding fixed point of equations 5.5 and 5.6 is stable. The only way
the fixed point can become unstable is by λ crossing the imaginary axis.
Substituting λ = iω into equation 5.10, where ω is real, we have the equations

A cos (ωτ) = 1 − ω2 (5.12)

A sin (ωτ) = −2ω. (5.13)

By squaring equations 5.12 and 5.13 and then adding them together, we
obtain

A2 = (1 + ω2)2. (5.14)



2802 C. Laing and A. Longtin

First, consider increasing A. Equation 5.14 cannot be satisfied (i.e., we cannot
have a Hopf bifurcation) for 0 ≤ A < 1, and the first bifurcation to occur as
A is increased from 0 is at A = 1, when λ = 0. Thus, the fixed point is stable
for 0 ≤ A < 1.

Now decrease A from 0. From equation 5.10, we see that a bifurcation
at λ = 0 cannot occur. If a Hopf bifurcation occurs, the value of ω at the
bifurcation is given by ω = √−A − 1. Note that since ω is real, we must
have A < −1 for such a bifurcation to occur. Substituting this expression
for ω into equation 5.12, we obtain

τ = cos−1 [(2 + A)/A] + 2nπ√−A − 1
(5.15)

for n ∈ {0, 1, 2, . . .}, and by plotting the expression on the right-hand side
of equation 5.15 as a function of A for different n (recalling that A < −1),
we see that the fixed point will lose stability when the inequality 5.11 is
violated, corresponding to the case n = 0.

Essentially the same theorem was presented by Campbell (1999), al-
though care must be taken regarding the sign of A when comparing those
results with the one presented here.

5.1 Excitation Only. We now consider the case when βi = 0. The equa-
tions are

dge

dt
= βey0 − ge (5.16)

dy0

dt
= f (ge(t − τ), 0) − y0. (5.17)

Note that fixed points satisfy ge = βe f (ge, 0), which is the same as the
condition for m = 0, equation 4.10. This is in fact the case for arbitrary m,
which is not surprising, since changing m changes only the time course of
the convolution kernel, equation 2.7. (It also changes the number of ODEs
in equations 2.19 through 2.22, but these do not affect the values of the fixed
points.)

Thus, the fixed points of equations 5.16 and 5.17 are as described in
section 4.1, and the stability arguments for the three possible branches of
solutions presented there also carry through. When they exist, the upper
and zero branches are stable, and the middle branch is unstable.

5.2 Inhibition Only. With βe = 0, the governing equations are

dgi

dt
= βiz0 − gi (5.18)
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dz0

dt
= f (0, gi(t − τ)) − z0. (5.19)

As argued in section 5.1, the fixed points are the same as for the m = 0
case; for each value of I, there is only one fixed point. Also, A < 0 if we are
above the firing threshold, and so there cannot be any bifurcations at which
λ = 0. If A < −1, it is possible to have a Hopf bifurcation. In fact, there is
an infinite number of Hopf bifurcations as I decreases, just as there was for
m = 0, although the conditions for bifurcation are not the same.

Recall that at a Hopf bifurcation,

τ = cos−1 [(2 + A)/A] + 2nπ√−A − 1
(5.20)

for some nonnegative integer n. Following a similar argument to that in
section 4.2.1, we observe that cos−1 [(2 + A)/A] + 2nπ is a monotonically
increasing function of A, bounded below by 2nπ and above by (2n + 1)π

for A ∈ (−∞, −1), and that h(A) ≡ 1/
√−A − 1 is positive and mono-

tonically increasing on the same interval, with limA→−∞ h(A) = 0 and
limA→−1 h(A) = ∞. We can see that for a fixed τ > 0 and n ∈ {0, 1, 2, . . .},
there is an A ∈ (−∞, −1) satisfying equation 5.20. Thus, there are an infinite
number of values of I at which Hopf bifurcations occur, accumulating from
above on the threshold for firing.

Note that the most positive value of A for which equation 5.20 is satisfied
occurs when n = 0, as was the case in section 4.2.1 for m = 0. Also,

cos−1 (1/A)√
A2 − 1

<
cos−1 [(2 + A)/A]√−A − 1

(5.21)

for A ∈ (−∞, −1), so the first Hopf bifurcation that occurs as I is decreased
occurs at a smaller value of I in the case m = 1, as compared with the case
m = 0.

A plot of frequency as a function of I for equations 5.18 and 5.19 is quali-
tatively the same as Figure 3, except that the Hopf bifurcation and apparent
saddle–node bifurcation of periodic orbits occur for I values slightly smaller
than those in Figure 3.

5.3 Paired Feedback. If we parameterize βe and βi as in equation 4.20,
we obtain a picture qualitatively similar to Figure 5, the only difference being
that the curves of Hopf bifurcations and presumed saddle–node bifurcations
of periodic orbits lie slightly to the left of those shown in Figure 5 (not
shown).

6 General m

We now consider the case of general m = me = mi, keeping ae = ai = 1
and τe = τi = τ . Increasing the value of m while keeping the mean delay
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fixed amounts to a sharper localization in time of the delayed feedback.
The case m → ∞ corresponds to a delta function delay kernel. As in the
cases m = 0, 1, we have a theorem regarding the existence of an attracting
invariant manifold:

Theorem 3. If 1 < m and neither βe nor βi are zero, then there is an attracting
invariant manifold on which

[ge, ym−1, . . . , y0, gi, zm−1, . . . , z0]

= [βegi/βi, zm−1, . . . , z0, gi, zm−1, . . . , z0] (6.1)

that is, the excitatory dynamics are slaved to the inhibitory ones (assuming that
βi �= 0).

Proof. Similarly to theorem 1, define

s ≡ (1/β2
e )(ge − βegi/βi)

2 +
m−1∑
i=0

(yi − zi)
2.

We have

ds
dt

= (2/β2
e )(ge − βegi/βi)[βe(ym−1 − zm−1) − (ge − βegi/βi)] (6.2)

−2
m−1∑
i=0

(yi − zi)
2 + 2

m−1∑
i=1

(yi − zi)(yi−1 − zi−1), (6.3)

which can be rewritten as

ds
dt

= −(2/β2
e )(ge − βegi/βi)

2 + (2/βe)(ym−1 − zm−1)(ge − βegi/βi)

− (ym−1 − zm−1)
2 (6.4)

−
m−1∑
i=2

[(yi − zi)
2 − 2(yi − zi)(yi−1 − zi−1) + (yi−1 − zi−1)

2] (6.5)

− [(y1 − z1)
2 − 2(y1 − z1)(y0 − z0) + 2(y0 − z0)

2]. (6.6)

Since 0 < βe, the right-hand side of equation 6.4 is negative when s �= 0 and
zero otherwise. All terms within the square brackets in equation 6.5 are ei-
ther positive or zero, and the term within the square brackets in equation 6.6
is positive when s �= 0 and zero otherwise. Hence, ds/dt < 0 except when
s = 0, when ds/dt = 0. Thus, trajectories approach the manifold on which
s = 0. Proceeding further by substitution as in the proof of theorem 5.1, we
see that the manifold is invariant. (Note that if either βi or βe are zero, we
still need consider only half of the variables.)
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The excitatory dynamics are slaved to the inhibitory ones, whose dynam-
ics are given by

dgi

dt
= βizm−1 − gi (6.7)

dzm−1

dt
= zm−2 − zm−1 (6.8)

... (6.9)
dz1

dt
= z0 − z1 (6.10)

dz0

dt
= f (βegi(t − τ)/βi, gi(t − τ)) − z0, (6.11)

where, if an argument is not given, the quantity is evaluated at time t.
Performing the usual stability analysis, we find that if λ is an eigenvalue
associated with the linearization of equations 6.7 through 6.11 about a fixed
point, the determinant of the following matrix must be zero:

B ≡


λ + 1 −βi 0 · · · · · · 0

0 λ + 1 −1 0 · · · 0
...

...
...

0 · · · · · · 0 λ + 1 −1
−Âe−λτ 0 · · · · · · 0 λ + 1

 ,

where Â ≡ βed1/βi + d2. It is straightforward to show that det B = 0 is
equivalent to

(λ + 1)m+1 = Ae−λτ , (6.12)

where A ≡ βed1 + βid2, as in section 5. We have a zero eigenvalue when
A = 1. Setting λ = iω in equation 6.12 and taking magnitudes, where ω is
real, we have

(1 + ω2)m+1 = A2. (6.13)

We have the following theorem:

Theorem 4. The roots of equation 6.12 have negative real part for 0 ≤ A < 1.

Proof. We know that for A = 0, the roots of equation 6.12 are λ = −1. If a
pair of roots pass through the imaginary axis with nonzero imaginary part,
condition 6.13 must hold. This cannot be satisfied for 0 < A < 1. A real root
can pass through the imaginary axis at A = 1, and by differentiating equa-
tion 6.12 with respect to A, we see that this eigenvalue passes transversely
through the imaginary axis.
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Table 2: Bifurcation Conditions on τ and A.

m ω2 τ

0 A2 − 1 f n
0 (A) ≡ {cos−1(1/A) + 2nπ}/

√
A2 − 1

1 −A − 1 f n
1 (A) ≡ {cos−1[(2 + A)/A] + 2nπ}/√−A − 1

2 3√A2 − 1 f n
2 (A) ≡ {cos−1[(4 − 3 3√A2)/A] + 2nπ}/

√
3√A2 − 1

3
√−A − 1 f n

3 (A) ≡ {cos−1[(8 − 8
√−A − A)/A] + 2nπ}/

√√−A − 1

We can see that the only way the fixed point can lose stability as A is
decreased from 0 is through a Hopf bifurcation, and that this can occur
only for A < −1. Setting λ = iω in equation 6.12 and separating the real and
imaginary parts, we obtain the conditions in Table 2 for τ as a function of A at
such bifurcations. We have included the cases m = 0, 1 for comparison, and
also tabulate ω2, where n ∈ {0, 1, 2 . . .}. Entries for m > 3 are straightforward
but tedious to derive. In Figure 8, we plot f n

2 and f n
3 for n = 0, 1 and 2.

Interestingly, f 0
2 has a vertical asymptote at A = −8, and f 0

3 has a vertical
asymptote at A = −4. (It can be shown that these curves are not defined to
the left of their asymptotes, since we require both τ and ω to be positive.)

Because of the nesting of the curves and our previous results for m = 0, 1,
we see that the fixed point of equations 6.7 through 6.11 will lose stability as
A decreases through the curve τ = f 0

m(A) for m = 0, 1, 2 and 3. Combined
with theorem 4, this gives the following conditions for stability of the fixed
point of equations 6.7 through 6.11:

Theorem 5.

• For the case m = 2. If either −1 < A < 1, or −8 < A < −1 and 0 < τ <

f 0
2 (A), all roots of equation 6.12 have negative real part.

• For the case m = 3. If either −1 < A < 1, or −4 < A < −1 and 0 < τ <

f 0
3 (A), all roots of equation 6.12 have negative real part.

The proof can be constructed from the statements above, and is similar to
that presented in Campbell (1999).

Because of the vertical asymptote of f 0
2 at A = −8, the Hopf bifurcation at

which the fixed point loses stability must occur for −8 < A, no matter how
small τ is. This is in contrast with the cases m = 0, 1, where by decreasing τ ,
the value of A at which the first Hopf bifurcation occurred could be made
arbitrarily large and negative. Similarly, for m = 3, the Hopf bifurcation at
which the fixed point loses stability must occur for −4 < A.

7 Breaking Symmetries

In this section we investigate the effects of breaking the various symmetries
τi = τe, ai = ae, and mi = me.
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Figure 8: Relation between τ and A = βed1 + βid2 (defined after theorem 1) at
selected crossings of pairs of eigenvalues into the right-hand complex plane (the
crossing conditions being defined in Table 2). (Top) f 0

2 (solid line), f 1
2 (dashed

line), and f 2
2 (dash-dotted line). Bottom: f 0

3 (solid line), f 1
3 (dashed line) and

f 2
3 (dash-dotted line). The functions are defined in Table 2. Note that f 0

2 has a
vertical asymptote at A = −8, and f 0

3 has a vertical asymptote at A = −4. Note
the logarithmic scales. The oscillations in firing rate appear increasingly singular
(i.e., “bursty”) as the boundaries for larger values of n are crossed.
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7.1 Different Delays. We first break the symmetry of τe = τi, but keep
ae = ai = 1. Thus, the convolution kernels 2.7 and 2.8 are no longer equal,
and we can no longer slave the excitatory dynamics to the inhibitory. We
consider the case m = 0. The extremes of βi = 0 and βe = 0 will be qual-
itatively the same as for the situation in which τe = τi, for the following
reason:

• βi = 0. The determination of the stability or instability of the fixed
points depended on only A, not τe. This case is therefore identical to
the case presented in section 4.1.

• βe = 0. As in section 4.2, the only way a fixed point can be destabilized
is through a Hopf bifurcation. These will occur when equation 4.19 is
satisfied, where τ = τi. The stability arguments in section 4.2 hold for
any 0 < τ , so the only effect of changing τi will be to change the exact
values of A that satisfy equation 4.19.

However, the situation for paired feedback is different. The degenerate point
at (I, φ) = (0.6, 0.8667) in Figure 5 breaks up into a set of codimension 2
points at which curves of codimension 1 bifurcations (e.g., Hopf bifurca-
tions and saddle-node bifurcations) meet. We will not go into this breakup
in detail here, but rather show a representative example of the effects of
making τe �= τi. We make the choice τi = 1, τe = 3, so the delay for the
inhibitory feedback is smaller than for the excitatory. We keep ai = ae = 1.
The equations are

dge

dt
= βe f (ge(t − τe), gi(t − τe)) − ge(t) (7.1)

dgi

dt
= βi f (ge(t − τi), gi(t − τi)) − gi(t). (7.2)

We parameterize βe and βi as in equation 4.20. A plot of frequency as a
function of I for β = 1, φ = 0.9 is shown in Figure 9. There are several
interesting aspects to this figure. First, there are oscillations in frequency
for I < Ic = 0.6 and for 0.8667 < φ (contrast with Figure 5). Second, nei-
ther of the fixed points created in the saddle-node bifurcation is stable in
a neighborhood of the bifurcation (contrast with Figure 1). Third, the sys-
tem is tristable for 0.5976 < I < 0.6, as the zero solution (which exists for
I < 0.6), the nonzero fixed point, and the periodic oscillation are all stable.
Note that the range of I values over which there is tristability is relatively
narrow; this could presumably be increased by varying other parameters.
We conjecture that there is a branch of unstable periodic orbits emanating
from the subcritical Hopf bifurcation and terminating at a saddle-node bi-
furcation of periodic orbits at I = 0.6045. We were unable to numerically
confirm this (see below). The bifurcation terminating the oscillations as I
is decreased has not been determined, as we could not follow the periodic
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Figure 9: Breaking symmetries with differing delays, in the case where exci-
tation dominates. Frequency as a function of I for equations 7.1 and 7.2 with
βe = 0.9, βi = 0.1, τi = 1, τe = 3. Other parameters are as given in Table 1. Solid
line: stable fixed point; dashed line: unstable fixed point; open circles: maximum
and minimum frequency over one oscillation (stable). There is a subcritical Hopf
bifurcation at I ≈ 0.5976.

orbit with DDE-BIFTOOL due to the nondifferentiability of the firing-rate
function.

7.2 Different Values of a. We now consider the case ai = 5, ae = 1,
keeping τi = τe = 1, with m = 0. (Varying a changes the rate at which the
convolution kernels 2.7 and 2.8 decay.) As argued in section 7.1, the case
βi = 0 is unchanged. For βe = 0, we again lose stability of the fixed point
via a Hopf bifurcation as I is decreased. If ai �= 1, equation 4.19 should be
replaced by

τi = cos−1 (1/A) + 2nπ

ai
√

A2 − 1
. (7.3)

Thus, changing ai only changes the precise values of A at which equation 7.3
is satisfied, and we still have an infinite number of Hopf bifurcations as I is
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decreased. Note that at such a Hopf bifurcation, the frequency of oscillation
is ω = ai

√
A2 − 1, so changing ai will change the frequencies of oscillation.

In a similar way to that described in section 7.1, breaking the symmetry
of ai = ae breaks up the point (I, φ) = (0.6, 0.8667) in Figure 5 into a set of
lower codimension points. For the case ai = 5, ae = 1, τi = τe = 1, β = 1,
φ = 0.88, a plot of frequency as a function of I is qualitatively the same as
Figure 9 (not shown).

7.3 Different Values of m. We consider the case mi = 0 and me = 1,
keeping τe = τi = τ and ai = ae = 1. The system is then

dge

dt
= βey0 − ge (7.4)

dy0

dt
= f (ge(t − τ), gi(t − τ)) − y0 (7.5)

dgi

dt
= βi f (ge(t − τ), gi(t − τ)) − gi. (7.6)

This has an attracting invariant manifold given by gi = βiy0, on which the
dynamics are given by

dge

dt
= βey0 − ge (7.7)

dy0

dt
= f (ge(t − τ), βiy0(t − τ)) − y0. (7.8)

7.3.1 Inhibition Only. We have

dy0

dt
= f (0, βiy0(t − τ)) − y0. (7.9)

Using gi = βiy0, we see that this is equivalent to equation 4.14, and the anal-
ysis is exactly the same as described for the “inhibition only” case discussed
in section 4.2.

7.3.2 Excitation Only. If βi = 0, equations 7.7 and 7.8 are the same as
equations 5.16 and 5.17, and their analysis is described in section 5.1.

7.3.3 Paired Feedback. The situation is very similar to that described in
sections 7.1 and 7.2, with the breakup of the degenerate point into a number
of lower codimension points. A plot of frequency as a function of I for
φ = 0.87 is qualitatively similar to Figure 9 (not shown).

Since breaking any of the symmetries discussed in this section causes the
breakup of the point (I, φ) = (0.6, 0.8667) in Figure 5 into codimension 2
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points (not shown), we do not expect that any further breaking of symme-
tries (e.g., simultaneously having τi �= τe and ai �= ae) would introduce any
more novel behavior; rather, it would just move these points around in the
I, φ plane. These codimension 2 points could be analyzed in detail by lin-
earizing the appropriate systems about fixed points and investigating their
stability.

8 Stochastic Paired Delayed Feedback

The analysis until now has been in the deterministic case, where there is a
well-defined threshold for periodic firing in equation 2.2. However, noise is
ubiquitous in neural systems, mainly as a result of the probabilistic nature of
synaptic transmission (Koch, 1999). It is well known that including stochas-
tic effects in single-neuron models “smoothes out” the abrupt change in
slope of the frequency versus input current relationship that is seen in type
I neurons (Hohn & Burkitt, 2001; Lansky & Sacerdote, 2001), of which the
integrate–and–fire neuron we have studied is an example. How does this
smoothing change the dynamics of the neuron with paired delayed feedback
described up to now? This is a very broad and difficult question, especially
since there are a number of ways to include noise such as synaptic noise
in neuron models, and there are very few results in the literature on noise-
driven systems with memory. The main difficulty in analyzing such systems
stems from the non-Markovian nature of the problem, which precludes the
use of standard tools such as Fokker-Planck analysis and the (related) first
passage time to threshold calculations (Guillouzic, L’Heureux, & Longtin,
2000).

In this section, we approach this problem in a simple way, in the hope
that the results will capture the essential effects of noise and, in particu-
lar, its smoothing of the firing function. We investigate the effects of noise
of the leaky integrate-and-fire neuron with delayed feedback under study
up to now by adding a stochastic term, σξ(t), to equation 2.1, where ξ(t)
is gaussian white noise with zero mean and variance 1. The parameter σ

adjusts the noise intensity. The firing rate of the neuron 2.1 is now given by
(Ricciardi, 1977; Wang, 1999)

f =
(

τr + √
πτ̂

∫ b

a
exp (x2)[1 + erf(x)] dx

)−1

, (8.1)

where

τ̂ ≡ C/gtot (8.2)

a ≡ C(Vr − Vss)

σ
√

τ̂
(8.3)

b ≡ C(Vθ − Vss)

σ
√

τ̂
, (8.4)
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and the error function is defined as erf(x) = 2√
π

∫ x
0 exp (−t2) dt. Using

asymptotic expansions, this expression can be shown to reduce to equa-
tion 2.2 in the limit of vanishing noise σ → 0. The idea here is to assume
that there is background current noise in the neuron, possibly due to synap-
tic noise and ionic conductance fluctuations, and that the intensity of this
noise is independent of the feedback. The noise intensity is rather set, for
example, by the feedforward input to the neuron, embodied in the mean
bias current I. It is known that for Poisson statistics (which synaptic inputs
are often assumed to have), the variance of the synaptic conductance noise
increases with the mean frequency of arrival of spikes at the synapse. Thus,
one can expect that if the neuron increases its firing rate, its feedforward
inputs and associated noise will remain constant, but its feedback current
will increase in both mean and variance. This change in variance will be
neglected here as a first approximation to this problem of stochastic paired
delayed feedback, and the feedback will change in time as in our previ-
ous noiseless analysis. Also, in accord with the assumption that the main
noise is from feedforward rather than feedback input, the noise is ascribed
to the parameter I rather than to the feedback conductances ge(t) and gi(t).
Note that this noise could have included synaptic conductance noise had
we explicitly modeled the feedforward synaptic input to the cell with con-
ductances and reversal potentials, but that is an unnecessary complication
for a first analysis of this problem.

Note that in the spirit of our formalism based on the firing function
and firing rates, rather than the spiking dynamics of the neuron, the noise
can be included in what is effectively a deterministic way through equa-
tion 8.1 (see also Brunel, 1996; Wang, 1999). Equations 2.19 through 2.26
are still deterministic, with the noise intensity modifying the function f ;
no stochastic simulations are needed. The model we now analyze is thus,
strictly speaking, a deterministic model meant to represent the stochastic
situation. Accordingly, we will assume that the inputs to the firing function
change on a sufficiently slow timescale compared to the membrane time
constant, such that the parameters of this function are slaved to the slower
dynamics of the feedback conductances. In particular, the increase in feed-
back activity affects gtot and Vss(t) as before, with σ fixed. This means that
although we have made simplifications, the effect on firing of feedback con-
ductance fluctuations, and thus the membrane time constant fluctuations,
are being taken into account.

The smoothing effect of noise can be seen by comparing equation 8.1 with
2.2 for the deterministic case. There are several effects of adding noise in this
way that are not present in the deterministic case. One is that there is now
an upper bound on the absolute value of the derivative of f with respect
to any of the variables. This will have a significant effect on the number of
Hopf bifurcations that occur as I is varied (if any). Another effect is that
there is no longer a threshold for firing, as f is never zero (although it does
get extremely small for some values of its parameters and variables).
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8.1 Numerical Implementation. We briefly discuss the problem of nu-
merically implementing the integral in equation 8.1. Due to round-off error,
many software packages (e.g., Matlab, MAPLE) return erf(x) = 1 for x > 6
and erf(x) = −1 for x < −6. However, the complementary error function,
erfc(x) ≡ 1 − erf(x), can often be accurately evaluated for 0 ≤ x < 27, where
the upper bound is determined by underflow. Thus, for 0 ≤ x < 27, we can
accurately evaluate exp (x2)[1 + erf(x)] as 2 exp (x2)− exp (x2)erfc(x). Using
the oddness of erf, we can see that 1+erf(x) = erfc(−x), so for −27 < x < 0,
we can accurately evaluate exp (x2)[1+erf(x)] as exp (x2)erfc(−x). If a larger
range of x values is needed, one alternative is to use high-precision software,
such as MAPLE, to evaluate exp (x2)[1+erf(x)] using the above expressions
at a finite number of values of x. These can then be interpolated between by
the software being used for simulations. In particular, if the interpolation
is used to provide an approximation to exp (x2)[1 + erf(x)] at a number of
evenly spaced values of x, the integral in equation 8.1 can be approximated
by standard methods of quadrature (e.g., Simpson’s rule).

We now investigate the effects of noise on the previously computed be-
haviors, first for either excitatory and inhibitory feedback alone and then in
combination.

8.2 Excitation Only. In this section, we examine the effects of noise on
the behavior seen in section 4.1: me = mi = 0, τe = τi = 1, ae = ai = 1, and
βi = 0. The results are shown in Figure 10. We see that noise “smoothes
out” the sharp bifurcation that occurs at I = 0.6 in the deterministic case
(see Figure 1). This is because the firing frequency is now a smooth function
of its parameters and arguments. Also, there is now an upper limit on the
absolute value of the slope of f . This means that the quantity A = βed1
can no longer be made arbitrarily large in magnitude, even for arbitrarily
small βe, as was possible in the deterministic case. The consequence is that
for small βe or large σ , the system may not be multistable, with instead
only one fixed point for all values of I. If there are three coexisting fixed
points, the larger and smaller frequency ones are stable, and the middle one
is unstable, as for the deterministic case.

With reference to Figure 2, the effect of noise is to move the curve shown
there, together with the line I = 0.6, away from the I-axis. The two curves
meet at a cusp, and this cusp moves further from the I-axis as σ is increased
(not shown). Thus, for a fixed value of σ , there is an interval of βe values
(with βe = 0 being one end of the interval) for which the system is not
bistable. The width of this interval increases as σ increases.

8.3 Inhibition Only. We now discuss the stochastic version of sec-
tion 4.2. The stability arguments still hold, but in contrast with the determin-
istic case, there is now an upper bound on the magnitude of A. Therefore,
there is no longer an infinite number of Hopf bifurcations as I is decreased.
Recalling the definition of A (A = βid2), we see that for nonzero σ and arbi-
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Figure 10: Frequency as a function of I for equation 4.9, where f is given by
equation 8.1, for three different values of σ . βe = 2. Compare with Figure 1.
When three branches are present, the upper and lower ones are stable, and the
middle branch is unstable. Other parameters are as given in Table 1.

trarily small βi, there will not actually be any Hopf bifurcations, in contrast
with the deterministic case.

In Figure 11, we show firing frequency as a function of I for two different
values of σ , with βi = 1. We see that the curve of fixed points is smoothed
out and that increasing σ moves both the Hopf bifurcation at high I and the
saddle–node bifurcation of periodic orbits to lower values of I. Increasing σ

even further causes the right–most Hopf bifurcation to become supercritical
rather than subcritical.

With reference to Figure 4, as σ is increased from zero, the two curves
shown there, plus the curve lying on the line I = 0.6 on which oscillations
are created, move away from the I-axis. The curve of Hopf bifurcations
forms a U in the βi, I plane, and the bottom of the U moves farther from
the I-axis as σ is increased (not shown). Moving along the right branch of
the U as βi is increased, the Hopf bifurcation changes from supercritical to
subcritical, so there is also a curve of saddle–node bifurcations of periodic
orbits emanating from it.
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Figure 11: Frequency as a function of I for equation 4.14, where f is given by
equation 8.1, for σ = 0.02 (top) and σ = 0.05 (bottom). Open circles indicate the
maximum and minimum frequency over one period of oscillation. The dashed
line indicates an unstable fixed point and the solid line a stable fixed point.
In the top panel, the left Hopf bifurcation is supercritical and the right one is
subcritical. In the bottom panel, both are supercritical. Compare with Figure 3.
βi = 1. Other parameters are as given in Table 1.
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8.4 Paired Feedback. When noise is added to the system, the point at
(I, φ) = (0.6, 0.8667) in figure 5 breaks up. For small noise intensity, the
curve of Hopf bifurcations in that figure, together with the line I = 0.6 for
0 < φ < 0.8667, forms a ∩-shaped curve, emanating from the I-axis. The
Hopf bifurcation on the right side of this curve may be subcritical over some
of its extent, depending on the values of σ and β (not shown).

The curve of saddle–node bifurcations of fixed points in Figure 5, together
with the line I = 0.6 for 0.8667 < φ < 1, form a cusp emanating from the line
φ = 1. Thus, when σ �= 0, there is an interval of φ values (rather than just
one value, as was the case for σ = 0) over which the feedback is “balanced,”
in the sense that it causes neither bistability not oscillations in frequency.

8.5 General Remarks. Adding noise does not destroy the chaotic behav-
ior shown in section 4.3.1 (results not shown). This is to be expected, since
the unimodal function shown in Figure 6 will not be destroyed by noise,
merely smoothed out and shifted a little. In general, the effect of noise is
to smooth out the discontinuity in the derivative of the firing function f
and to put an upper bound on the absolute value of the derivative of this
function. The effects of this on the existence and stability of fixed points then
follow. Our analysis and numerics further reveal that there is generally a
trade-off between feedback strength and noise intensity, in the following
sense. As the noise intensity σ is increased, the feedback strength must
also be increased to produce the qualitative features of the deterministic
case.

9 Conclusion and Outlook

We have presented an investigation of the dynamics of a leaky integrate-
and-fire neuron with paired (excitatory and inhibitory) delayed synaptic
feedback. This neuron drives a population of postsynaptic cells, and these
in turn project their activity back to the neuron via inhibitory and excita-
tory feedback, as seen, for example, in thalamocortical loops. The conduc-
tances modulated by this feedback were assumed to evolve on a slower
timescale than the membrane time constant, a quasi-static approximation
that is well justified, except perhaps for very fast synaptic input. This en-
abled us to replace the integrate-and-fire dynamics by the firing function
associated with these dynamics under constant parameters. The conduc-
tances in the firing function were assumed to be weighted averages of the
past firing rate. This integro-differential formulation was then converted to a
coupled ordinary- and delay-differential equation formulation. The dimen-
sionality of this system increased the narrower the delay distributions were.
The model amounts to excitatory and inhibitory conductances modulating
themselves and each other via the firing function in which the conductance
parameters are assumed to be dynamical variables. Further, these conduc-
tances multiplied their corresponding “battery” terms involving reversal
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potentials. Thus, the model properly treats the inherent time-dependent
variations of the membrane time constant.

The model is also realistic in that it takes into account a possible minimal
delay for the feedback, as well as the distribution of delays added to this
minimal delay. This distribution characterizes the temporal spread of the
feedback, that is, the distributed memory in the neural loop. The kernels
for both feedback pathways can be used to model either direct feedback
of the neuron onto itself or, alternately, feedback via one or more other
neuron populations. Physiological data can then be used to fit the delay
distributions and the feedback strengths (see, e.g., Mackey & an der Heiden,
1982; Berman & Maler, 1999; Eurich et al., 2002) and incorporate them into
the model.

For excitatory feedback alone, our analysis revealed that the system can
be quiescent, or fire periodically, or exhibit bistability between these two
states. Inhibition alone produces quiescence, oscillatory firing rates, or bista-
bility between constant and oscillatory firing-rate solutions. This means, for
example, that an external input from, say, an afferent pathway can toggle
the neural loop between periodic firing at a constant frequency and an os-
cillatory firing rate. Under certain conditions, this rate can reach low values,
and the resulting pattern can look bursty, even though there is no intrinsic
bursting mechanism in the integrate-and-fire neuron model by itself (i.e.,
in open loop). Thus, a neural loop involving inhibitory feedback (with or
without excitatory feedback) can be switched between constant firing and
network-dependent bursting. This is seen even if the excitatory feedback
is much stronger than the inhibitory one (see Figure 9). This is certainly of
interest for systems involving such loops and in which bursting is known
to occur (see, e.g., Murphy et al., 1999; Berman & Maler, 1999).

Our analysis of the general paired feedback case has been made possi-
ble by the discovery of an invariant manifold for the dynamics. This case
exhibits all the behaviors seen in the two limiting cases and allows for the
possibility of deterministic chaos. Our analysis has shown how all the be-
haviors evolve as the balance between the two types of inhibition changes.

Our work has also investigated some of the effects on these bifurcations of
the delay distribution width, as well as of possible mismatches between the
delays or other parameters of the two pathways. In particular, our study
defines the conditions under which the bistability and saturation effects
associated with recurrent excitation can be modified by the stabilizing yet
potentially oscillatory effects of inhibitory feedback.

Further, our analysis has compared the dynamical behaviors of this
model in the deterministic case with a simple stochastic case. We inves-
tigated the effects of noise on such a system by modifying the function
describing the firing rate of the neuron as a function of input in a well–
established fashion (Ricciardi, 1977). This is a biophysically plausible way
of studying the dynamics and bifurcations in recurrent nets with a smooth
firing function—without having to add an ad hoc smoothing factor to the
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deterministic firing function. We find here that the smoothing provided by
the noise removes the degeneracy in the deterministic function at firing
threshold, where the function is not differentiable. Adding noise puts an
upper bound on the absolute value of the slope of this function, affecting
the stability of fixed points of the system.

Significant dynamical differences arise as the infinite slope of the firing
function at oscillation onset becomes finite, and the oscillation onset itself
is smoothed out by the noise. For example, the oscillation in the firing rate
at the onset of firing in the inhibitory case gives way to a constant firing
rate if noise is assumed (see Figure 11). Also, the noise can decrease and
even annihilate the range of input currents where bistability occurs in the
excitatory case.

Such effects might also be caused by other currents known to smooth out
firing functions (see, e.g., Ermentrout, 1998).

It is interesting to note that delayed feedback as in our model does pro-
duce some linearization of the frequency-input ( f -I) characteristic in the in-
hibitory case (see Figure 3), as in Ermentrout’s analysis (1998), even though
the model here involves delays and total conductance increases (rather than
an assumption that the main effect of the feedback/adaptation current is
to shift the f -I curve—Ermentrout, 1998). However, our analysis of the de-
terministic model further predicts oscillations in a range around the onset
of firing. This range is large if the feedback is strong. A full analysis of our
model (and certain of its elaborations) in the context of linearization and
gain control is forthcoming.

Our mathematical analysis is also substantiated by numerical simula-
tions of an actual integrate-and-fire model with paired feedback. We have
simulated the full spiking neuron, equation 2.1, with conductances gov-
erned by equations 2.19 through 2.26, and parameters as given in Table 1, and
qualitatively reproduced all of the features of figures 1 and 3 (not shown).
We used values of τ = 20 and a = 1/20, which is equivalent after rescaling
to the values τ = 1, a = 1 used in the generation of those figures. We also
produced apparently chaotic behavior using parameter values βe = 5.95,
βi = 1.05, I = 1, a = 1/10, and τ = 80 (equivalent after rescaling time to those
used in Figure 7) (not shown). The value of f used in equations 2.22 and
2.26 was determined from the actual firing times of the neuron. The values
τ = 20 and a = 1/20 can be regarded as slow compared with the timescale
of the spiking of the neuron, and it would be of interest to see how similar
these timescales can be before the analysis presented here breaks down.

It would also be of interest to consider the inclusion of gating variables
for the conductances on the dynamics of such paired feedback loops. Also,
one could study the effect of other temporal properties of synapses such
as depression and facilitation, which have been found, for example, in the
loops of interest in weakly electric fish (John Lewis and Len Maler, personal
communication, Jan. 2002). Another direction is to insert nonlinear functions
of the firing function f used in the convolution integrals (see equations 2.5
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and 2.6). Indeed, in certain systems, one of the pathways may not start
firing (and thus modifying conductances) at the same level of activation as
the other; in other words, the effect of different thresholds in the pathways
is worth investigating. And possible multistability effects with respect to
initial patterns of activation in the loop (Foss & Milton, 2000; Foss et al., 1996),
which can arise specifically in delayed feedback systems when the delay
distribution is sharp, could also be studied. It is worthwhile considering the
activity of parallel arrays of such paired feedback loops, again suggested
by the anatomy of many systems.

One can modify the noisy firing function to better mimic the effects of
synaptic noise, which is a multiplicative noise in the dynamical equations,
rather than an additive one, as considered here for simplicity. Note that
while our study incorporated noise, it did so in a deterministic way by
including the effect of noise in the firing function. This mimics the mean
effects of noise. New effects are bound to arise, and new methods of numer-
ical and bifurcation analysis are likely to be needed if the model dynamical
equations are actually made stochastic. And, finally, perhaps novel compu-
tational properties will emerge as a consequence of making the variance
of the synaptic noise dependent on the instantaneous rate of firing in the
feedback pathways.
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