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For optimal sensory processing, neural circuits must extract novel, unpredictable signals from the redundant sensory input in which they are
embedded, but the detailed cellular and network mechanisms that implement such selective cancellation are presently unknown. Using a
combination of modeling and experiment, we characterize in detail a cerebellar circuit in weakly electric fish, showing how it can carry out this
computation. We use a model incorporating the wide range of experimentally estimated parallel fiber feedback delays and a burst-induced LTD
rulederivedfrom invitroexperimentstoexplaintheprecisecancellationofredundantsignalsobserved invivo.Ourmodeldemonstrateshowthe
backpropagation-dependent burst dynamics adjusts the temporal pairing width of the plasticity mechanism to precisely match the frequency of
the redundant signal. The model also makes the prediction that this cerebellar feedback pathway must be composed of frequency-tuned chan-
nels; this prediction is subsequently verified in vivo, highlighting a novel and general capability of cerebellar circuitry.

Introduction
One of the most influential theories of cerebellar function de-
scribes it as a learning device. The initial theories by Marr (1969)
and Albus (1971), and later physiological investigations by Ito
(1984), argue that synaptic connections between parallel fibers
and Purkinje cells are modified by experience. A central compo-
nent of this theory is that an error signal originating from climb-
ing fibers selects parallel fiber (PF) inputs by weakening (via
LTD) those inputs whose timing is not appropriate for the re-
quired motor output. Although this theory is still intensely de-
bated, an elegant body of work (Roberts and Bell, 2000; Sawtell
and Williams, 2008) on a cerebellar-like structure in mormyrid
electric fish confirmed the importance of PF timing and synaptic
depression in shaping an adaptive filter that cancels expected
sensory input. A similar process takes place in the gymnotiform
fish, and our study builds on these findings to reveal new prop-
erties of cerebellar circuits.

Apteronotus leptorhynchus continuously emits a high-frequency
(600–1000 Hz) sinusoidal electric organ discharge (EOD) into its
environment to sense its surroundings and communicate with con-
specifics. Small objects such as prey create spatially localized low-
frequency (�16 Hz) amplitude modulations (AMs) of the EOD
(Nelson and MacIver, 1999), while tail bending or the presence of
same sex conspecifics will generate spatially global AMs in the
same low-frequency range. These AMs are linearly encoded by

numerous electroreceptor afferents (Carr and Maler, 1986; Gus-
sin et al., 2007) that project to various types of pyramidal cells
within the electrosensory lateral line lobe (ELL) (Saunders and
Bastian, 1984; Berman and Maler, 1999). One type of pyramidal
cells—superficial pyramidal (SP) cells— have extended spiny
apical dendrites in receipt of PF feedback emanating from cere-
bellar granule cells [eminentia granularis posterior (EGp)] (Sas
and Maler, 1987). Global signals recruit the feedback pathway,
whereas spatially localized signals do not. This feedback serves to
actively cancel the response to global low-frequency signals (Bas-
tian, 1986). SP cells can therefore eliminate the global low-
frequency AMs due to, e.g., tail bending or communication
signals, yet still extract the local AMs that signal the presence of
prey and other local objects. Behavioral studies (Nelson and Ma-
cIver, 1999) suggest that this cancellation mechanism is essential
for prey capture in the absence of vision.

The response of SP cells consist of both isolated spikes and
spike bursts generated by complex somatodendritic dynamics
(Lemon and Turner, 2000). PF–SP cell synapses are subject to
correlative LTD, in which depression occurs when both presyn-
aptic and postsynaptic burst firing occur within a certain time
window (Harvey-Girard et al., 2010). We used this in vitro plas-
ticity rule, together with the estimated distribution of conduction
delays in the feedback pathway, to construct a minimal model of
the cancellation mechanism. The inclusion of these two elements
in a cerebellar feedback model allowed us to constrain other
properties of the circuit and identify the required neural dynam-
ics. In particular, the model predicts that the granule cell network
generates narrowly tuned frequency filters, a prediction that we
verified in vivo.

Materials and Methods
LIF model. This model of a superficial E pyramidal cell in the centrolateral
segment of the ELL is based on the leaky integrate-and-fire framework
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and replicates the model by Noonan et al. (2003). Specifically, the voltage
evolves according to the following equation:

�mdV/dt � �V � �I � ���t� � �� f � sin�2�ft��

� DAP�t� � ��ws � gV	. (1)

When the membrane potential, V, crosses the threshold, Vthresh, a spike is
recorded and V is reset to zero. V is maintained at zero for an absolute
refractory period, �ref, after which V continues to evolve according to
Equation 1. The voltages and currents have been normalized such that
the voltage difference between the resting potential and the threshold
voltage is unity. �m is the membrane time constant of the SP cell. These
cells have an intrinsic burst mechanism, which has been studied previ-
ously and included as DAP(t). Feedforward electroreceptor input is
modeled as an input bias current, I, with noise, ��(t), and a sinusoidal
modulation of amplitude �( f ) at the AM frequency f. Since electrorecep-
tor input is strictly excitatory, the modeled feedforward input is rectified
and [. . .] in Equation 1 symbolizes rectification. Parallel fiber feedback is
modeled as a constant input of strength � that excites SP cells directly
and inhibits them disynaptically (see below). The PF–SP cell synapses are
plastic and modeled as a series of weights, ws, that are periodic with the
AM stimulus and governed by burst-dependent learning rules. Disynap-
tic inhibition is modeled as a constant shunt, �gV.

During local stimulation, the strength of the feedback, �, is set to 0
since local stimulation does not drive the feedback (Chacron et al., 2003;
Bastian et al., 2004). During spontaneous activity, the strength of the
stimulus, �(f), is also set to 0. Terms are further explained below. Param-
eter values for the model are summarized in Table 1. The code of this
model is available online on the ModelDB database.

Modeling the bursting dynamics. Bursting in pyramidal cells is due to
backpropagating dendritic spikes. DAP(t) in Equation 1 represents the
depolarizing afterpotential, an injection of current into the soma of the
neuron after an action potential is fired due to active channels in the cell’s
dendrites (Doiron et al., 2001). This effect has been modeled previously
in E superficial cells by Doiron, Noonan, and colleagues (Doiron et al.,
2001; Noonan et al., 2003). Their model was used in this paper with
minimal parameter changes: A and 	 have simply been increased to
match the bursting behavior observed in vivo (Table 2).

Briefly, after the cell fires (V 
 Vthresh), and assuming the previous
firing time is not too recent (see below), the cell will receive a DAP, i.e., a
small current injection a short time later. This extra stimulation is mod-
eled as a difference in 
 functions (Eq. 2 below): one generated by the
soma and the other by the dendrites. If, however, the interval between
this spike time and the previous spike time is less than the refractory
period of the dendrite [i.e., tn � tn�1 � rd(tn

�)], then the DAP is inactive

for the current spike. The dendritic refractory period, rd, is modeled as a
dynamic variable that changes according to a secondary variable, b,
which also controls the width of the dendritic 
 function. All spikes
generated by the neuron are recorded, the most recent of which was at
time tn, and b updates whenever the neuron fires a spike. tn

� refers to the
time just after the most recent spike was fired and rs is the somatic
refractory period. The equations governing the DAP (Noonan et al.,
2003) are as follows:

DAP�t�

� � 0 if t � tn � rs


 �s�ṫ � tn, �b�tn
��� � s�t � tn, 	�	 if t � tn  rs and tn � tn�1  rd�tn

��
0 if t � tn  rs and tn � tn�1 � rd�tn

��

(2)

s�t, a� � te�t/a/a (3)

rd�t� � D � Eb�t� (4)

db

dt
� �b/� � �A � Bb2��

n
��t�tn�. (5)

The parameters used in the above equations are presented in Table 2.
Local stimuli inputs (feedforward). The bias current, sinusoidal modu-

lation and noise source in Equation 1 represent electroreceptor input.
This approximation is effective because many afferents converge onto
one pyramidal cell, their baseline firing rate is very high (�200 Hz) and
electroreceptors linearly encode AMs as a modulation of their baseline
firing rate (Gussin et al., 2007). Since the electroreceptor input is strictly
excitatory, the modeled feedforward input is rectified and [. . .] in Equa-
tion 1 symbolizes rectification. The value of � was fitted for each stimulus
frequency to match firing and burst rates with experimental data (Table
3). The lower � values at frequencies �4 Hz reflect the adaptation of the
electroreceptors (Benda et al., 2005).

Parallel fiber inputs (feedback). We base our model of the feedback on
the known circuitry of this pathway. The feedback pathway is initiated by
a population of pyramidal cells of the ELL, called deep cells, which do not
receive the canceling feedback input (Bastian et al., 2004). Deep cells
drive granule cells in a caudal mass of cerebellar granule cells, the EGp,
via neurons in the nucleus praeminentialis. Since the origin of the feed-
back—the deep pyramidal cells—is out of the feedback loop, it phase
locks to the stimulus and drives the feedback at the stimulus’s frequency.
Similar to the model of Bastian et al. (2004), we model the feedback as a
phase-locked input. However, Bastian’s model did not take in account
the delays inherent to the feedback loop. The effect of transmission delays
is a crucial part of our model.

Based on the known sensory physiology and anatomy of the circuitry
(see Results for more details), we estimated that the feedback has a wide
range of delays that will cause it to return to pyramidal cells at diverse
phases relative to the feedforward input. We estimate that this range of
anatomical delays is sufficient to allow for subsets of PF input to be active
at any given phase of the AM cycle, making the total PF input evenly
distributed across phases. This was modeled by discretizing the feedback
input into 2.5 ms non-overlapping segments, where each segment repre-
sents the beginning of the phase-locked response of a subset of PFs. Each
segment is active at time ts and is associated with a unique synaptic
weight, ws. The segment width (2.5 ms) being independent of stimulus
frequency, the PF input will be divided into more bins over the period of

Table 1. Parameter values for the model’s Equations 1–7

Parameter Value Parameter Value

Vthresh 1 g 1.44a

� 1 (global) �2 1.8  10 �3

�m 7 ms �4 3.6  10 �3

�ref 0.7 ms �w 980 s
I 0.58 wmax 1.5
� 0.76 Lwidth4 100 ms
fcut 500 Hz Lwidth2 10 ms
ag 
 1.5 if only the large-burst rule is used and g 
 1.66 if only the small-burst rule is used (see Results).

Table 2. Parameters used in the DAP component of the model normalized to the
Vthresh of 1

Parameter Value Parameter Value

A 0.6a (0.15) B 2

 20 � 0.35
� �m rs 0.1�m

	 0.2a (0.05) D 0.1
E 3.5
aChanges from Noonan et al. (2003); original values are given in parentheses.

Table 3. Value of � for the different stimulation frequencies

Frequency (Hz) � Frequency (Hz) �

0.5 0.25 12 0.39
1 0.27 16 0.39
2 0.31 20 0.39
4 0.39 32 0.39
8 0.39
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low-frequency stimuli than over that of high-frequency stimuli (e.g., 100
parallel fibers bins for 4 Hz, 50 bins for 8 Hz, etc.).

In addition to directly exciting SP cells, parallel fibers also activate
GABAergic interneurons that inhibit SP neurons (Maler, 2007). This
inhibition is modeled as an extra shunting conductance, �gV, in Equa-
tion 1 that also varies with the PF feedback strength �. The disynaptic
inhibition is kept constant across phase, as we have no experimental
evidence that LTD occurs at these synapses (either on the input or output
of the inhibitory interneurons). Thus, we begin with a uniform, naive
distribution of parallel fiber input weights and rely on synaptic plasticity
to shape the excitatory input and learn the appropriate balance between
excitation and inhibition. The way we model inhibition differs from the
Bastian et al. (2004) model because we tried to reflect more accurately the
current knowledge of the circuitry. In the Bastian et al. (2004) model, PF
feedback inputs were simply assumed to be net inhibitory arriving in
phase with the feedforward signal and net excitatory in feedback that
arrived in antiphase.

Note that another difference from Bastian’s model is the way the two
models handle different frequencies. Since Bastian’s model did not take
in account feedback delay, successful cancellation did not depend on
stimulus frequency. Our model takes into account feedback delays and,
depending on the stimulus frequency, a given delay will correspond to a
different phase relationship between feedforward and feedback inputs.

Burst-dependent learning rule. Burst-induced depression has been
quantified in vitro using two-spike and four-spike burst pairs (Harvey-
Girard et al., 2010). These rules were used to change the synaptic weights
of the PF–SP synapse. To do so, bursts were categorized as small (two or
three spikes) or large (four or five spikes). Even larger bursts were divided
into smaller bursts for the purpose of applying experimentally known
burst-based learning rules. For example, a six-spike burst is counted as a
large four-spike burst followed by a small two-spike burst (note that large
bursts have priority: we do not divide a six-spike burst into three two-
spike bursts). Through the analysis of in vivo recordings, we determined
that the interspike intervals (ISIs) within a burst are typically �15 ms
in SP cells (data not shown) and used that criterion to identify bursts
in the SP cell model. The timing, tB, of the first spike in a burst
determines the center of the temporal depression window function
that is applied to the weights according to Equation 6. The strength
and width of the depression rules are different for small and large
bursts (�2, Lwidth2 and �4, Lwidth4, respectively).

During global stimulation, burst-induced depression decreases the
synaptic weight of each segment according to a quadratic fit of the plas-
ticity rule recently identified in vitro (Harvey-Girard et al., 2010). The
strength of the burst-induced depression rules, �2 and �4, are kept con-
stant across frequencies in the initial version of our model (see Fig. 4) but
vary with higher frequencies in the final version (see Results and Fig. 5).
Whenever the SP cell bursts, the synaptic weights were immediately de-
pressed according to the following equation:

ws3 ws � ws�2,4�1 � ��ts � tB�/Lwidth2,4
�2�, (6)

where �2 and Lwidth2 were used if the SP cell burst was a small burst, and
�4 and Lwidth4 were used if the SP cell burst was a large burst. Once again,
[. . .] symbolizes rectification, which means this rule is applied to all
segments that began at a time ts as long as �ts � tB � � Lwidth2,4. Beyond this
range, the weights are unchanged.

However, a purely depressing rule would trivially decrease all
weights to zero given sufficient time. We must therefore assume the
existence of a mechanism counteracting this depression. Since an
activity-dependent potentiation could not be identified in vitro
(Harvey-Girard et al., 2010), a simple activity- and frequency-
independent potentiating rule was added where all weights slowly
relax back to wmax with a time constant of �w:

�w

dws

dt
� wmax � ws. (7)

During global stimulation, the synaptic weight of each segment will
converge to a unique value specified by burst-induced depression and
nonassociative potentiation. Synaptic depression parameters were ex-

perimentally derived, but the potentiation parameters can be ad-
justed. The strength of potentiation was set such that the model’s
response when stimulated globally closely matched the global experi-
mental data after all weights attained their equilibrium value. The re-
sponse of the model was always quantified after all weight values came to
equilibrium. The global burst rates therefore represent the average rates
required to balance the equilibrium weight distribution against increases
from the potentiation rule.

Quantitative analysis. All model data for local stimulation were gener-
ated by collecting data over 1750 simulated seconds and the averaged
response per period of stimulus frequency was calculated. For global
stimulation, the system was allowed to come to equilibrium for 3500 s
and then data were tabulated during the next 1750 s. There was no change
in results if the model was allowed to come to equilibrium for 5250 s. As
the feedforward transmission delays of the receptor afferents were not
included in the model, the in vivo peristimulus time histogram (PSTH)
data were shifted in phase to optimally overlap the experiment’s PSTH
for each stimulus frequency. The same phase shifts were used in both
local and global PSTH plots. The disynaptic inhibition was fitted such
that the model’s average firing rate for 4 Hz matches the data’s average
firing rate. Cancellation at a given frequency is defined as follows (as a
percentage): [1 � Ampglobal(f )/Amplocal(f )]  100. The amplitude at a
given frequency was defined as the amplitude of a sine wave fitted to the
model or experimental data’s PSTH induced by that stimulus frequency.
We show in Figure 1 that similar results can be achieved by quantifying
the amplitude with the difference between the minimum of the PSTH
and its maximum. Overcancellation can occur when the canceling feed-
back is stronger than the feedforward, causing the neuron to fire in
antiphase to the stimulus. Therefore, if the phase of the sine wave fit is
90 –270° shifted in phase in the global response compared to the local
response, the cancellation (as a percentage) is calculated according to the
following formula: [1 � Ampglobal(f )/Amplocal(f )]  100, so as to take
values above 100%.

In vivo electrophysiology. Details of the surgery and recording tech-
niques are as described previously (Marsat et al., 2009; Marsat and Maler,
2010). Briefly, a craniotomy is performed on A. leptorhynchus of either
sex under general anesthesia. During the experiment, the fish is awake
but paralyzed with curare and locally anesthetized. Single-unit extracel-
lular recordings from superficial pyramidal cells of the centrolateral of
the electrosensory lateral line lobe were performed.

Stimuli consisted of amplitude modulations of the fish’s own electric
field. The stimulus was delivered through two large global electrodes
placed on each side of the fish, thereby achieving a global stimulation. For
local stimulation, a small dipole was placed in the center of the cell’s
receptive field. The distance between the dipole and the skin was adjusted
to maximally stimulate the whole receptive field of the cell while avoiding
stimulation of receptors outside the classical receptive field. The intensity
of both local and global stimuli were adjusted so that the modulation was
10 –15% of the fish’s own electric field as measured near the cell’s recep-
tive field. In the experiment revealing the frequency selectivity of the
feedback pathway, the training stimulus consisted of a normal global
stimulus, to which a strong local stimulus of the same frequency and
phase was added. As a result, the cell receptive field was stimulated at a
stronger intensity than what would result from a normal global stimulus.
The paradigm was shown to induce plasticity in the feedback pathway
(Bastian, 1986), allowing the strength of the feedback to adjust to the
strength of the feedforward input. This training stimulation at a single
frequency was presented for 3 min, after which 15 s stimuli of two differ-
ent frequencies (the training frequency and another one) were inter-
leaved and played for 3 min in a normal global stimulation configuration.
All experimental procedures were approved by the University of Ottawa
Animal Care Committee.

Results
The role of cerebellar feedback to the ELL
Much is known about the different elements of this circuit and
their role. ELL pyramidal cells can be differentiated into superfi-
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cial (SP), intermediate, and deep varieties (Bastian and Nguyen-
kim, 2001). SP cells, but not deep ones, have extensive apical
dendrites and express the NR2B subunit of the NMDA receptor
as well as Ca 2� store proteins (Maler, 1979; Berman and Maler,
1999; Harvey-Girard et al., 2007). SP cells respond selectively to
the low-frequency (�20 Hz) component of broadband noise
stimuli delivered locally to their receptive field centers (Chacron
et al., 2003). Furthermore, only SP cells have strong feedback
inputs that underlie the cancellation of these low-frequency sig-
nals delivered globally (Bastian et al., 2004); therefore our study
focuses on these cells. The goal of our model was to replicate the
cancellation of low-frequency redundant signals observed in vivo
during global stimulation (Fig. 1). Contrary to stimuli restricted
to the center of the pyramidal cell’s receptive field (classic recep-

tive field), global stimuli effectively drive not only the classical,
but also the nonclassical receptive fields via a cerebellar (EGp)
feedback pathway (Chacron et al., 2003; Bastian et al., 2004). By
comparing responses to local and global stimuli, we can quantify
the canceling effect of the feedback. Under local stimulation, the
cell responds strongly above its baseline rate at the stimulus peak
but far below baseline at the trough. During global stimulation,
the differential response is mostly eliminated for AM frequencies
below 10 Hz (e.g., 2 Hz in Fig. 1A,B, left). However, we show that
this cancellation is strongly frequency dependent and deterio-
rates drastically between 10 and 20 Hz (Fig. 1A,B, right, C). The
main question motivating our modeling effort was to determine
whether the recently characterized in vitro LTD rule (Harvey-
Girard et al., 2010), together with known anatomical and physi-
ological constraints, could explain this frequency-dependent
cancellation.

Model replicates experimentally observed responses in the
absence of feedback
Our first goal was to replicate the properties of SP cells when they
are driven only by the feedforward sensory input, in particular
the bursting dynamic that will be essential to the plasticity. We
used the leaky integrate-and-fire formalism to model SP cells but
added the burst-inducing depolarizing afterpotential (LIF-DAP
model) that incorporates the effect of backpropagating dendritic
spikes. This model is a reduction of biophysically realistic models
(Doiron et al., 2001) and has previously been shown to capture
the essential details of SP cells burst discharge and electrosensory
stimulus encoding (Noonan et al., 2003). Baseline discharge was
modeled by delivering a bias current to the LIF-DAP model (Fig.
2A) with noise added so as to match the SP cell’s mean baseline
discharge (mean 9.5 Hz, SD 
 3.1, n 
 9 neurons). SP cells are
linearly modulated by sensory input (Bastian et al., 2004; Gus-
sin et al., 2007). Thus, direct electroreceptor input to the SP
cells was modeled by sinusoidally modulating the bias current.
Since electroreceptors adapt to AM � 4 Hz (Benda et al.,
2005), the strength of this modulated input was adjusted at
these frequencies to match the experimentally observed firing
and burst rates under local conditions (see Materials and
Methods). As shown in Figure 2 B, our LIF-DAP model
matched the observed responses of SP cells to local stimulation
for frequencies up to 32 Hz despite neglecting the effects of
feedforward disynaptic inhibition (Berman and Maler, 1998a)
or possible nonlinear biophysical dynamics.

The DAP dynamic causes both the cell’s burst rate and num-
ber of spikes/burst to vary with stimulus frequency. Our model
correctly captured the experimentally determined relationship
between stimulation frequency and burst rate and spikes/burst
(Fig. 2C,D). These bursts are important for both stimulus encod-
ing (Gabbiani et al., 1996; Oswald et al., 2004; Marsat et al., 2009)
and induction of LTD at the synapse between PF and pyramidal
cells (Harvey-Girard et al., 2010). Note that in the latter case,
small and large bursts result in different associative time windows
for LTD (see below). Therefore, to parallel the in vitro experi-
ments, bursts were divided into small (two or three spikes) and
large (four or five spikes; see Materials and Methods). The match
between spiking and bursting patterns in the model and experi-
mental data is even clearer when comparing the ISI histograms
(Fig. 2C). While our model relies on a bursting mechanism spe-
cific to cortical (Mainen and Sejnowski, 1996) and electrosensory
(Lemon and Turner, 2000) pyramidal cells, our methodology of
embedding bursting dynamics in a delayed feedback loop that in-

A

B

C

Figure 1. Properties of the system to be replicated by the model: local stimuli (no feedback)
elicit a strong phase-locked response, whereas global stimuli—which do recruit the cerebellar
feedback— elicit attenuated responses to low-frequency sine waves. This cancellation is due to
feedback inputs. A, Examples of the responses of one neuron to sinusoidal stimuli of low or high
frequencies (2 Hz or 20 Hz; top trace). The spike trains elicited by two cycles of the stimulus are
displayed (middle traces) along with raster plots of the responses to many cycles (bottom plot).
B, Average firing rate of superficial E-cells of the centrolateral segment of the ELL (n 
 9 cells)
elicited by one cycle of the stimulus (the data are duplicated on an adjacent cycle to improve
visualization of the periodicity of the response). C, Cancellation of the stimulus response due to
feedback as a function of stimulus frequency (mean � SD; n 
 9 cells). Cancellation is always
calculated based on the ratio of the global PSTH’s amplitude to the local PSTH’s amplitude (see
Materials and Methods). In the “Sine fitting method” (solid line), the PSTH’s amplitude is cal-
culated by fitting a sine wave (with the same frequency as the stimulus) through the mean firing
rate data (e.g., see B). In the “Min/Max method,” the amplitude of the PSTH is the difference
between its maximum (average of the highest 3 values) and minimum (average of the lowest 3
values). Both metrics achieve similar results; therefore, we use only the “sine fitting” method in
subsequent graphs.

Bol et al. • Frequency-Tuned Adaptive Cerebellar Filter J. Neurosci., July 27, 2011 • 31(30):11028 –11038 • 11031



cludes cerebellar-like circuits and a correlative learning rule can
clearly be applied to other systems.

Incorporating a feedback that cancels low-frequency coding
The crucial step in our study is to incorporate a feedback input
that reflects two newly identified properties of the circuit: a
distribution of delays in the feedback and a burst-dependent

plasticity. The cerebellar feedback pathway to the ELL originates
from nonplastic cells of the ELL that project bilaterally to the nucleus
praeminentialis. From this nucleus, cells project bilaterally to the
granule cells of the EGp, and these granule cells in turn project bilat-
erally to the SP cells of the ELL (Carr and Maler, 1986; Sas and Maler,
1987). This produces a wide range of feedback delays dependent on
the length and conduction velocity associated with each possible
trajectory. An additional source of delay arises from the spatial extent
of the EGp (�1200 �m) (Maler et al., 1991): cells at one edge of the
EGp will incur an additional delay of 12 ms (given a conduction
velocity of 0.1 m/s) (Roberts and Bell, 2000) compared to cells at the
other edge. The delays resulting from the various possible trajecto-
ries thus likely vary from �20 to �70 ms. Furthermore, the origins
of the feedback pathway—the deep cells of the ELL—have a variety
of phase relationships with the stimulus depending on the side of the
body they represent and on their functional type. Indeed, these cells
can be divided in two types: E-cells, responding throughout the peak of
thestimulus,andI-cells, respondingthroughout its trough(Bastianand
Nguyenkim, 2001; Marsat et al., 2009).

Considering this variety of delays and phase relationships, and
assuming that granule cells of the EGp phase lock to their input
(D’Angelo et al., 2001), PF most likely provide feedback to SP
cells at all possible phases of the low-frequency AMs that are
canceled during global input. In addition, granule cells have been
shown to phase lock to periodic inputs and to burst to sensory
stimuli and be silent in the absence of stimulation (D’Angelo et
al., 2001; Chadderton et al., 2004; Rancz et al., 2007; Sawtell,
2010). We therefore assumed in our model that (1) the array of
PFs provide feedback to SP cells at all possible phases of the
stimulus, and (2) EGp granule cells respond in a bursty manner,
phase locked to low-frequency AM signals.

The feedback pathway provides direct excitatory and disynap-
tic inhibitory input to SP cells (Maler and Mugnaini, 1994), and
both were replicated in our model (see Eq. 1 in the Material and
Methods). The excitatory input was modeled as a feedback of
strength � set to 1 during global stimulation, multiplied by the
synaptic strength of the PF–SP cell synapse, ws, that can be altered
by the burst-induced plasticity identified experimentally

Figure 2. Model exploration: replication of pyramidal cells properties when stimulated lo-
cally (no feedback) and constraints imposed on the model during global stimulation (with
feedback). A, Schematic of the main components of the model: an LIF model cell receiving
feedforward input from the receptors and feedback inputs from the EGp. A DAP was added to
replicate the neuron’s burst propensity. The feedback inputs have a direct excitatory component
delivered through plastic synapses (of weight w) and a disynaptic nonplastic inhibitory compo-
nent. This feedback input is active only when modeling the response to global stimuli. B, Peri-
stimulus time histograms comparing the response of in vivo (n 
 9 cells) and modeled
pyramidal cells elicited by local stimuli of different AM frequencies. Dashed lines represent the
average firing rate. C, Interspike interval histograms of the model’s responses and for experi-
mental data (n 
 9 cells) for AM rates ranging from 0.5 to 32 Hz. Bin width is 4 ms. Although ISIs
�200 ms do occur, they are rare, and the histogram’s area is normalized to 1 for ISIs �200 ms.
D, Comparison of in vivo and modeled pyramidal cell responses (n 
 9 cells) during local
stimulation: burst rates as a function of stimulus frequency. Bursting is quantified by dividing
the spike trains into small (2 or 3 spikes) or large bursts (4 or 5 spikes); longer bursts are taken as
combinations of small and large bursts (see Materials and Methods).

Figure 3. Burst-induced depression measured in vitro (data points; mean � SE, n 
 7 cells
for all points except for 100 ms, where n 
 5) and applied to the PF–SP synapse of the model
(lines) for small bursts and large bursts (gray and black respectively). The measured weight
change is the result of 100 presynaptic and postsynaptic burst pairings. Note that the large-
burst rule is not equal to the sum of two small-burst rules. Depression was induced in vitro by
repeatedly pairing burst-like electrical stimulations to the PF and burst-like current injection in
the SP cell’s soma. The size of the EPSP elicited in the pyramidal cell by a test stimulation of the
PF was then measured as the time lag between PF and SP burst stimulation was varied (see
Harvey-Girard et al., 2010 for more details).
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(Harvey-Girard et al., 2010). The inhibition is also proportional
to the feedback strength but is otherwise constant because no
long-term plasticity is known at these synapses. The reversal po-
tential of the inhibitory synapse (GABAA receptors) is near the SP
cell’s resting potential (Berman and Maler, 1998b), so inhibition
was modeled as a constant membrane conductance increase, g.
The overall strength of the excitatory feedback was adjusted to be
slightly larger than inhibition, consistent with in vivo and in vitro
physiological studies (Bastian, 1986; Berman and Maler, 1998b).

The strength of the synapses between PFs and SP cells were
modeled as weights that span the stimulus period (2.5 ms bin
widths; see Materials and Methods). They were initially all equal
since the array of PFs provide inputs at all possible phases of the
stimulus. If the SP cell bursts in close temporal proximity to the
firing time of a given PF the corresponding synaptic weight will
depress according to the depression rules identified in vitro
(Harvey-Girard et al., 2010). The different rules identified for

small and large bursts, are based on experiments that paired two-
spike bursts or four-spike bursts presynaptically and postsynap-
tically. A variety of presynaptic and postsynaptic burst sizes can
occur in vivo and the plasticity rule might therefore continuously
interpolate between rules based on different burst sizes. For
the sake of simplicity and to remain consistent with in vitro
data, we restrict our model to the experimentally defined
small-burst and large-burst categories. The corresponding
plasticity rules were modeled as quadratics (Fig. 3) having
different depression strengths and delay ranges. To prevent
complete depression of all PF feedback, we included a recovery
process by which all weights slowly relax back to their default
value in an activity- and frequency-independent manner.

We initially only took into account large bursts and the plas-
ticity they elicit, where the pairing time window for LTD is �100
ms. By itself, this rule was only effective for canceling AM fre-
quencies �5 Hz, because the plasticity time window was too
broad to selectively target the positive phase of the AM of higher
frequencies (Fig. 4A). For example, for an 8 Hz signal, a burst at
the crest of the stimulus will depress weights 75 ms later, at its
trough, and therefore reduce the excitatory feedback required to
cancel the trough. Trying to use the narrower small-burst rule by
itself— counting longer bursts as several small bursts—also failed
to replicate the experimental results (Fig. 4A). It canceled high
frequencies too much (see below), but also did not cancel low
frequencies enough.

Using either depression rules alone, and the failure of the
model that ensued, revealed the sensitivity of the system to this
parameter. The inclusion of both burst rules acting simultane-
ously in the model allows cancellation to be effective at the ap-
propriate range of frequencies and accurately reproduces the
cancellation observed in SP cells at frequencies below 16 Hz (Fig.
4A). Therefore, the nonlinear dependence of the learning rule
time window on the size of the burst is essential to adequately
shape the feedback synaptic strength: the temporal precision as-
sociated with the small burst is required to cancel high frequen-
cies, while the strong impact of large burst is required to cancel
low frequencies. However, discrepancies between the model and
the experimental data remain at very low (0.5 and 1 Hz) and at
high (20 and 32 Hz) frequencies. At low frequencies, the model
cancels as well as the real pyramidal cells, but the average firing rate is
slightly higher in the model (Fig. 4B). This minor discrepancy may
be due to intrinsic (Mehaffey et al., 2005) or feedforward inhibitory
(Shumway and Maler, 1989) adaptation dynamics that were not
included in our model. Nonlinear synaptic depression from very
large bursts not included in the model may also be a factor. However,
synaptic depression from large burst pairings has yet to be explored
experimentally.

Model requires frequency-dependent parallel fiber input
The more serious discrepancy is that our model permits cancel-
lation of not only low, but also high frequencies (16 –32 Hz),
which is not seen in vivo (Fig. 4B). Yet, under global stimulation,
the model actually bursts less than that observed in vivo (Fig. 4C),
implying that cancellation is failing in vivo despite SP cells pro-
ducing enough bursts to drive plasticity. It seems paradoxical that
bursting decreases with AM frequency yet cancellation remains
strong. However, burst-induced depression has a constant time
window, but period length decreases as the AM frequency of the
stimulus increases. Thus, the proportion of PF segments affected
by a single burst increases with AM frequency (i.e., a small burst
will affect 20 ms/250 ms of the PF segments spread over a 4 Hz

A

B

C

Figure 4. Comparisons between model and experimental responses when the model
learned with the large-burst rule, the small-burst rule, or both. Note that, in this figure, parallel
fiber activity is as yet unconstrained (compare to Fig. 6). A, Cancellation performance of the
model compared to experimental data (n 
9 cells) (see Fig. 1). B, PSTH of the model and in vivo
responses (global stimuli; n 
 9 cells) when both large and small burst rule are used while the
model is learning. Dashed lines represent average firing rate per second. C, Burst rates in model
and in vivo responses (n 
 9 cells) when both large and small burst rule are used while the
model is learning. Note the difference in small burst rate at high AM frequencies.
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cycle and 20 ms/50 ms of the segments at 20 Hz). Therefore, fewer
bursts per second are required to maintain the same weight dis-
tribution at high frequencies. The difference between the exper-
imental cancellation and the model may come from the fact that
our model thus far assumed that each burst in the SP cell is
matched by a burst in all the PFs representing a given phase, thus
that firing rate of granule cells is going up with stimulus fre-
quency. No direct recording of Apteronotus’s granule cells are
available, but in vitro studies of mammalian granule cells have
shown that their mean firing rate remains relatively constant
across frequencies. Furthermore, they produce spike bursts in
response to sinusoidal current injection, but the number of spikes
per burst drops off with increasing frequency, and, after 10 Hz,
the cells failed to produce bursts on every cycle [D’Angelo et al.
(2001), their Fig. 2A]. It is therefore likely that, at higher AM
frequencies, a burst in the pyramidal cells will not be matched by
a burst in every PF representing a given phase and thus will not
elicit depression in all the corresponding synapses.

We incorporated the declining probability of a presynaptic
burst into the learning rule by optimally decreasing the parame-
ter � as a function of frequency to reproduce the experimental
data (Fig. 5). We found that an approximately exponential de-
crease in � above 8 Hz was necessary to obtain the decrease in
cancellation at higher frequencies seen in vivo (Fig. 6). This addi-
tion allowed the model to match experimental data in terms of
both bursting (Fig. 6B,C) and stimulus cancellation (Fig. 6A,D).
Considering that the reduction of the PF input at higher frequen-
cies was essential for the replication of the experimental data,
such a reduction can be considered a prediction of our model.
Further studies will be required to test whether the EGp granule
cell burst size is inversely related to the stimulus frequency as
predicted.

Independent parallel fiber frequency channels revealed
in vivo
We have experimentally demonstrated that good cancellation of
global frequencies �16 Hz can be achieved and our model faith-
fully captures this result. A key element of our model—the exis-
tence of PFs representing all phases for any stimulus
frequency—is dependent on anatomical and physiological data
demonstrating a wide range of PF feedback delays to SP cells. This
implies, however, that a delay associated with a particular phase
for one frequency may be at a different phase for another fre-
quency. For example, a PF whose delay is associated with the peak
of a 4 Hz AM will be associated with the trough of a 12 Hz AM. To

keep the phase definition of each PF consistent, our model as-
sumed that the weights learned at one frequency are independent
of learning at another frequency. Our model therefore predicts
the existence of independent frequency-tuned PF feedback chan-
nels to allow the burst LTD rule to select the right time delays
necessary to cancel each frequency.

We tested the possible existence of independent frequency
channels in the feedback pathway in vivo by taking advantage of
the fact that the synaptic plasticity between parallel fibers and
pyramidal cells also allows adjustment of the feedback strength
relative to the feedforward input (Bastian, 1986). Two sinusoidal
stimuli (2 Hz, 8 Hz) were presented individually to an E-type SP

Figure 5. Frequency dependence of learning. The decreasing propensity for granule cells to
burst at higher frequencies is implemented by changing the learning rule strength �. For each
stimulus frequency, we determined the value of � that resulted in an optimal fit between
model and experimental results. We plot here � as a percentage of the original values (0.0036
and 0.0018 for large- and small-burst rules respectively) (see Table 1).

A

B

C D

Figure 6. Comparison of the model with in vivo data showing its ability to replicate the
feedback-induced cancellation. This model now includes the frequency dependence of granule
cell bursting. A, PSTH of the model and in vivo responses to global stimuli of different frequen-
cies (n 
 9 cells). Dashed lines represent average firing rate per second. B, Interspike interval
histogram of the model’s responses and for experimental data (n 
 9 cells). Bin width is 4 ms.
C, Burst rates in model and in vivo responses (n 
 9 cells). Bursting responses were segregated
into small and large bursts as described previously (see also Materials and Methods). D, Cancel-
lation measured for responses of this final version of the model correspond well to the in vivo
data (n 
 9 cells).
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cell both locally and then globally to assess the initial degree of
cancellation; cancellation was achieved for both frequencies (Fig.
7). Following a protocol introduced by Bastian (1986), we then
paired the global presentation of one frequency (8 Hz in the
example shown in Fig. 7) with the local presentation of the same

frequency at an intensity such that the summation of both local
and global AMs strongly drive the neuron to burst discharge.

The response of the cell to the Global � Local training signal
diminished as the number of presented cycles increased, presum-
ably due to the strong evoked burst discharge inducing plasticity
at PF synapses. Following the training protocol, the original stim-
uli were again presented globally to measure the change in can-
cellation. After training, the cell responded to that frequency in
antiphase: the trough of the stimulus now elicited spiking, while
its peak silenced the cell. This response is diametrically opposite
to that expected from the anatomy and physiology of an E-cell,
and cannot be due to the direct input from electroreceptors
(Maler, 2007).

As previously shown by Bastian et al. (2004), this reversed
response is due to the temporarily modified PF feedback syn-
apses, which provide a feedback input too strong relative to the
feedforward input and causes an overcancellation of the re-
sponse. Most importantly, the global response to presentation of
the 2 Hz AM was unchanged and cancellation remained similar
before and after the training with 8 Hz. Additional experiments
revealed that the opposite protocol (pairing of local and global
AMs for the 2 Hz stimulus) produced exactly the same frequency-
specific change in the feedback (data not shown). Similar results
were also found when using frequencies of 5 Hz and 12 Hz (data not
shown), thus confirming that our result applies to a wide range of
low frequencies. A thorough quantitative characterization of the
frequency-tuning curves of the EGp granule cell feedback is beyond
the scope of this paper. We conclude that our prediction was verified:
PF feedback cancellation input to SP cells is frequency specific.

Discussion
We developed a minimal yet sophisticated model of the cancella-
tion mechanism via EGp constrained by neurophysiological and
anatomical data: (1) the spiking response of SP cells to stimula-
tion of their receptive field centers; (2) the dynamics and AM
frequency dependence of the SP cellsburstmechanism;(3)thedelays
in the PF feedback pathway; (4) the frequency-dependent adaptation of
electroreceptor afferents; and (5) in vitro PF–SP cell synaptic plasticity
rules: burst-dependent correlative LTD with a plasticity pairing
window that is proportional to the number of spikes per burst.
This cancellation model highlights the delicate frequency-tuned
balancing act in which stimuli produce bursts, which drive learn-
ing, which in turn regulates bursting, and further emphasizes the
intricate interplay of biophysical mechanisms at the cellular and
systems level.

The model we have developed is minimal in the sense that we
have not incorporated additional physiological data that might
improve its performance. For example, facilitation of PF-evoked
EPSPs has been observed in vitro (Lewis and Maler, 2002, 2004);
thus, the presynaptic enhancement of PF-evoked EPSPs can drive
SP cells and local interneurons more strongly. This effect would
strengthen the cancellation at low frequencies and contribute to
the cancellation decay at high frequencies by slightly decreasing
the average feedback strength as PF bursts become more rare.
However, the purpose of the model was to identify the necessary
and sufficient features for redundant input cancellation, rather
than focusing on the complex dynamics of short-term plasticity.

Remarkably, our minimal model was quantitatively consis-
tent with the response of SP cells to stimulation of their receptive
field center and to the development of cancellation following
stimulation that recruits feedback (classical � nonclassical recep-
tive field). The in vitro experiments had shown that large bursts
produced long plasticity windows ��50 ms, while the small-

A

B

Figure 7. Frequency-specificity of parallel fiber inputs demonstrated in vivo. A, Raster plot
showing, as a function of time, the response of a typical cell to the different steps of the exper-
imental protocol: pretraining baseline for two AM frequencies delivered either locally (no feed-
back) or globally (thus recruiting feedback); training stimuli of a single frequency where a local
stimulus is added to a global one; and posttraining responses to global stimuli revealing the
effect of the induced plasticity on the response to the two frequencies. B, Quantification of the
mean (�SE; n 
 11 cells) canceling impact of the feedback. The gray shading highlights values
of cancellation between 0 and 100%. Values below zero mean that the response is more
strongly modulated by the stimulus than the uncanceled baseline (local stimulation), and thus
that the response is not canceled but enhanced. Values above 100 indicate an overcancellation:
cancellation is perfect (100%) when the response is flat across phases. But if the canceling
feedback is too strong, the neuron will respond more strongly at the trough of the cycle than at
the top (see Materials and Methods for details).
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burst windows were ��10 ms (Harvey-Girard et al., 2010). We
found that the small bursts were sufficient to produce excellent
cancellation for high-frequency inputs, but the plasticity window
was too narrow to cancel low-frequency inputs. Conversely, the
large temporal window associated with large burst could not
achieve cancellation of high-frequency inputs. The use of differ-
ent temporal plasticity windows for bursts of different sizes, and
the dependence of burst size on the temporal frequency of the
stimulus, was critical to adequately shape the canceling feedback
across AM frequencies.

The fact that lower-frequency AMs elicit bursts with more
spikes is by no means surprising, and these larger bursts can be
expected to lead to more calcium entry in the postsynaptic cells
via postsynaptic NMDA receptors (Berman et al., 2001; Harvey-
Girard et al., 2007). Depending on the type and amount of cal-
cium binding and sequestering proteins (Jande et al., 1981; Maler
et al., 1984) and their competition with LTD-promoting second
messenger systems (Harvey-Girard et al., 2007), this variation in
Ca 2� influx could explain changes in the duration of the LTD
window. It may be useful to look for such dynamic matching of
LTD pairing windows in other sensory systems with a large range
of input frequencies, e.g., in the vestibular system (Lisberger et al.,
1983).

An additional constraint was necessary in our model to ex-
plain the deterioration of cancellation at AM frequencies �8 Hz.
Mammalian granule cells (in vitro) only burst consistently on
every cycle for frequencies �10 Hz, and the number of spikes/
burst appears to be inversely proportional to frequency
(D’Angelo et al., 2001). Incorporating such a frequency-
dependent drop of PF bursting produced an excellent quantita-
tive fit between model and experimental data. Our model thus
predicts that, similarly to rat cerebellum, bursting in EGp granule
cells of electric fish will decrease with stimulus frequency as de-
scribed in Figure 5. Our results suggest that frequency-dependent
burst size is a general consequence of the intrinsic properties of
cerebellar granule cells (D’Angelo et al., 2001) in combination
with the dynamics of granule cell circuitry (Dugué et al., 2009).
Characterizing the properties of EGp granule cells in vivo will be
required to confirm our predictions.

A major discovery presented here is the evidence of frequency
tuning of the PF feedback. Recording of electrosensory afferent
input to the EGp has revealed input tuned to high-frequency AMs
but none to the frequency range important for cancellation (Bas-
tian and Bratton, 1990; Middleton et al., 2006). We therefore
hypothesize that frequency tuning is generated within the EGp
granule cell network itself. The intrinsic dynamics of mammalian
granule cells induce resonance in the theta range (3–12 Hz)
(D’Angelo et al., 2001). The local Golgi cell inhibitory network is
also associated with low-frequency oscillatory activity of granule
cells (Dugué et al., 2009) and could allow the network to be
tunable to specific frequencies. It has even been suggested that
long-term plasticity in the cerebellar granule cell layer can induce
“temporal matching” appropriate to the timing function of gran-
ule cells (De Zeeuw et al., 1998; D’Angelo et al., 2001). The tem-
poral precision of granule cell discharge has been proposed to be
important for the adaptive regulation of oscillatory motor output
(D’Angelo and De Zeeuw, 2009) and may even be implicated in
the frequency tuning of the vestibulo-ocular reflex (VOR) (Lis-
berger et al., 1983). Frequency specificity of the VOR is evident in
the motor output, but there is no experimental evidence pin-
pointing the neurons and circuits responsible for this frequency
tuning. Existing models of VOR adaptation do not explicitly posit

the granule/Golgi cell network as a source of frequency tuning
(Lisberger and Sejnowski, 1992; du Lac et al., 1995).

In contrast, our results suggest that frequency tuning origi-
nates in cerebellar granule cell networks. Furthermore, apart for
the initial observation from Lisberger et al. (1983) and De Zeeuw
et al. (1998), the functional consequences of frequency tuning of
cerebellar circuitry on target cells remains an unexplored issue
(D’Angelo et al., 2009). Therefore, a conceptually novel aspect of
our study is to relate the frequency-tuning capacity of granular
cell networks [as suggested, for example, by Dugué et al. (2009)]
to the frequency specificity of cerebellar learning by showing how
frequency channels in parallel fibers are involved in learning at
the PF–SP synapse. The EGp is located superficially (Sas and
Maler, 1987) with its granule cells directly accessible to patch
recording (Sawtell, 2010), optical Ca 2� imaging, or experimental
perturbation. The EGp may therefore be a convenient prepara-
tion to investigate the cellular and circuit mechanisms that gen-
erate frequency-tuned and precisely timed granule cell/parallel
fiber output.

There have been two general approaches to cerebellar function.
One emphasizes the role of PFs in a timing role for cerebellum
(Meek, 1992; Kistler et al., 2000), while the other describes the cere-
bellum as an adaptive filter (Dean et al., 2010). It is clear from our
results that these viewpoints are not contradictory. The PF feedback
to ELL is presumably phase locked to low-frequency sensory input.
We hypothesize that the synaptic and intrinsic dynamics of SP cells
then make use of this precisely timed input to implement an adaptive
filter that cancels redundant low-frequency signals. It appears that
exactly the same principle may be operative in another well studied
cerebellar-like structure: the ELL of mormyrid fish. The EOD of
mormyrids consists of brief pulses with long and variable interpulse
intervals and the EOD command nucleus sends corollary discharge
to the EGp that, as in A. leptorhynchus, provides feedback to the ELL.
This circuit is also used as an adaptive filter to cancel redundant
sensory input (Roberts and Bell, 2000; Roberts and Portfors, 2008;
Sawtell and Williams, 2008), and theoretical studies have implicated
the mormyrid PFs in conveying the precise timing of the EOD cor-
ollary discharge to ELL neurons (Roberts and Bell, 2000). The PF–SP
cell synapse analog in the mormyrid ELL obeys an anti-Hebbian
spike timing-dependent plasticity (STDP) rule (Bell et al., 1997) in-
stead of correlative burst-induced rules. Presumably the mormyrid
STDP rule is matched to the pulsatile nature of the EOD, which
simplifies the cancellation problem to one of causal matching of the
time delay of sensory input following a corollary discharge.

Instead, Apteronotus operates its EOD continuously and the
feedback to the ELL must synchronize directly with global stimuli
of arbitrary frequency. Furthermore, Apteronotids cannot rely
on a corollary discharge input to guide the timing of the feedback
inputs. We propose that the need to cancel multiple frequencies
requires independent frequency channels and multiple learning
rules. Our results indicate that the precise timing of sensory or
motor associated signals is a general function of parallel fibers of
the cerebellum and related structures such as the ELL or the
dorsal cochlear nucleus (Oertel and Young, 2004; Roberts and
Portfors, 2008; Tzounopoulos and Kraus, 2009). The local cir-
cuitry and dynamics (synaptic and intrinsic) of the PF target
varies, however, so as to implement the appropriate adaptive
filter required for each system.

In summary, our study brings two new concepts to the theory
of cerebellar function. First, a precise matching between the tem-
poral window of plasticity and the burst dynamics can permit
adaptive shaping of PF inputs by synaptic plasticity. Second, cer-
ebellar granule cells are capable of providing frequency filters of
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incoming mossy fiber input. We suggest that granule cell fre-
quency tuning may prove central to a better understanding of
cerebellar circuits in general.

Notes
Three supplemental figures for this article are available at http://mysite.
science.uottawa.ca/alongtin/bol_etal.html. They are particularly rele-
vant to the third subsection of the results. The first figure provides a
descriptive diagram and detailed information on the feedback pathway
and latencies. The second is an explanatory diagram of phase relation-
ships between feedback inputs, different pyramidal cells, and the require-
ments for cancellation. The third is an illustration that can help
understand how the feedback was modeled. This material has not been
peer reviewed.

References
Albus S (1971) A theory of cerebellar function. Math Biosci 10:25– 61.
Bastian J (1986) Gain-control in the electrosensory system mediated by de-

scending inputs to the electrosensory lateral line lobe. J Neurosci
6:553–562.

Bastian J, Bratton B (1990) Descending control of electroreception. 1. Prop-
erties of nucleus-praeeminentialis neurons projecting indirectly to the
electrosensory lateral line lobe. J Neurosci 10:1226 –1240.

Bastian J, Nguyenkim J (2001) Dendritic modulation of burst-like firing in
sensory neurons. J Neurophysiol 85:10 –22.

Bastian J, Chacron MJ, Maler L (2004) Plastic and nonplastic pyramidal
cells perform unique roles in a network capable of adaptive redundancy
reduction. Neuron 41:767–779.

Bell C, Bodznick D, Montgomery J, Bastian J (1997) The generation and
subtraction of sensory expectations within cerebellum-like structures.
Brain Behav Evol 50:17–31.

Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates
transient communication signals from background oscillations. J Neuro-
sci 25:2312–2321.

Berman NJ, Maler L (1998a) Inhibition evoked from primary afferents in
the electrosensory lateral line lobe of the weakly electric fish (Apteronotus
leptorhynchus). J Neurophysiol 80:3173–3196.

Berman NJ, Maler L (1998b) Distal versus proximal inhibitory shaping of
feedback excitation in the electrosensory lateral line lobe: implications for
sensory filtering. J Neurophysiol 80:3214 –3232.

Berman NJ, Maler L (1999) Neural architecture of the electrosensory lateral
line lobe: adaptations for coincidence detection, a sensory searchlight and
frequency-dependent adaptive filtering. J Exp Biol 202:1243–1253.

Berman N, Dunn RJ, Maler L (2001) Function of NMDA receptors and
persistent sodium channels in a feedback pathway of the electrosensory
system. J Neurophysiol 86:1612–1621.

Carr CE, Maler L (1986) Electroreception in gymnotiform fish: central
anatomy and physiology. In: Electroreception (Bullock TH, Heiligenberg
W, eds), pp 319 –374. New York: Wiley.

Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J (2003) Non-classical
receptive field mediates switch in a sensory neuron’s frequency tuning.
Nature 423:77– 81.
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