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Abstract Neurons in vivo must process sensory information
in the presence of significant noise. It is thus plausible to
assume that neural systems have developed mechanisms to
reduce this noise. Theoretical studies have shown that
threshold fatigue (i.e. cumulative increases in the threshold
during repetitive firing) could lead to noise reduction at
certain frequencies bands and thus improved signal trans-
mission as well as noise increases and decreased signal
transmission at other frequencies: a phenomenon called
noise shaping. There is, however, no experimental evidence
that threshold fatigue actually occurs and, if so, that it will
actually lead to noise shaping. We analyzed action potential
threshold variability in intracellular recordings in vivo from
pyramidal neurons in weakly electric fish and found
experimental evidence for threshold fatigue: an increase in
instantaneous firing rate was on average accompanied by an
increase in action potential threshold. We show that, with a
minor modification, the standard Hodgkin–Huxley model
can reproduce this phenomenon. We next compared the
performance of models with and without threshold fatigue.
Our results show that threshold fatigue will lead to a more

regular spike train as well as robustness to intrinsic noise via
noise shaping. We finally show that the increased/reduced
noise levels due to threshold fatigue correspond to decreased/
increased information transmission at different frequencies.
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1 Introduction

Neurons must transmit information about incoming stimuli
reliably and efficiently in order for animals to survive in
their environment (Rieke et al. 1996). However, most
neurons display considerable variability even to repeated
presentations of the same stimulus (Bryant and Segundo
1976; Softky and Koch 1993; Mainen and Sejnowski
1995). Whether this variability is to be considered as noise
or part of the signal is still being debated (Stein et al. 2005).
However, it is almost certain that at least part of the
variability displayed by neurons in vivo is due to intrinsic
(e.g. flicker noise) or extrinsic noise sources (noise in the
environment or from synaptic bombardment) (Manwani
and Koch 1999). There is thus great interest in understand-
ing the mechanisms by which neurons encode sensory
stimuli in the presence of noise.

Many electronic devices such as Sigma-Delta modula-
tors and Josephson junctions must also operate in the
presence of noise (Wiesenfeld and Satija 1987; Norsworthy
et al. 1997; Yacomotti et al. 1999). This operation is
facilitated through a phenomenon called noise shaping:
noise power is shifted from one frequency range to another
thereby improving signal transmission in the former
frequency range and worsening it in the latter. It has been
proposed that the brain might use noise shaping (Shin 1993,
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2001) and modeling studies have shown that this phenom-
enon could occur both at the network (Mar et al. 1999) and
at the single neuron level (Chacron et al. 2004a; Lindner
et al. 2005). In the latter case, it was shown theoretically
and through numerical simulations that spike trains with
negative interspike interval (ISI) correlations displayed
lower variability at low frequencies (i.e, noise shaping),
thereby improving information transmission of sensory
stimuli containing these frequencies (Chacron et al. 2004a;
Lindner et al. 2005). Further experimental work then
showed that the electroreceptor afferents of electric fish
displayed noise shaping (Chacron et al. 2005b).

Theoretical and modeling studies have shown that
several mechanisms could give rise to negative ISI cor-
relations. These include threshold fatigue: a cumulative
increase in the action potential threshold following rapid
firing (Geisler and Goldberg 1966; Holden 1976; Chacron
et al. 2001b; Liu and Wang 2001; Chacron et al. 2003a;
Jolivet et al. 2006). There is however, to our knowledge, no
experimental evidence that an actual increase in action
potential threshold occurs during repetitive firing although
several modeling studies have made detailed predictions on
the effects of threshold fatigue on adaptation depending on
various parameters (Geisler and Goldberg 1966; Holden
1976; Koch 1999; Liu and Wang 2001; Chacron et al.
2003a), and information transmission (Chacron et al.
2001b). Furthermore, the simplified models used in pre-
vious studies were phenomenological in nature and it is not
clear how to include threshold fatigue, should it exist, in more
realistic biophysical neuron models such as the one proposed
by Hodgkin and Huxley (1952) where the action potential
threshold can only be defined phenomenologically.

In this paper, we demonstrate that pyramidal neurons
within the electrosensory lateral line lobe of weakly electric
fish display threshold fatigue in vivo: the action potential
threshold is shown to increase following periods of rapid
action potential firing and is shown to decrease during
periods of silence. This results in a covariation between the
instantaneous firing rate and the action potential threshold
which can be detected in experimental recordings. Our
results furthermore show that threshold fatigue is most
present in neurons with high firing rates. Thus, threshold
fatigue is most likely due to refractory effects in sodium
channels such as desensitization (Mickus et al. 1999).
Although the standard Hodgkin–Huxley model cannot
reproduce this phenomenon, we propose an extended
Hodgkin–Huxley model that reproduces the threshold fatigue
seen experimentally. Finally, we investigated the effects of
threshold fatigue in our model. We show that threshold
fatigue not only leads to noise shaping as predicted from
theoretical studies, but also leads to a more regular spike

train as well as sensitivity to a larger range of stimulus
intensities as well as increased information transmission.

2 Materials and methods

2.1 Experimental recordings

We used the weakly electric fish Apteronotus leptorhynchus
in this study and the experimental protocol has been
described in detail previously (Bastian et al. 2002; Chacron
2006). Briefly, animals were immobilized by intramuscular
injection of curare and respirated with aerated water at a
flow of 10 ml/min. Intracellular recordings from pyrami-
dal cells in the electrosensory lateral line lobe were made
with glass micropipettes (resistance 25–40 MΩ) filled with
3 M KCL. Recording sites as determined from surface
landmarks and depth were limited to the centrolateral and
lateral segments only. Sensory stimulation was achieved
by presenting amplitude modulations (AMs) of the ani-
mal’s own quasi-sinusoidal electric organ discharge via
two electrodes located 20 cm on each side of the animal.
The AM consisted of low-pass filtered Gaussian white
noise (120 Hz cutoff, 8th order Butterworth filter). All
procedures were approved by McGill University's animal
care committee.

2.2 Modified Hodgkin–Huxley model

We used a Hodgkin–Huxley model with leak, sodium, and
potassium conductances. The model is described by the
following equations:

C
dV

dt
¼ �gleak V � Eleakð Þ � gna m

3h V � Enað Þ

�gkn
2 V � Ekð Þ þ x tð Þ þ I þ S tð Þ

dm

dt
¼ m1 Vð Þ � m

tm

dh

dt
¼ h1 Vð Þ � h

th

dn

dt
¼ n1 Vð Þ � n

tn

Here V is the membrane potential expressed in mV, gx is the
maximum conductance of channel x and Ex is its reversal
potential, ξ(t) is Gaussian white noise with zero mean and
autocorrelation function <ξ(t) ξ(t+C)>=σ2 δ(C), I is the
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applied current, and S(t) is the stimulus which consists of
low-passed filtered Gaussian white noise with spectral
height α and cutoff frequency fc. The infinite conductance
curves are given by:

m1 Vð Þ ¼ 1

1þ exp � V � V1=2

� �
=3

� �

h1 Vð Þ ¼ 1

1þ exp V � V1=2

� �
=3

� �

n1 Vð Þ ¼ 1

1þ exp � V � 40ð Þ=3½ �

Usually, V1/2 is taken to be constant (Hodgkin and Huxley
1952). We instead make V1/2 vary with time:

dV1=2

dt
¼ � 55þ V1=2

tV
þ 12

X1
i¼1

d t � tið Þ

where ti is the timing of the ith action potential. This
implies that V1/2 is increased by 12 mV immediately after
each action potential and is then allowed to relax back to its
equilibrium value of −55 mV. The differential equation for
V1/2 is exactly the same as that governing the time varying
threshold in more phenomenological models (Geisler and
Goldberg 1966; Chacron et al. 2001b; Liu and Wang 2001).
This is motivated by the fact that V1/2 is closely related to
the action potential threshold as measured in this study
since it is the voltage at which roughly 50% of sodium
channels are open.

We used an Euler–Maruyama integration scheme for nu-
merical simulations with time step dt=25 μs. Parameter values
usedwere: gna=55 μS, gk=40 μS, gleak=0.18 μS, Eleak=−70 mV,
Ena=40 mV, Ek=−88.5 mV, Cm=0.02 ms, Ch=Cn=0.39 ms,
CV=40 ms, σ=I=1 nA. The model gave rise to sustained
action potential firing in the absence of noise (i.e. σ=0).

2.3 Data analysis

We computed the threshold value for spike time ti+1, θi, as
the membrane potential value at the time at which the
second derivative of the membrane potential was maximum
(see Fig. 1). We note that, while this procedure is different
than the one previously proposed (Azouz and Gray 1999,
2000), our results do not qualitatively depend on which of
the two algorithms is used to compute the action potential
threshold (data not shown).

The interspike interval sequence (ISI), the sequence of
times between consecutive action potentials, {Ii}≡{ti+1−ti}

was obtained from the spike time sequence {ti}. We
computed the ISI serial correlation coefficients ρj as:

rj ¼
< IiIiþj > � < Ii >2

< I2i > � < Ii >2

Where the average <…> is taken over index i. From the ISI
sequence, we obtained the instantaneous firing rate
sequence as { fi}≡{1/Ii} and the cross-correlation coeffi-
cient between {θi} and {fi} was then computed as:

Cj ¼ < fiqiþj > � < fi >< qi >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< f 2i > � < fi >2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< q2i > � < qi >2

p

For signal transmission analysis, the stimulus S(t) was
sampled at 2 kHz and we made a binary representation R of
the spike train at 2 kHz also. We then computed the
stimulus-spike train coherence as (Rieke et al. 1996):

CRS fð Þ ¼ PRS fð Þj j2
PRR fð ÞPSS fð Þ

where PRS ( f ) is the cross-spectrum between the stimulus
and the binary sequence and PRR( f ), PSS ( f ) are the power
spectra of the binary sequence and stimulus, respectively.
The coherence ranges between 0 and 1 and measures the
correlation between the stimulus and neural response at
frequency f. The coherence is furthermore related to the
mutual information density between the stimulus and
response by: I=−log2[1−CRS ( f )] (Rieke et al. 1996). We
normalized the mutual information density I by the firing
rate to account for its known dependence on firing rate
(Borst and Haag 2001).

We used a threshold interspike interval value of 20 ms
for classifying spikes as either being part of a burst or not
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Fig. 1 Illustration of the procedure to compute the action potential
threshold. We computed the second derivative (gray) of the membrane
potential (black) and computed the time at which the second
derivative was maximal (arrow). The threshold value was calculated
as the value of the membrane potential at that time
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(Gabbiani et al. 1996; Metzner et al. 1998; Chacron et al.
2004c; Oswald et al. 2004). As such, an ISI was considered
to be part of a burst only if it was smaller than the threshold
and we constructed from the binary sequence R a binary
sequence Rbursts with all the spikes that belonged to bursts.

3 Results

3.1 Sensory neurons display threshold fatigue

Figure 1 illustrates the method to compute the action
potential threshold. We took the action potential threshold
as the point of greatest curvature of the membrane potential
V as determined by the local maximum of the second
derivative. We then applied this algorithm to intracellular
recordings from pyramidal cells in the electrosensory lateral
line lobe of weakly electric fish. An example cell is shown
in Fig. 2. Visual inspection of the membrane potential
(Fig. 2(a)) shows that the action potential threshold is
variable and ranges between −62 and −57 mV for this
particular cell (Fig. 2(b)). A more careful visual inspection
shows that the action potential threshold actually increases
during periods of rapid firing and decreases during periods
of silence (Fig. 2(a)). This is most easily seen by comparing
the time evolution of the threshold to that of the
instantaneous firing rate (Fig. 2(c)). It is seen that periods
of elevated firing are associated with higher threshold,
leading to a positive correlation coefficient (Fig. 2(d)) as well
as negative correlation coefficient in adjacent lags. This

neuron also showed a prominent negative ISI correlation
coefficient at lag one (ρ1=−0.2988) (Fig. 2(d), inset).

3.2 Threshold fatigue is most prominent in neurons
with high spontaneous firing rates

Previous studies have shown that the pyramidal cell
population was heterogeneous both anatomically and
physiologically. There is a strong negative correlation
between spontaneous firing rate and dendritic morphology:
cells with small dendritic trees tend to have large firing
rates while cells with large dendritic trees tend to have
small firing rates (Bastian and Nguyenkim 2001; Bastian
et al. 2004). Figure 3(a) assesses the influence of firing rate
on threshold fatigue as quantified by the cross-correlation
coefficient between threshold and reciprocal interspike
interval (ISI) at lag 0 C0. A strong positive correlation
(R=0.64, p=0.00163, N=21) was observed, meaning that
threshold fatigue is more likely to be observed in neurons
with large firing rates. Previous modeling studies have
shown that threshold fatigue can be associated with
negative ISI correlations at lag 1 (i.e. short interspike
intervals are on average followed by long ones and vice-
versa) (Chacron et al. 2000, 2001b, 2003a; Liu and Wang
2001). We thus plotted the ISI correlation coefficient at lag
1 ρ1 as function of firing rate (Fig. 3(b)). A strong negative
correlation between ρ1 and firing rate was observed (R=
−0.823, p<0.0001, N=21), indicating that cells with high
spontaneous firing rates also tended to display negative ISI
correlations. Thus, as predicted from theory (Chacron et al.
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Fig. 2 Sensory neurons show
threshold fatigue in vivo.
(a) Membrane potential (gray)
and action potential threshold
(squares). (b) Probability
density for the threshold θ.
(c) Action potential threshold
(squares) and instantaneous
firing rate (triangles).
(d) Cross-correlation function
between the threshold and
instantaneous firing rate. The
gray lines show the 99%
confidence interval. The inset
shows the cross-correlation
coefficients ρj as a function
of lag j. Only ρ0 and ρ1 are
significantly different from 0
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2004a; Lindner et al. 2005), cells that displayed threshold
fatigue also tended to display a negative ISI correlation
coefficient at lag 1.

3.3 A biophysical model of threshold fatigue

Although many phenomenological models have proposed
variations in the action potential threshold (Geisler and
Goldberg 1966; Gestri et al. 1980; Gabbiani and Koch
1996; Chacron et al. 2001b, 2004a), it was only recently
shown that more biophysically realistic models such as the
Hodgkin–Huxley model displayed threshold variability
(Azouz and Gray 1999). We thus tested whether a realistic
biophysical model with Hodgkin–Huxley conductances,
which has been shown to display threshold variability
(Azouz and Gray 1999), could display threshold fatigue.
The results are shown in Fig. 4. Although the model
does display variability in the action potential threshold
(Fig. 4(a,b)), there are no cumulative increases in threshold
during rapid firing and there is no significant correlation
between the instantaneous firing rate and the threshold
(Fig. 4(c,d)). The model furthermore displayed no significant
ISI correlations at lag 1 (ρ1=−0.00152) (Fig. 4(d), inset).

Previous studies have shown that pyramidal cells had a
well characterized burst mechanism that relies on an
interaction between somatic and dendritic voltage-gated
sodium channels (Lemon and Turner 2000; Doiron et al.
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Fig. 4 The Hodgkin–Huxley
model with constant V1/2 does
not display threshold fatigue.
(a) Voltage (gray) and threshold
(black squares) from the model.
The light gray horizontal line
shows the constant value
V1/2=−43.581 mV used in the
simulations. (b) Probability
density for the threshold θ.
(c) Action potential threshold
(squares) and instantaneous
firing rate (triangles).
(d) Cross-correlation function
between the threshold and
instantaneous firing rate. The
gray lines indicate the 99%
confidence interval. The inset
shows ρj as a function of j. Only
ρ0 is significantly different from
0. The inset Parameter values
used for the stimulus were:
α=0.0167 nA2/Hz, fc=120 Hz.
The mean firing rate was
32.43 Hz
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2002; Fernandez et al. 2005). Although burst dynamics can
sometimes give rise to negative ISI correlations (Chacron
et al. 2001a), this particular mechanism does not seem to be
sufficient to generate the negative ISI correlations and
threshold fatigue seen in our experimental data as revealed
by simulations of the model proposed by Doiron et al.
(2002) (data not shown).

Thus, we explored additions to the Hodgkin–Huxley
model that could reproduce the experimental data. We
varied the inflexion point of the activation and inactivation
infinite conductance curves of the sodium conductance,
V1/2, in a dynamic manner similar to the threshold in
phenomenological models (Chacron et al. 2001b, 2003a;
Liu and Wang 2001). The results are shown in Fig. 5. With
this minor modification, the model exhibits threshold
fatigue: the threshold increases during repetitive firing
(Fig. 5(a)) and displays threshold variability that is similar
to the experimental data (Fig. 5(b)). There was a strong
positive correlation between the instantaneous firing rate
and the threshold (Fig. 5(c,d)) as in the experimental data.
The model furthermore displayed a significant ISI correla-
tion coefficient at lag 1 (ρ1=−0.3349) that was similar in
magnitude to that seen experimentally (Fig. 5(d), inset). We
note that the model does not reproduce the damped
oscillation in the cross-correlation observed for the data,
such a damped oscillation might be due to underlying
network dynamics (Doiron et al. 2003). However, a simple

point-process model (i.e. no spatial structure) is sufficient to
qualitatively explain the threshold fatigue and negative ISI
correlations seen in pyramidal cells.

3.4 Effects of firing rate on threshold fatigue in the model

In order to vary the firing rate in the model with threshold
fatigue, we varied the bias current I. Figure 6 shows the
effects of varying the bias current on the ISI correlation
coefficient at lag 1, and the cross-correlation coefficient
between the instantaneous firing rate and the action
potential threshold. Both the ISI correlation coefficient
(Fig. 6(a)) and the cross-correlation coefficient (Fig. 6(b))
increased in magnitude as a function of firing rate thereby
reproducing experimental results (Fig. 3). As such, our
model qualitatively explains the variations seen in experi-
mental data and predicts that these are predominantly due to
differences in firing rate amongst pyramidal cells. The
effects seen can be explained as follows: reducing the bias
current reduces the firing rate, thereby increasing the mean
ISI. There is therefore less accumulation in threshold during
rapid firing, which leads to a decrease in the ISI correlation
coefficient (ρ1) and the cross-correlation coefficient (C0).
The decrease in ρ1 as a function of firing rate is similar to
previous results obtained with phenomenological models
(Liu and Wang 2001; Chacron et al. 2003a).
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Fig. 5 The Hodgkin–Huxley
model with dynamic V1/2
exhibits threshold fatigue. (a)
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3.5 Threshold fatigue regularizes firing and confers
robustness to noise

We quantified the effects of threshold fatigue by com-
paring the performance of the model with dynamic V1/2

to that of the model with constant V1/2, henceforth referred
to as the model without threshold fatigue. Overall, the
model with threshold fatigue produced spike trains that
were more regular than those produced by the model
without threshold fatigue as seen by looking at the ISI
distribution (Fig. 7(a)). The coefficient of variation (CV,
standard deviation to mean ratio of the ISI distribution) was
0.21 with threshold fatigue and 0.44 without. The power
spectra of spike trains (Fig. 7(b)) also indicate less output
noise in the case of threshold fatigue: power at low
frequencies is reduced and the peak at the neuron’s firing
rate (about 30 Hz) becomes much sharper. These effects are
a consequence of diminished ISI variability (lower CV)
and negative correlations among ISIs

P1
i¼1 rj < 0 both caused

by threshold fatigue. In particular, in the low frequency limit
it is known that S f ¼ 0ð Þ ¼ CV2r 1þ 2

P1
i¼1 rj

h i
for a

stationary spike train (Cox and Lewis 1966; Holden 1976),
hence both a decrease in CV and the presence of negative
correlations lead to a drop in low-frequency power. We
note that these results are similar to previous ones using
more phenomenological models (Chacron et al. 2004a,b;
Lindner et al. 2005) as well as experimental results (Chacron
et al. 2005b).
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We also computed the area A( f ) between 0 and
frequency f under each power spectrum. The areas
computed with and without threshold fatigue are equal for
f >60 Hz, confirming that this is indeed a reshaping of the
power spectrum (Fig. 7(b), inset) (i.e. the total power is
conserved). The spike count distribution (Barlow and
Levick 1969a,b; Teich and Khanna 1985) also displayed
less variance with threshold fatigue (Fig. 7(c)). We also
varied the noise standard deviation σ and found that spike
train variability, as quantified by CV, was generally lower
in the presence of threshold fatigue (Fig. 7(d)). As such, the
model with threshold fatigue is more robust to noise than
the model without threshold fatigue.

3.6 Threshold fatigue and information transmission

We finally quantified the effects of threshold fatigue on
information transmission. However, the models with and
without threshold fatigue gave rise to very different ISI
probability densities (Fig. 7(a)). In particular, the probabil-
ity density of high frequency ISIs (<20 ms) was lower for
the model with threshold fatigue than for the model without
threshold fatigue. Since previous studies have shown that
high frequency ISIs coded for low frequency stimuli
(Oswald et al. 2004), we compared information transmis-
sion by high frequency ISIs with and without threshold
fatigue. The results are shown in Fig. 8 were the
information densities normalized by the event rates are
compared. It is seen that, for low (<20 Hz) and higher
frequencies (38–60 Hz), the model with threshold fatigue
had a larger information density than the model without

threshold fatigue. The situation was opposite however in
the intermediate frequency range (20–38 Hz). A stimulus
with power only in this range would thus be best
transmitted with a neuron without threshold fatigue as
predicted from theory (Lindner et al. 2005). This confirms
that the noise shaping seen in the power spectrum does
translate to increased information transmission. Though
threshold fatigue will give rise to less high frequency ISIs,
each one will transmit a greater amount of information as
there is less noise.

4 Discussion

We have shown that sensory neurons in vivo displayed
variations in the action potential threshold in the form of
threshold fatigue and that this phenomenon was accompa-
nied by action potential patterning in the form of negative
interspike interval correlations. There was a strong depen-
dence on the mean firing rate of the neuron in that neurons
with high firing rates were most likely to display threshold
fatigue. It was furthermore shown that a standard Hodgkin–
Huxley model, although capable of displaying action
potential threshold variability, could not reproduce thresh-
old fatigue. We showed that cumulative refractoriness
through changes in the activation and inactivation voltages
of sodium channels was necessary to reproduce the
experimental data. Changes in threshold fatigue for differ-
ent firing rates similar to those seen in the experimental
data could be obtained by varying the bias current in the
model with threshold fatigue. Finally, we showed that
addition of threshold fatigue lead to noise shaping as well
as increased information transmission, which confirms
previous theoretical studies.

Recent theoretical and modeling studies have shown that
negative interspike interval correlations would lead to noise
shaping as well as increased information transmission
(Chacron et al. 2001b, 2004a; Lindner et al. 2005).
However, these correlations can result from very different
biophysical mechanisms. One example is the cumulative
activation of an outward current (Treves 1996; Liu and Wang
2001) such as a calcium-activated potassium current (Wang
1998). These currents are omnipresent in the central nervous
system (Sah 1996). Our results also show that threshold
fatigue can give rise to the same effects qualitatively. In fact,
it was shown that a phenomenological model incorporating
threshold fatigue was qualitatively equivalent to a model
incorporating a spike activated outward current (Liu and
Wang 2001). Different biophysical mechanisms might thus
serve the same function in the central nervous system.

While many neurons show no spontaneous activity,
many neurons such as auditory fibers (Köppl 1997),
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Fig. 8 Noise shaping and information transmission. Shown are the
mutual information densities for the burst spike train (20 ms burst
threshold) obtained with the model with (black) and without (gray)
threshold fatigue. Parameter values were the same as in Fig. 5(c)
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vestibular afferents (Goldberg 2000), neocortical neurons in
awake behaving animals (Steriade 1978), electroreceptor
afferents (Bastian 1981), deep cerebellar nuclei neurons
(Aizenman and Linden 1999), and purkinje cells (Jaeger
and Bauer 1994) display spontaneous activity (i.e. in the
absence of stimulation). In many cases (auditory fibers,
vestibular afferents, purkinje cells), the spontaneous firing
rate can exceed 100 Hz and these neurons are thus likely to
display threshold fatigue according to our results. There is
in fact evidence that auditory fibers (Teich 1992) and
cortical neurons (Lebedev and Nelson 1996) both display
negative ISI correlations which are associated with thresh-
old fatigue. It is thus likely that noise shaping is being used
in the brain at multiple levels.

We note that previous studies have shown action
potential threshold variability in cortical neurons (Azouz
and Gray 1999, 2000). However, in these studies, the action
potential threshold variability was due to variations in the
slope of the membrane voltage as it reached the action
potential threshold. Azouz and Gray (1999, 2000) observed
a negative correlation between the membrane potential
slope and the action potential threshold and showed that a
standard Hodgkin–Huxley model with sodium and potassi-
um conductances could reproduce this feature. As periods
of high firing rates are typically associated with a higher
membrane potential slope, one would expect that the action
potential threshold actually be lower during such periods.
This is contrary to our observations. However, we note that
Azouz and Gray (1999, 2000) were studying cortical
neurons with low firing rates that most likely will not
display threshold fatigue according to our results.

A decreased action potential threshold during periods of
elevated firing would lead to increased coincidence detec-
tion (Azouz and Gray 1999, 2000). These effects are most
likely to be found in neurons with low firing rates. Such
neurons are most likely to act as feature detectors as they
will transmit less information about the detailed time
course of the stimulus due to their low firing rates (Borst
and Haag 2001). However, threshold fatigue is most likely
to be found in neurons with high firing rates according to
our results. Such neurons will transmit more information
about the detailed time course of the stimulus due to their
high firing rates (Borst and Haag 2001); furthermore, noise
shaping due to threshold fatigue will increase this infor-
mation as predicted from theoretical and experimental
studies (Chacron et al. 2004a, 2005b; Lindner et al. 2005).
These neurons might act as temporal integrators to transmit
information about the detailed time course of the stimulus.
This is consistent with previous results obtained on the
pyramidal cells population of weakly electric fish: pyramidal
cells with low firing rates respond to specific features of the
stimulus (Gabbiani et al. 1996; Metzner et al. 1998; Bastian
et al. 2002; Chacron et al. 2005a, Chacron 2006) while

pyramidal cells with high firing rates are broadly tuned
(Chacron et al. 2005a,b, Chacron 2006). This is furthermore
consistent with the fact that threshold fatigue, as it is
associated with refractoriness, will typically act to suppress
burst firing which is associated with feature detection
(Sherman 2001). This might explain why pyramidal cells
with high firing rates are much more regular than pyramidal
cells with low firing rates as quantified by the coefficient of
variation (CV) (Bastian and Nguyenkim 2001).

We note that neurons in general show tremendous
variability during both spontaneous activity (Burns and
Webb 1970; Rudolph and Destexhe 2003) and during
stimulation (Shinomoto et al. 1999; Rudolph and Destexhe
2003). How can this variability as measured by coefficient
of variations on the order of 1 be reconciled with threshold
fatigue which acts to regularize the spike train? First, we
note that pyramidal cells in weakly electric fish also display
high CVs that range between 0.7 and 1.75 (Bastian and
Nguyenkim 2001). As such, threshold fatigue is not
necessarily incompatible with the high CVs obtained
experimentally. Neurons in vivo receive large amounts of
synaptic bombardment which contributes to their variability
(Rudolph and Destexhe 2003). However, neurons in vivo
are also capable of precise spike timing under stimulated
conditions (Reinagel and Reid 2000; Chacron et al. 2003b).
Our results show that threshold fatigue will regularize the
spike train and this could, in principle, reduce the overall
amount of information transmitted. However, information is
the difference between the entropy of the spike train, H(R),
and the entropy of the spike train given the stimulus, H(R/S)
(Shannon 1948; Cover and Thomas 1991). The latter term
is related to the precision of spike timing under stimulated
conditions (Mainen and Sejnowski 1995; Reinagel and
Reid 2000). Previous results have shown that addition of
threshold fatigue in a model will reduce both terms
(Chacron et al. 2001b). However, the reduction in H(R/S)
is greater than the reduction in H(R), thus giving rise to
increased information (Chacron et al. 2001b, 2004a,b;
Lindner et al. 2005). As such, threshold fatigue could
explain why neurons displaying large amounts of variabil-
ity can surprisingly display precise spike timing (Reinagel
and Reid 2000; Chacron et al. 2003b).

Finally, most neural populations will display signif-
icant heterogeneities in both morphology and physiol-
ogy (Sadeghi et al. 2007). The function advantages, if
any, of having a heterogeneous population are not well
understood to this day. Our results suggest that threshold
fatigue would confer properties only to a subset of neurons
and this might optimize coding of sensory information at
the population level.
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