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Neurons produce action potentials or spikes in response to a wide variety of inputs.
Correlations between interspike intervals are often seen in data from single neurons, and
are due to a combination of intrinsic mechanisms and the temporal properties of the
input stimulus. Here we review recent progress in our understanding of how intrinsic
correlations arise in simple biophysically justified neuron models. We further describe
the generic conditions under which these correlations enhance the rate of transfer of
information about time-varying stimuli. This work points to the importance of studying
non-renewal first passage time problems in nonlinear dynamical systems.
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1. Introduction

Excitable systems generate spikes when one or more of their state variables enter a
certain region of phase space. The correlations between such temporally localized
spikes, or between quantities derived from spike trains such as interspike interval
sequences, are under scrutiny in a wide range of disciplines (see e.g. the recent
review in [1]), namely in the biological sciences where interest in heart rate and
neural variability is high. The study of the genesis of and interplay between short
and long range correlations is likely to be a challenging and fruitful area of research
for many years to come.

From the deterministic point of view, it is not surprising that correlations be-
tween interspike intervals (ISIs) exist in neurons. This is obvious e.g. in the au-
tonomous behavior known as bursting. It is also obvious when a neuron is forced
periodically and displays anything but n:n phase locked firing (n spikes in response
to n forcing cycles). For example, a 1:2 pattern has two intervals, and this sequence
of intervals is periodic and therefore has a periodic autocorrelation. Underlying this
correlation is a memory of previous activity prior to the spike, i.e. the occurrence
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of the spike does not reset all the state variables to some standard location in phase
space.

In the presence of noise, one typically wants to calculate the mean first passage
time to threshold. This is usually a complex task, one that can only be done with
approximations except for the simplest models, even though its basic assumption
is that one is dealing with a renewal point process: each realization to threshold
starts from the same location, independently of how long it took to get to threshold
on the previous interval. Correlations imply memory that carry over after a spike,
and it is not obvious how to introduce that fact into calculations.

Modeling the presence of correlations can provide useful insights into the bio-
physical properties of cells. Further, they can point to interesting functional roles
for correlations. An understanding of the origins of correlations and of their poten-
tial effects on information transfer is only beginning to emerge. In this paper, we
summarize some of our contributions on this issue. It is not surprising that corre-
lated intervals can arise in response to time varying stimuli; the stimuli leave a foot
print of their correlations on the interval sequence. Here however, we concentrate
on the correlations that arise from the intrinsic behavior of the cell, i.e. that exists
even in the absence of forcing. The correlating mechanisms may then interact with
specific input properties, as we will see.

Our review is organized as follows. We first present experimental data from
weakly electric fish electroreceptor neurons displaying correlated interspike intervals.
A biophysically justified model is then presented that reproduces these correlations
and numerical simulations reveal that their presence can increase information trans-
fer. Observations of noise shaping in the power spectrum then lead us to formulation
of simpler and more abstract models where we show theoretically how correlations
shape the spike train power spectrum in a way that enhances information transfer.

2. Electroreception in Weakly Electric Fish

Weakly electric fish use modulations of their self-generated electric field to locate
prey and communicate with conspecifics [2]. Electroreceptor neurons located on
their skin are sensitive to amplitude modulations of the quasi-sinusoidal electric
organ discharge (EOD) generated by the animal [3]. Experimental recordings from
electroreceptor neurons display noisy phase-locking to the EOD [4-7]. Figure la
shows the interspike interval histogram (ISIH) from such an electroreceptor neuron.
The ISTH displays Gaussian shaped modes near integer multiples of the EOD cycle.
These neurons thus skip an apparently random number of EOD cycles between
firings due to significant amounts of noise. A review of dynamical mechanisms that
give rise to such skipped firings can be found in [8]. However, these electroreceptors
display non-renewal ISI statistics due to a prominent negative ISI serial correlation
coefficient (SCC) at lag one. These SCC’s are defined as:

Uiy = (L) (L — (1))
N (§ A AV ED @

where {I;} denotes the ISI sequence, j is the lag, and the average (...) is performed
over index i.

There is much variability in firing rate and ISTH shape across different elec-
troreceptor units [9,10]. However, for a given electroreceptor, these quantities are
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Fig. 1. (a) ISIH from a non-bursting electroreceptor. The multi-modal structure results from
phase-locking to the EOD. Note that ISIs are expressed as multiples of the EOD cycle. (b) ISI
serial correlation coefficients from this unit showing a negative value at lag one. (c) ISIH from a
bursting electroreceptor. Note the bimodal envelope and that the ISIs are expressed in multiples
of the EOD cycle. (d) ISI serial correlation coefficients from this electroreceptor showing temporal
anti-correlations similar to other types of electroreceptors. 21000 and 23924 consecutive ISIs were
analyzed for the non-bursting and bursting units, respectively. The EOD frequency was 885 Hz
and 905 Hz for the non-bursting and bursting umnits, respectively. Data courtesy of L. Maler
(University of Ottawa).

very stable and reproducible. Electroreceptors have been characterized to be either
bursting or non-bursting depending on the fraction of action potentials fired on con-
secutive EOD cycles. Some electroreceptors tend to fire packets of action potentials
(bursts) and this is manifested in the ISIH by a prominent peak at one EOD cycle.
Fig. 1c shows the ISTH from one such unit. The envelope is bimodal as expected
for bursting neurons. Fig. 1d shows the ISI SCC’s for this bursting unit. Instead of
just one negative SCC at lag one like for the non-bursting unit, this unit displays
anti-correlations that decay over a few lags. These ISI anti-correlations are similar
to those seen in other types of electroreceptors [11] that can also exhibit bursting
dynamics [12].

3. Modeling Electroreceptor Dynamics

It was found that electroreceptor neurons could be modeled with a simple variant of
the leaky integrate and fire (LIF) model: the leaky integrate and fire with dynamic
threshold (LIFDT) model [4-6]:

b= —— 4 Ty (2)

W= H(t — tlast — TI) (wo

J) + Aw b(t — t1ast) 3)
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where v is the membrane voltage, w is the threshold, 7, is the absolute refractory
period, and I, is the synaptic current. We let the threshold carry the memory by
the following firing rule: when v = w, v is reset to zero as in a standard LIF model,
while threshold is incremented by a constant amount Aw and kept constant for
the duration of the absolute refractory period T,; after this time T, the threshold
relaxes exponentially towards its equilibrium value wq until the next spiking time.
If two spiking times occur within close proximity of one another, the threshold
will cumulatively increase leading to greater refractoriness. Thus, a short IST will
tend to be followed by a long one and the model displays negative ISI correlations
[13] as in the experimental data for the non-bursting electroreceptor [4]. With a
minor modification (a facilitating current driven by spiking), the model is capable
of reproducing the bursting dynamics displayed by some electroreceptors [5,7].

4. Effects of ISI Correlations on Information Transfer

Another model, which we refer to as the Nelson model, has been proposed earlier
for electroreceptor neurons [9]. A detailed comparison study between the Nelson
model and the LIFDT model found that both displayed similar dynamics except that
the Nelson model did not display any significant ISI correlations [6]. Comparing
the Nelson and LIFDT models should then give one insight on the effects of ISI
correlations on signal transmission. Information theory was originally developed
by Shannon [14] in the context of communication systems. It has been adapted
to provide a measure of the information encoding capacity of neurons [15]. Spike
trains from electroreceptor neurons are noisy since they display high entropy [6,16].
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Fig. 2. (a) Mutual information rate I as a function of stimulus contrast o for the LIFDT (open
symbols) and Nelson (filled symbols) models. (b) Mutual information rate I as a function of
stimulus cutoff frequency f.. In both cases, the stimulus was low-passed filtered Gaussian white
noise with cutoff frequency f. and standard deviation o. The mutual information rate is higher
for the LIFDT model than for the Nelson model due to negative ISI correlations.

Figure 2a shows the information transmission rates for the LIFDT and Nelson
models. It is seen that the rate of information transmission is greater for the
LIFDT model over a broad range of stimulus contrasts and temporal frequency
content. Other results [6,17] using signal detection theory [18] show that negative
IST correlations reduce the variance of the spike count over a given time interval,
allowing better signal detectability. On the other hand, positive ISI correlations
will increase spike train variability. Other results show that an interaction between
short-range negative ISI correlations and long-range positive ISI correlations can
create a time window where spike train variability is minimal [6,19].
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5. The Mechanism: Reduction of Noise Power at Low Frequencies

In this section, we explore the actual mechanism by which negative ISI correlations
increase information transfer. Figure 3 shows the spike train power spectra from
the LIFDT and Nelson models for baseline activity (i.e. no stimulus). It is observed
that the LIFDT model has weaker power at low frequencies than the Nelson model.
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Fig. 3. Spike train power spectra for the LIFDT (black) and Nelson models (gray). The LIFDT
model has lower power at low frequencies due to negative ISI SCC’s (see text). The peak at 200
Hz corresponds to the afferent’s intrinsic firing rate while the peak at 1000 Hz corresponds to the
EOD forcing. There is a peak at 800 Hz due to interactions between the two oscillations.

This can be understood from the following formula [20]:

o0
lim P(f) = nCVE1L+23_pi) (4)
i=1
where C'V is the standard deviation to mean ratio of the ISI distribution and p is the
mean firing rate. As both CV and p are virtually equal for the LIFDT and Nelson
models [6], the low frequency power only differs due to the ISI SCC’s: the negative
SCC at lag one for the LIFDT model reduces noise power at low frequencies. Note
also that the electroreceptor neuron has its own intrinsic firing frequency causing a
peak around 200 Hz. It is also periodically forced by the EOD at 1000 Hz. There are
also peaks at 800 Hz and 1200 Hz as expected for nonlinear interactions between two
limit cycles. In other types of electroreceptors, this forcing is achieved via intrinsic
hair cell oscillations but the power spectra have a similar shape [21].

For a further understanding of the baseline activity with negative ISI correlations
and its effect on the signal transmission performance, we recently constructed two
simplified neuron models that allow for an analytical treatment of the information
transfer characteristics [23]. These two models have the same statistics for a single
ISI distribution and identical linear response with respect to sinusoidal current
stimulation. This approach is similar to that used above in our comparison of the
Nelson and LIFDT models, although in that case, the similarity was not exact;
parameters were adjusted to give similar numerical values of firing rates and similar
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ISIH’s. Like the latter ones, the simplified models differ in their ISI correlations:
the spike train of model A will display strong negative correlations like the LIFDT
model whereas model B generates a renewal spike train like the Nelson model.
Therefore we can expose the effect of correlations on the information transfer.

We consider a perfect IF model governed by the simple differential equation

0= p+ s(t) (5)

where p denotes the base current on which we superimpose the signal current s(t)
where time is now dimensionless for generality. Note that a leakage term, a periodic
modulation, and an internal noise current as they were used in the LIFDT model
are absent in Eq. (5). Both reset rules are illustrated in Fig. 4.
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Fig. 4. Illustration of simplified models. Left: Model A for s(¢t) = 0. In between action potentials
the voltage v(t) (solid line) evolves according to Eq. (5). A threshold value (shown by the dashed
line) has been drawn from the uniform density [©¢9 — D,©g + D] the boundaries of which are
indicated. Once the voltage hits the threshold, a spike is fired and v is decremented by ©g. Each
ISI I; consists of two sub-intervals u; and v; that are defined as the passage times from reset to
O0/2 (dotted line) and from the latter point to the threshold, respectively. Right: Model B for
s(t) = 0. In this case, threshold values (dashed line) and reset values are drawn from uniform
densities the boundaries of which are indicated. Note that both random values (drawn after each
firing) are independent of each other in marked contrast to model A. A subdivision of the indicated
intervals as for model A is also possible but has here been omitted for the sake of clarity of the
illustration.

We introduce an internal noise by randomization of the threshold and reset
voltage values. The threshold value is drawn from a uniform density [©¢— D, ©¢+D]
with D < ©/2; each time the threshold is reached by the voltage variable a spike
is fired and we draw another value, which is entirely independent from the previous
values of the threshold. Such a randomization of the threshold will obviously lead
to a stochastic spike train; it has been used previously (see e.g. Ref. [22]) as an
alternative model that is easier to tackle analytically than IF models with noisy
input currents.

The crucial point in the further construction of the two models is the way in
which the voltage variable is reset after firing. For model A we choose the following
reset rule: after generation of a spike, the voltage is decremented by the constant
value ©p. This will lead to a randomization of the reset point which will be uniformly
distributed in the interval [—D, D]. Note however that the reset point is entirely
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correlated with the previous value of the threshold. For model B in contrast, we reset
the voltage to a value uniformly distributed in the interval [— D, D] independently
of previous values of both threshold and reset points. Parameters are, here and in
the following: =1, ©p =1, and D = 0.2.

We consider first the spontaneous activity (s(t) = 0) which is crucial for the
signal transmission features of the two models. For both models each ISI I; can
be split into two sub-intervals u; and v; which are defined by the passage times
from reset value to ©¢/2 and from ©¢/2 to the current value of the threshold (the
subintervals are indicated in Fig. 4a). Both u; and v; are uniformly distributed in
the intervals [(©¢/2 — D)/u,©0/2 4+ D)/u]. The ISI density is then given by the
convolution of these two random variables which yields a triangular distribution.

For model A, because of the reset rule, it is easily seen that v; + uj41 = O/
(within these two sub-intervals, the voltage passes exactly the distance ©g by which
it is decremented after firing). Using this relation together with the mutual inde-
pendence of u;,v;11, and w41, a little calculation reveals that p; = —0.5 while
the SCC at higher lags is zero. This is qualitatively the same as observed in the
LIFDT model with parameters that reproduce the experimental data (cf. Fig. 1):
a strong negative correlation between subsequent ISIs and very weak correlations
between ISIs that are further apart of each other. For model B, we obtain obviously
a renewal spike train since the interval I; is uniquely determined by the reset and
threshold value that are independent of previous reset and threshold values and
thus of previous ISIs.
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Fig. 5. Left: Power spectra for the spike trains of the simplified models and s(t) = 0. Right: Mutual
information for models A and B (solid and dashed lines) vs cut-off frequency f. (o = 0.0156); also
shown is the difference between these functions (thin solid line).

Analytical formulas for the power spectra of the baseline activity (s(t) = 0) can
be calculated; we refer to Ref. [23]. In Fig. 5 we show the power spectra for both
models in the spontaneous case (s(t) = 0). Two distinct features can be observed
in qualitative agreement with the power spectra for LIFDT and Nelson models in
Fig. 3: (1) the negative correlations lead to a suppression of power at low frequencies
for model A; (2) the peak at the eigenfrequency is sharper for model A (note the &
peak at f = 1 indicated by a line). Due to the simplicity of our model, both features
are overdrawn: since p; = —0.5 for model A the power spectrum goes to zero in
the zero-frequency limit; further, for the same reason, the spike train of model A
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shows a “never-ending” oscillation which becomes manifest by a § spike instead of
a peak with small but finite width as for the LIFDT model. However, the main
effect of the negative correlations is for both model A and the LIFDT model the
same, namely, a “noise shaping”, i.e. a shift of spectral power from low frequencies
to higher frequencies (the total power is not changed).

Why does the noise shaping of the baseline activity lead to an enhanced in-
formation transfer of an additional signal s(¢)? Any information transfer will be
distorted by the internal noise present in the neural spike train. This internal noise
is - at least for a weak external stimulation — given by the baseline activity, i.e. the
power spectra shown in Fig. 5a will be the background spectra if the transmission of
a finite signal s(¢) is considered. A significant lowering of the background spectrum
in the low frequency range implies that within this frequency range the information
transmission will be increased. Obviously, in a certain higher frequency range the
transmission will be decreased. If the stimulus s(t) is a band-limited white noise,
the overall effect of the noise shaping and thus of the negative correlations in the
ISI sequence is an increase in information transmission. This is shown in Fig. 5b
for the mutual information as a function of the cut-off frequency of the stimulus
which was Gaussian noise with uniform spectral density S(f) = a for a < f, and
zero beyond the cut-off frequency f.. Clearly, the mutual information for model A
is much higher than for model B for all cut-off frequencies. For general stimuli with
arbitrary power spectrum, we expect that negative correlations will enhance infor-
mation transmission through noise shaping. Although it is possible to construct
an input spectrum for which the mutual information is lower for the non-renewal
model A (e.g. an input spectrum that is sharply peaked in the range where the
background spectrum of the renewal model is lower), such narrow bandpass input
would be rather particular; it would have to be adjusted knowing the parameters
of the internal dynamics of the neuron. Finally we note that the difference between
the transmitted information of both systems (thin solid line in Fig. 5b) shows a
maximum at a finite cut-off frequency. This is again a feature also found in the
LIFDT model, but not in the Nelson model (cf. Ref. [5]). The results as a func-
tion of f. here and in [5] are not computed under precisely the same conditions;
total power is constant in [5], but both effects probably have a common origin, a
connection that will be explored elsewhere.

The simplified models discussed here show that noise shaping by negative corre-
lations is the mechanism for the enhancement of signal transmission. It is important
to note that many details of the LIFDT model which where needed to reproduce the
experimental data from the P-units of the weakly electric fish are not needed to see
the effect of an transmission enhancement. Most of the external and internal time
scales present in the detailed LIFDT model (EOD frequency, correlation times of
internal colored noise sources, leakage term of the LIF model, etc.) can be removed:
a perfect IF model with threshold noise and a reset rule that provides a source of
memory in the ISI sequence suffice to observe the basic effect.

6. Discussion

We have reviewed recent results concerning the origin of intrinsic correlations be-
tween firing intervals in excitable systems, and their influence on the information
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transfer characteristics. Many neurons like weakly electric fish electroreceptors dis-
play intrinsic correlations. Many ion channels can give rise to ISI correlations and
the effects of these are qualitatively similar to our model with dynamic thresh-
old [24]. Our dynamic threshold can further model other phenomena such as lateral
inhibition and synaptic depression [13]. Our biophysically justified LIFDT model
can reproduce the IST correlations seen experimentally [4,7].

Numerical simulations comparing the LIFDT model to a previous renewal model
proposed by Nelson and coworkers [9] have revealed that negative ISI correlations
could increase information transfer and signal detectability [5,7,17]. Comparing
the power spectra of the LIFDT and Nelson models revealed that negative ISI
correlations could decrease the power at low frequencies.

This observation lead us to construct simple models were analytical calculations
are possible. Our theoretical results revealed the mechanism by which ISI correla-
tions can increase information transfer: shaping of the noise power spectrum. In
particular, negative ISI correlations decrease the noise power at low frequencies
thereby increasing information transfer of stimuli containing these frequencies.

Although such correlations are often characterized experimentally, they raise
serious complications from the theoretical point of view in the absence of noise, as
well as in its presence. Deterministically, correlations can give rise to adaptation
and complex phase locked dynamics and even chaos [13,25]. In the context of
noise, the mean first passage time to threshold calculations are complicated by the
non-renewal property, and new tricks have to be devised [23].

Possible future directions include investigating (theoretically and numerically)
the same effects of correlations as shown here in more realistic leaky (i.e. non-
perfect) integrate and fire neurons, or even type I neurons with saddle-node dy-
namics. This may reveal new effects and even new benefits due to correlations.
Because the effect of correlations seem to be enhanced for a given frequency con-
tent of the input signal, we anticipate that certain time scale matching conditions
may exist between correlations and input. Further, it is important to eventually
develop the theory for positive correlations as well as for mixes of positive and neg-
ative correlations. Our numerical studies have found in fact that the combination of
these two kinds of correlations can set time scales over which spike train variability
has optimal properties, as displayed e.g. by Fano factors. Theoretical insight into
such problems is thus needed. Finally, it will be interesting to see whether correla-
tions enhance information transfer properties by noise shaping in other non-neural
systems, and whether they can even be added artificially for that purpose.
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