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Abstract. Analogies are drawn between a physiologi- 
cally relevant nonlinear delay-differential equation 
(DDE) model for the pupil light reflex and servo 
control analytic approaches. This DDE is shown to be 
consistent with the measured open loop transfer 
function and hence physiological insight can be ob- 
tained into the gain of the reflex and its properties. A 
Hopf bifurcation analysis of the DDE shows that a 
limit cycle oscillation in pupil area occurs when the 
first mode of the characteristic equation becomes 
unstable. Its period agrees well with experimental 
measurements. Beyond the point of instability onset, 
more modes become unstable corresponding to multi- 
ple encirclings of ( - 1 ,  0) on the Nyquist plot. These 
modes primarily influence the shape of the oscillation. 
Techniques from dynamical systems theory, e.g. 
bifurcation analysis, can augment servo control analy- 
tic methods for the study of oscillations produced by 
nonlinear neural feedback mechanisms. 

1 Introduction 

One of the most important mechanisms for regulating 
neural activity is feedback. An undeniable feature of 
human neural feedback mechanisms in health and 
disease is their propensity to generate oscillations and 
other complex dynamical behaviours, e.g. tremors and 
the electrical activity of the cortex (Mackey and Milton 
1987). The pupil light reflex is a human neural feedback 
mechanism in which it is possible to study the occur- 
rence of oscillations and their properties non-invasively 
(Stark 1984). It is well known that regular oscillations 
in pupil area occur under "high gain" conditions 
(Milton et al. 1988; Stark 1959, t962; Stark and 
Cornsweet 1958; Stern 1944) and that the period of 
these oscillations can be estimated from the experi- 
mentally measured open-loop transfer function for this 
reflex (Stark and Cornsweet 1958). Moreover, it has 

been demonstrated that the "linear" properties of this 
reflex determine the frequency of these oscillations, 
whereas the shape and amplitude depend on the 
"nonlinearities" (Stark 1962). 

Interpretation of the above findings in a biological 
context requires that parameters such as the gain and 
open-loop transfer function be defined neuro- 
physiologically. Previous studies have examined the 
effect of the nonlinear characteristics of the iris mus- 
culature on the overall reflex gain and on pupillary 
phenomena such as hippus and the pupil size effect 
(Krenz and Stark 1984; Stark 1984; Usui and Stark 
1982). However, little attention has been given to 
identifying the physiological parameters which deter- 
mine the linear and nonlinear properties of the high 
gain oscillations. 

In a previous study we showed that the oscillations 
in pupil area which occur under conditions of external 
piecewise constant feedback were well described by the 
solutions of a nonlinear delay-differential equation 
(Longtin and Milton 1988). Here we draw analogies 
between this delay-differential equation and servo 
control analytic theory. In this way we are able to 
obtain insight into the neuro-physiological properties 
of this reflex which determine the gain and open loop 
transfer function and which shape the high gain 
oscillations. 

2 Background 

The changes in pupil area, A, which occur under 
conditions of imposed piecewise constant feedback can 
be described by (Longtin and Milton 1988; Milton and 
Longtin in preparation) 

dg dA 
dA dt ~-~g(A)=F(A~), (1) 

where a is the rate constant for pupillary movements, -c 
is the neural time delay, and F(A~) is a piecewise 
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constant function of A s. The function F(AO takes on 
one of two values depending on whether pupil area is 
greater than or less than a threshold. The notation A s 
denotes pupil area at a time z in the past, i.e. 
A ~ = A ( t - z ) .  The feedback function, g(A), relates 
changes in iris muscle activity, x, to changes in A and 
takes into account the inverse relationship between x 
and A. In our previous studies g(A) was taken to be a 
linear function. Note that in order to solve (1) it is 
necessary to specify A s as an initial function on the 
interval ( -  ~, 0). 

The right hand side of (1) is a forcing term that 
represents the changes in the retinal light flux, 
c~(cb=lA, where I is the retinal illumination), due to 
changes in pupil area. For  smooth negative feedback, 
(1) becomes (Longtin and Milton, in preparation) 

dA- d~- + ~g(A) = 7 In = y In , (2) 

where we have taken into account the logarithmic 
compression of light intensities at the retina (Corn- 
sweet 1967), 7 is the rate constant for the neural firing 
frequency and q~, /, A are the values of q$, I, A at 
threshold, i.e. the values below which there is no 
pupillary response. 

Comparison of (2) to linear servo control theoret- 
ical descriptions of the pupil light reflex (Stark 1962, 
1984) requires linearization of (2) about the equilib- 
rium pupil area, A*, corresponding to an incident 
illumination of /* .  The value of A* is obtained from (2) 
by setting d A / d t  = 0 and is the solution of the Eq. 

[ / * A * ]  
ag(A*) = 7 In [_-7~-J  (3) 

and linearization of (2) about A* leads to 

~ - i  dA 
~ -  + A  = G- [As--A*] + A * ,  (4) 

where 

G -  7 
o~flA* (5) 

and f l = d g / d A  evaluated at A*. When f l<0,  it follows 
that G < 0 which corresponds to negative feedback. 

3 Transfer Function 

In this section we show that (4) can be derived from the 
experimentally measured closed loop transfer function 
for the pupil light reflex, H(s) 

P(s) 
H(s)= 1 + P(s~-~' (6) 

where the open-loop transfer function is 

Go exp ( -  zs) 
f ( s )=  (1 +ks) 3 (7) 

and where s is the Laplace variable and z=0.18 s. 
While the 18 db/octave roll-off of the Bode amplitude 
plot suggested that the transfer function had three 
poles, they could not be determined individually and 
were all set equal to 10 s - I  by choosing the time 
constant k=0.1 s (Stark 1959). 

Go = 0.16 is the dimensionless open-loop gain. The 
open loop gain is normally equal to the product of the 
forward gain and the feedback gain. The latter corre- 
sponds to the coefficient of P(s) in the denominator of 
(6) and is unity here. We have called G o in (7) the open- 
loop gain since it is numerically equal to the forward 
gain. 

Based on small signal analysis, Stark (1959) has 
argued that the open-loop gain should be expressed as 

I * A A  A A / A *  
Go =- A * A I  - A I / I*  " (8) 

The numerator of(8) describes the change of flux due to 
pupil constriction in response to the change of flux due 
to the light increment in the denominator. 1 Since 
I * A A  < 0  when A * A I > O ,  G O is negative. However, G o 
has been defined to be positive (Stark 1959) and the 
negative sign is taken into account in writing the 
closed-loop transfer function for negative feedback 
H(s) (6). 

In order to compare (4) to the formulation of (6), it 
is necessary to rewrite (6) in the time domain to obtain 

k 3 d3~ d2q~ 
+ 3k 2 ~ + 3k + q$(t) 

= G O �9 [ F ( t -  z ) -  ~b(t- z)], (9) 

where (a = I * A A  is the retinal light flux change due to 
pupil area change, F =  A * A I  reflects the flux change 
due to the light change and A* is the equilibrium pupil 
area in an ambient light level I*. The forcing variable F 
and the state variable ~b have the same units. 2 The 
equilibrium retinal flux for a constant forcing F is 
cb=GoF in open-loop, and is a factor (1+Go) -1 
smaller in closed-loop. 

1 Another way of seeing this is to write the total differential for the 
flux. Let l = I * + d l ,  A=A*+dA; then 

dd? " c~(l, A) - dp (I*, A*) = I* dA + A *dl + O(dl dA). 

From (8) we see that the open-loop gain appears as the ratio of the 
two first order terms 
z This can be made clearer by defining the gain as the relative area 
change over relative illuminance change and dividing (9) by the 
mean flux q$* = I 'A* to make all quantities dimensionless relative 
changes 



Ifwe identify, to first order, ~b with I*AA and F with 
A'A1, then (9) becomes 

k3i, d3(Aa) d2(AA) d(AA) + I*(AA) 
dt 3 +3k2I * dt~--~---+3kl* dt 

_ I*(AA*) [A*(AI)~-I*(AA)t]. (10) 
A*(AI*) 

Note that AI* and AA* are simply numbers that 
determine the numerical value of Go. Dividing by I*, 
keeping only first order derivatives and defining 3k 
_ a -  x, we obtain 

- 1 d(AA) AA* 
d----~ + A A -  - -  [A*(AI)~-I*(AA)~]. (11) A*AI* 

Next, define AA=A--A*, then 

~-1 dA (AA*)I* AA* AA* I* 
-~- + A - A *  - A*(AI*~ At+ ~ (AI), + 

(12) 

In obtaining (4), we assumed that everything was 
linearized about A* which is the steady state response 
to I*. In the transfer function approach, this means 
that the input is constant and equal to I*. Therefore 
(AI)t = I t--  I* = 0. Thus if we identify G o in (8) with - G 
in (5), (12) becomes 

a -  1 dA ? 7 
~ - + A = A * + ~ - - ~ A ~  aft 

= G. [ A t - A * ]  +A"  (13) 

which is exactly our (4). 

4 Gain 

The observations in Sect. 3 indicate that the gain, G, 
defined by (5) and the gain, Go, defined by (8) are 
related. The identification Go--~- G is reasonable in 
view of the way we defined the signs of these two gains. 
Further, both determine the magnitude of the influence 
of a delayed variable on the instantaneous time 
evolution of this variable. It thus makes sense to 
identify the forward gain (or open loop gain as we have 
seen) in control systems theory with the coefficient of 
At in the delay-differential equation describing feed- 
back operation. 

An alternate way in which the association between 
G and Go can be explored is to use the fixed point 
condition given by (3). Equation (3) simply states that 
I* can be considered an explicit function of A* 

I* = ,~,  exp[aT- 'g(A*)]. (14) 
, / t - "  
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We can then compute 

dI* I* 
dA* - A* +g'(A*)I*ct?-I 

A*dI* 

(15) 

I*dA* - l+A*ag'(A*)7-1.  (16) 

Provided we identify g'(A*) with fl and the left hand 
side with - 1/G o (we put a negative sign here because 
G o is defined positive), we obtain 

1 1 Go 
Go - 1 + ~  or G = G o _ I .  (17) 

This calculation is justified as long as we are not too far 
from equilibrium where the fixed point condition 
holds. This means that A* should not vary too much, 
i.e. dA*/dI*~l, implying that (17) holds only for 
G o < 1. In this limit we do indeed recover our earlier 
relation: G ~ - Go - Go 2 ~ - Go. 

5 Pupil Response to a Step Light Input 

From the open loop transfer function given by (7), the 
predicted response of the pupil to a step light input, 
U3(t ), is 

U3(0 = 1 - exp - 1 + ~ + , (18) 

where we have neglected the time delay which would 
simply shift the response. On the other hand, the 
observations in Sect. 3 suggest that under certain 
conditions it is possible to approximate U3(t) by a first- 
order response, Ul(t), i.e. 

U3(t),,~Ul(t)= l - e x p  ( -  ~),  (19) 

where 6 is a time constant to be determined. We can 
compute 6 in a way that will minimize the square 
deviation of these two positive definite functions, i.e. 

d~o 
! [Ul(t ) -  Ua(t)12dt=O. (20) 

This problem leads, after a lengthy, but straight- 
forward algebraic computation, to the problem of 
finding the roots of a fourth order polynomial in 6 
which can be solved numerically in terms of k. The 
physically meaningful root is 6=0.311 s which is 
roughly equal to 3k since k=0.1 s. 

As shown in Fig. 1 the first order impulse function 
using the above value of 6 agrees with the third order 
step response. Interestingly the value of 6 =0.311 s is 
roughly equal to 3k, where k=0.1 s is the value 
determined by Stark (1959). Thus this value of 6 can be 
regarded as the value of a -  1 in (4). It should be noted 
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Fig. 1. Comparison of open loop step responses for iris activity for 
a third order model (7) with k = 0.1 s (dotted line) with a first order 
approximation with 6 = 0.311 s (solid line). We have neglected the 
time delay which would simply shift the responses. Ordinate is 
pupil area computed by subtracting iris activity from the 
maximal pupil area (Stark 1959) and has been arbitrarily 
illustrated by plotting A(t)= 30-2U3(0  

that the slow onset of U3(t) may be at least partially 
incorporated into U~(t) as an additional contribution 
to the pure lag. 

6 Conditions for Oscillation Onset 

In linear control systems theory, the onset of oscil- 
lation is studied using the Nyquist criterion (Fig. 2). 
When the polar plot of the open loop transfer func- 
tion (Nyquist plot) encircles the ( -1 ,0 )  point in the 
complex plane, regenerative feedback occurs at a 
frequency for which P ( s ) = -  1, corresponding to a 
pole in the closed-loop transfer function (see e.g. Pallu 
de la Barriere 1967). This criterion is also applicable 
when delays are present. Generally delays destabilize 
systems as do increases in gain. The presence of a 
delay causes a pure rotation of the polar plot, which 
may lead to an encircling of the ( -  1,0) point. That is 
why even a first order delay-differential equation can 
be made unstable by increasing the gain or the delay. 

The conditions for instability and the frequency of 
the oscillation at the onset of instability can be directly 
determined from an analysis of (4). Define a small 
deviation in pupil area from A* as a(t), i.e. a(t) 
= A ( t ) - A * .  Then the characteristic equation can be 

obtained by substituting a(t),,~exp(2t) into (4) and is 

2+ct+Bexp(--2T)=0,  (21) 

where 2 is typically a complex eigenvalue and B 
- -~G.  Equation (21) has an infinite number of roots 
which we denote as 2i, ~, where ~ is the complex 
conjugate of )~. A conjugate pair of roots, (a~ + i~oi, 
ai-itog), characterize a mode. In Fig. 3 we show the 
values of a, ~ for the two modes of(21) with the largest 
real parts as a function of B for ~=3.21 s -1 and 

= 300 ms. For simplicity only the root with positive 
frequency has been shown. 

The problem of looking for pure imaginary roots of 
the characteristic equation is the same as that of 
determining the condition for regenerative feedback. 
At the point of onset of instability, the frequency of the 
oscillation will be determined by the mode with the 
largest real part, al (Longtin and Milton, in prepar- 
ation). Further, there is a supercritical Hopf bifurc- 
ation between a locally stable equilibrium and a locally 
stable periodic solution (limit cycle). The condition for 
the appearance of the limit cycle is 

~ot~T >cos -  1 ( G ) ,  (22) 

where o9 n is the value of~o 1 when cq =0, IGI < 1 and ~o~ 
= ~Z(G2-1) and the inverse cosine takes its value in 
the interval [~, ~] (Hayes 1950; Mackey 1979). Equal- 
ity holds in (22) at the bifurcation point, where the 
period, T, is given exactly by 

T = 2~, 2~ < T < 4z . (23) 

Near the bifurcation point Bo (or %) the period is given 
approximately by (23) and the amplitude of the 
oscillation is proportional to the square root of the 
distance (in parameter space) from the bifurcation 
point, i.e. 

Amplitude G c ~  (or V~-~o).  (24) 

For an average measured value of ~,-~ 300 ms (Milton 
et al. 1988), the period predicted by (23) is in good 
agreement with that predicted from the Nyquist plot 
and that measured experimentally. 

Equations (9) and (13) are of the same form. Thus, 
in the same way that (9) is associated with the third 
order open loop transfer function (7), it is possible to 
associate a first order open loop transfer function with 
(13), and hence to compute a Nyquist plot for (13). In 
Fig. 2a we compare the Nyquist plot calculated from 
our first order model (solid line) to the third order open 
loop transfer function measured experimentally 
(dotted line; Eq. 7) but using the average time delay we 
have measured for the pupil light reflex (0.3 s) (Milton 
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Fig. 2a--d. Polar plots of open loop transfer 
function (Nyquist plots) for the pupil light 
reflex. In a we compare the third-order 
open-loop transfer function (dotted line; 7) 
with k=0.1 s and z=0.3 s to a first-order 
open-loop transfer function with the same 
delay and time constant 6 =0.311 s (solid 
line; 19). The gain has been set to one in 
both cases. In ~ we show the effect of 
increasing n on the Nyquist plots calculated 
by use of the characteristic equation for (25) 
(obtained by first linearizing Eq. 25) for the 
same values of n shown in Fig. 4. The gain 
in b--d, which is proportional to n, is 
respectively, 3.36, 8.75, 130.3. There are 
seven encirclings of the ( -  1, 0) point in d. 
The parameterization is only for positive 
frequencies (in cps) 

et al. 1988). This time delay is longer that that 
estimated by Stark (1959) from the Bode phase plot (i.e. 30 
z=0.18 s), which is deduced from the phase of the 
transfer function at 4 Hz and the fact that the third 
order pole should contribute 270 ~ at this frequency. 20 
Differences in z of this magnitude can arise, for 
example, because of differences in retinal illumination 

I used to measure the delay (Ellis 1981). It may also arise ,~ 
because the third order step response (Fig. 1) has a ~ ~o 
slow onset which may be included in our experimen- " 
tally measured value of z. As can be seen the predicted 
high gain oscillation frequency for the first and third 0 
order model are similar (respectively, 1.2 Hz and 
0.8 Hz). Both of these frequencies are in good agree- 
ment with measurements of pupil cycling (Longtin 
and Milton 1988; Milton etal .  1988; Stark and -10 
Cornsweet 1958). 

7 Gain Dependence of Oscillation Frequency 

It should be noted that the condition for the ap- 
pearance of undamped oscillatory solutions of (4), i.e. 
(22), will always be satisfied for sufficiently large z 
and/or  G. The effect of increasing G on the properties of 
the oscillations that occur can be studied by analyzing 
how the roots of (21) depend on the parameter B 
(proportional to the gain G). In Fig. 3, it is clear that 
when a 1 >0,  d2x/dB~-dtrx/dB. Hence the frequency 
varies only slightly with the gain. This accounts for the 
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Fig. 3. Plot of the real (solid line) and imaginary (dotted lines) 
parts of the first two roots of the characteristic equation (21) as a 
function of B. Parameter values were ~=3.21 s -1 and r=0.3  s. 
Only the roots with positive frequency have been plotted 

accuracy of the period of the oscillation predicted by 
linear theory. Interestingly, the period of the first 
unstable mode in our first order approximation 
(Sect. 5) is ,~2n/6 which is in good agreement with 
Stark and Cornsweet (1958) and with our measured 
lower limit (0.9-1.2 s). 
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8 Beyond the Point of Instability Onset 

As G increases in value, more linear modes become 
unstable as more root pairs cross the imaginary axis 
into the right hand complex plane. In order to 
determine the extent to which these additional modes 
contribute to the frequency and/or shape of the 
oscillations, we considered the following specific 
example (Mackey 1979; Mackey and Glass 1977) 

dA c0" 
d-~- + ~ A -  0" + A~"' (25) 

where c and 0 are constants. This equation, a general- 
ization of(l), describes first order dynamics for the pupil 
light reflex operating with smooth external negative 
feedback (Longtin and Milton, in preparation). The 
"gain", which is proportional to the slope of the Hill 
function evaluated at A ,.~ 0, increases as n increases. As 
shown in Fig. 4, regular oscillations in pupil area occur 
for sufficiently large n. A supercritical Hopf bifurcation 
occurs for n between 3 and 10. Although the shape of 
these oscillations change as a function of n, there is 
little change in the frequency (compare Fig. 4b with 4c). 
In addition, the more complex waveforms character- 
istic of the occurrence of higher order bifurcations are 
not seen. 

Figure 7b-d shows the Nyquist plots for (25) as n is 
increased. As n increases in value, more linear modes 
become unstable, corresponding to multiple encircle- 
ments of ( - 1 ,  0) on the Nyquist plot (for example, 
there are seven encirclings in Fig. 7d). Numerical 
calculations demonstrated that as either n or ~ is 
increased, the real parts of the eigenvalues increase 
monotonically, i.e. an unstable mode does not become 
stable again. Also, in the limit of very large delay, many 
modes tend to become unstable simultaneously. The 
modes that become unstable contribute to changing 
the shape of the oscillations (Fig. 4). The observation 
that increasing the number of unstable modes in a 
system can affect mainly the shape, and not the 
frequency of the oscillation has been reported previ- 
ously (Nardone et al. 1986). 

The above results on the migration of roots across 
the imaginary axis also hold for a third order system 
(data not shown). Indeed, we have numerically com- 
puted the loci of the first poles of H(s) (6) for z = 0.2 s, 
k=0.1 s and Go between 0.16 and 10. The lowest 
frequency roots cross at o9 l = 6.3 and ~o 2 = 28.6 corre- 
sponding, respectively, to frequencies of 1.0 Hz and 
4.55 Hz. These values are very close to those calculated 
from the characteristic equation of our first order 
approximation (Fig. 3). 
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Fig. 4a--e. Solutions of (25) for increasing values of n. Initial 
condition for solution is: A(t)=15 mm 2, te(-~, 0). Parameter 
values were: ,=0.3 s; e= 3.21 ram2; 0= 50 mm2; c=200 mm 2 

9 Discussion 

We have shown that direct analogies can be drawn 
between a delay-differential equation model for the 
pupil light reflex and previous servo control analytical 
studies. Since this delay-differential equation can be 
derived on the basis of neuro-physiological and ana- 
tomical considerations (Longtin and Milton, in pre- 
paration), this approach allows us to obtain insight 
into the properties of the reflex arc which determine, 
for example, its gain and transfer function. In parti- 
cular, we are able to associate the gain, Go, defined 
empirically by Stark (1959, p. 1938) with three para- 
meters (5): 1) the rate constant for the neural firing 
frequency (~); 2) the steepness of the feedback function 
(fl); and 3) the rate constant for pupillary movements 
(~). This association is further strengthened by the 
observation that both G (Longtin and Milton, in 
preparation) and G O (Usui and Stark 1982) attain their 
highest values at intermediate values of the steady state 
pupil area. This effect has been studied extensively and 
has been explained in terms of an "expansive range 
nonlinearity" operating at the neuromuscular level 
and related to the nonlinear length-tension diagrams 
of the iris muscles. 

Oscillations in pupil area occur when the gain 
and/or delay become sufficiently large (22). The fre- 
quency of this oscillation predicted by linear servo 
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control theory and a bifurcation analysis of(4) are both 
in good agreement with that measured experimentally, 
i.e. ~1 Hz. The appearance of this oscillation is 
associated with the migration of a root of the charac- 
teristic equation of (4), i.e. (21), with the largest real part 
(21) across the imaginary axis into the right hand 
complex plane. As we have shown, the success of linear 
systems analysis in predicting this frequency is related 
to the relative insensitivity of the imaginary part of 21 
to changes in the gain. 

As the gain increases beyond the point of instability 
onset, more modes become unstable. In his "clamped" 
pupil light reflex experiment, Stark (1962) observed a 
double oscillation. It was suggested that the second 
mode to cross the imaginary axis results in a 0.2 Hz 
component superimposed on the basic 1 Hz rhythm. In 
the language of nonlinear dynamics, this suggests that 
a bifurcation from a limit cycle to a 2-torus has 
occurred. However, we have shown that for a first 
order delay equation this root alters the shape of the 
oscillation but has relatively little effect on its period. 
Moreover, numerical simulations of the third order 
system indicate that the second mode would lie at a 
frequency of ~4.55 Hz and not at 0.2 Hz. This obser- 
vation indicates that the 0.2 Hz oscillation observed 
experimentally for the clamped pupil light reflex (Stark 
1962), in spontaneously recorded hippus (Bouma and 
Baghuis 1971) and in narcoleptics at sleep onset (Yoss 
et al. 1970) cannot be attributed to simple nonlinear 
negative feedback mechanisms of the type we have 
considered here. 

An important nonlinearity in the pupil light reflex 
is the response asymmetry of the reflex to the onset and 
offset of light (Clynes 1968; Stark 1959). Although this 
asymmetry is most clearly manifested as a difference in 
the rates of pupil constriction and dilation (Longtin 
and Milton 1988; Milton and Longtin, in preparation), 
there is neurophysiological evidence that this asymme- 
try also occurs at the level of the output of the retina 
and midbrain as well (Arkin and Miller 1988; Nisida et 
al. 1959; Schiller 1984). Because of this response 
asymmetry it is not possible to derive an impulse 
response in the classical sense from the pupil's response 
to a single light pulse. 

The role played by reflex asymmetry in shaping 
pupil dynamics is most clearly shown in the case of 
external piecewise constant feedback since in this case 
the light is either on or off (Longtin and Milton 1988; 
Milton and Longtin, in preparation). The transient 
behaviours of the pupil light reflex highlight the 
asymmetry. In Fig. 3 we showed that 091 is not strongly 
dependent on the gain (through the related parameter 
B). We have found that this is also true if ~ in (21) is 
varied instead of B in either of two ways: first, by 
keeping B constant in the same range as that used in 

Fig. 3 and second by recomputing B for every value of 
since ct determines A* and the parameter B contains 

g'(A*). Thus, if transients have died out, the waveforms 
should depend only on the imaginary part of the 
eigenvalues which vary only slightly with c~. Asymme- 
try, which requires different values of ~t, would then be 
unnoticeable. This may explain the observation that 
transfer functions obtained under steady state con- 
ditions using low amplitude sinusoids predict so well 
the frequency of the high gain oscillations (Stark and 
Cornsweet 1958). Presumably there has been some 
kind of averaging of the asymmetric responses. We 
expect that a transfer function based on transients (e. g. 
one obtained by Fourier transforming the time deriva- 
tive of the step response) may yield different results for 
light onset and offset. 

Servo control analytical techniques, such as linear 
transfer functions, Volterra or Wiener kernel nonlinear 
response-fitting techniques, have been extensively used 
to provide descriptions of the response of the pupil to 
transient and steady state oscillatory light inputs and 
to identify nonlinearities in the reflex arc (Krenz and 
Stark 1984; Semmlow and Chen 1977; Stark 1959, 
1984; Usui and Stark 1982). However, the description 
of the complex oscillatory phenomena produced by 
nonlinear neural control mechanisms (see, for example, 
Mackey and Milton 1987) requires that these tech- 
niques be augmented with methods from dynamical 
systems theory such as bifurcation analysis. The 
analogies between the bifurcation analysis of a non- 
linear ordinary differential equation and servo control 
analytic techniques have been made previously (e.g. 
Allwright 1977; Mees and Allwright 1979). Here we 
have given a concrete example to illustrate that these 
analogies can also be effectively made for nonlinear 
delay-differential equations. 
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