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Abstract. A system-type model of the acoustic reflex in 
man is proposed with the intention of sheding light on 
certain of its nonlinear behaviors. This model is the 
first to incorporate into the multipath structure of the 
reflex arc the adaptation and recovery processes. 
Parameter distribution in the parallel pathways is 
based on the current knowledge on the stapedius 
muscle and on motoneuron pool organization. A 
piecewise linear system is used in modeling adaptation 
at onset and recovery at offset. The model is calibrated 
at 2000 Hz, a frequencY for which all the important 
parameters are available. Two nonlinear behaviors of 
the adaptation rate are explained: the frequency and 
intensity dependence, related respectively to the fre- 
quency dependence of the feedback gain and to the 
sigmoidal shape of the closed-loop stimulus-response 
curve. Underlying physiological mechanisms are dis- 
cussed, along with other plausible nonlinear models, 
and extensions of the model to other stimuli are 
suggested. 

1 Introduction 

Ever since its establishment as an efficient diagnostic 
tool for certain auditory pathologies, the acoustic 
reflex (AR) has received attention at both the experi- 
mental and theoretical levels. It was soon recognized 
that this relatively simple control system was endowed 
with several essential nonlinear behaviors, even under 
normal operating conditions. This fact certainly 
stunted many efforts directed at a mathematical de- 
scription of the AR, without hindering the flourishing 
interest at the experimental level. Nevertheless, a few 
models have been proposed since the pioneering work 
of Zwislocki (1960) and they will be reviewed briefly in 
Sect. 3. 

Our model follows the tradition of black-box 
analyses set forth by the earlier works. However, it 
stresses the distributed nature of the reflex arc (multi- 

path structure), an approach whose fertility has been 
well demonstrated by Borg (1972, 1973a, b). It em- 
phasizes the physiological processes underlying the 
behavior of the AR response. It also concentrates on 
two characteristics on which little theoretical work has 
been done, although the first has been extensively 
studied clinically: adaptation and recovery. These 
concepts are crucial in understanding the protection to 
sustained and intermittent acoustic stimuli offered by 
the AR. Thus, the elaboration of a mathematical model 
is justified to test various hypotheses pertaining to the 
processes involved. 

In order to decouple the effects related strictly to 
adaptation or recovery from those due to other 
components of the reflex arc, an accurate model is 
developed which properly accounts for the open-loop 
and the closed-loop behaviors as summarized in the 
next section. It is based on the most recent physiolog- 
ical data concerning the reflex arc and also on general 
studies of neuromuscular systems. 

The AR is a negative feedback control system 
activated by sounds above a certain threshold. Its final 
effect is the contraction of the middle-ear stapedins 
muscle (the only one that seems to be activated by 
sound in man) which modifies the mechanical transfer- 
function of the middle-ear ossicles. It essentially atten- 
uates low frequency sounds. Its study can benefit from 
the large body of work on the pupil light reflex, due to 
the close homomorphism of these systems both struc- 
turally and functionally speaking. We shall see that the 
pupil reflex has the same intensity dependence of its 
adaptive response (pupiUary escape nonlinearity) as 
does the AR at frequencies below about 3000 Hz. 
Furthermore, we shall try to explain this dependency 
as well as the fast recovery in the light shed by models 
proposed for other adaptive modalities (hair cell 
adaptation, stretch receptor adaptation . . . .  ). 

It should be mentioned that many ideas have been 
put forward as to the r61e of the AR (see Borg et al. 
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1984): 1) extension of the dynamic range of the ear; 
2) protection of the inner ear (mainly of the hair cells) 
from damage due to excessive acoustic energies; 3) re- 
finement of the spatial localization of sound sources; 
4) minimization of middle-ear resonance effects; 
5) discrimination of high frequency sounds, and so on. 
The first two are generally accepted. While it would be 
unfair to rebuke the others on the grounds of their 
"implausibility", we believe that their assertion would 
require a much finer knowledge of the AR dynamics 
than is available in the literature. Thus we restrict our 
attention to the regulatory aspect of the AR. 

In Sect. 2 we summarize and evaluate the AR's 
behaviors pertinent to its mathematical description. 
Section 3 gives a brief account of the AR modeling 
efforts to this day, followed by the precise objectives of 
our proposed model. Next the mathematical descrip- 
tion of the sensory and motor processes is presented. 
Section4 elaborates the parameter identification 
scheme. Section 5 reports on the numerical simulations 
of the AR dynamics under open and closed-loop 
conditions. Section 6 discusses the model's results as 
well as its predictions relative to the adaptation and 
recovery time constants. 

2 Acoustic Reflex Behavioral Characteristics 

The middle-ear ossicles act as an impedance trans- 
former between two fluids of different densities: the 
air and the perilymph in the cochlea. It ensures the 
efficient transfer of acoustic energy at all frequencies. -~ 
The AR consists in the sound elicited contraction of the .~_ 
stapedius muscle, which pulls on the stapes and stiffens < 
the ossicular chain. The change in impedance results in 
a decrease of transmission at low frequencies. 

The acoustic reflex is bilateral. This enables one to 
stimulate one ear and monitor the changes in the ear 
contralateral to the stimulus. In animal experiments, = g 
these changes are based on invasive electromyographic 
techniques or on immittance (impedance or admit- 
tance, see ANSI 1982) measurements at the eardrum. -~ 
In humans, immittance techniques are generally used ._~" 
(cf. Borg 1968; Moller 1961) to measure the ipsi-and ,~E 

o 
contralateral time course of the response. Several o 
studies report admittance changes while Others con- 
sider impedance changes. According to Borg and go 
Moller (1968), impedance change is a good measure of < 
stapedius tension, since it is proportional to the 
rectified and integrated electromyogram (EMG) which 
has been shown to be proportional to tension in an 
isometric contraction. 

While a percent change in admittance is not 
equivalent to a percent change in impedance (Wilson 
et al. 1978), both measures yield similar time courses 

(see e.g., Antablin et al. 1980) with similar time 
constants. 

A typical response to a rectangular pulse of sound 
is shown in Fig. 1. At lower stimulus frequencies one 
can observe damped oscillations at the onset. Let us 
define the quantities that characterize the time course. 
The latency time T~at is a measure of the response's 
delay. When measured by electromyographic means, it 
is equal to the conduction time in the reflex arc. In the 
context of immittance measurements, it comprises the 
additional time for the Contraction to produce a 
noticeable modification of immittance at the eardrum 
(due to mechanical coupling). This latter value ofTla t is 
the important one regarding the AR dynamics because 
impedance change is the ultimate feedback signal. 
Typically, Tlat ~ 100 ms (2000 Hz). 

The initial maximum amplitude of the response 
Ai=ax is the value of the peak immittance change. It 
occurs at a time TS, the summation time which is of the 
order of a second. The rise-time T~se is the interval 
during which the response climbs from 10% to 90% of 

a i m a x .  
The definition of adaptation half-life is touchy (see 

Fig. 1B). Several studies define it as the time for the 
response to decrease from Aimax to 50% Aimax. How- 
ever, assuming adaptation has an exponential time 

A) 
~ T S " - - ' q  ' 

,oo 

 =ti[ :i 
80 i ' 

60  1, 

~: imn, 4 0  1= ~ , . . . . . . .  
I ' ,  I 
. i i 

20 : ,, l 

o 
acoustic stimulus 

0 0'.5 

! 
't Trel 

| 

1,0 1.5 

hO 

1.02 

1.04 

Time (seconds) 

B) 

Tre~ 
100 

6 0  

4 o  l~max 

2 0  

0 ~ 1,10 

0 I Z 3 4 6 '  7 8 9 
Time (minutes) 

F i g .  l .  T y p i c a l  A R  r e s p o n s e  t o  a m i d  f r e q u e n c y  c o n t r a l a t e r a l  

stimulation. Quantities are defined in the text. (From Mayrand 
1982) 

1.06 

1,08 
E 
E 

1.10 I 

o 

~.0 

I.OZ 

1.04 t~ 

1.06 o 
<C 

1.08 



325 

2.1 Intensity Dependent Effects 

T~, t varies inversely with stimulus intensity, and tends 
to be constant at high intensity. In a 20-25 dB range 
re:ART, T~,~ also falls when intensity increases. Aima~ 
increases with intensity according to the closed:loop 
stimulus-response curve (SRC) of Fig. 2. This curve is 
sigmoidal: it is linear above 10 dB re:ART and Satur- 
ates between 34 and 50 dB for a broadband noise 
(BBN) and between 24 and 28 dB for pure tones. Over a 
20-30 dB range, there is no correlation between T~ 
and stimulus intensity. 

2.2 Influence of the Temporal Characteristics 
of the Stimulus 

Aimax is proportional to stimulus durations when they 
are shorter than 500 ms. For stimuli longer than a 
second, Aimax remains constant, but a decay sets in, 
whose rate is frequency dependent (see adaptation). 
The dependency on stimulus duration is known as 
temporal summation, to which the psychophysical 
phenomenon of Bloch's law is related. 

2.3 Influence of Stimulus Spectral Characteristics 

The ART is nearly constant for pure tones between 500 
and 4000 Hz, and is on the average 20 dB lower for a 
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course (as is done in most studies), this is not the real 
half-life if the steady-state is not zero. We thus define 
the real half-life as the time for a drop from Aimax to 
halfway between A~max and the steady-state. I f"a"  is the 
steady-state value and "a + b" the peak value, the first 
half-life t]/2 is related to the real half-life tu2 by: 

{In [2b/(b- a)]} tl/2 = tt l /2 ln2. (1) 

We shall define the way to measure tl/2 in the context 
of our model in Sect. 4. 

Tr~ is the relaxation time for the response to 
decrease from 90% to 10% of the level prior to offset. It 
can be deduced from Borg and Nilsson (1984) that it 
would be between 100 to 500 ms, making it slower than 
T~e. This is a typical case of URS (unidirectional rate 
sensitivity: see Clynes 1962), and is due to the slower 
process of muscle relaxation and to after-discharge in 
the efferent arc (Borg 1976). 

T~eo, the recovery time, is the period of silence 
required to restore the initial amplitude Aim,x after the 
onset of a second pulse. The peak of a second onset is 
noted Bimax. 

Next we summarize the variations of some of these 
quantities for different stimulus conditions. They refer, 
unless specified, to contralateral admittance change 
responses; the sound levels refer either to dB hearing 
threshold SPL or to the acoustic reflex threshold 
(ART). 

Fig. 2. Closed-loop SRC (from Wilson and 
McBride, 1978): A Y(%) 
=3~706+2.546 1+0.1358 12-0.004913 I 3 and 
open-loop SRC calculated from the CL-SRC 
assuming a 0.3 dB/dB regulation: A Y(%) 
=3.706+3.639 I+0.2771 12-0.01432 13 
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BBN. This last fact stems certainly from the spatial 
summation in the afferent pathways up to the stape- 
dius motoneuron pool, because a BBN excites the 
whole cochlea. In fact, stimulus-tone frequency is 
hardly encoded at the pool level (Borg 1976) which is in 
clear contrast with the tuning curves of the primary 
auditory neurons. 

The onset to a low frequency tone (<800 Hz) 
causes damped oscillations which are absent at higher 
frequencies. 

the first frequency. The time course suggests a 
depletion of metabolic reserves in the afferent arc 
(Lutman and Martin 1978). Other processes can also 
be responsible (see Sect. 3). The question is still not 
settled. The same goes for the site of adaptation. The 
efferent arc is excluded because the process is 
frequency dependent. It is probably near the superior 
olivary nucleus (Lutman and Martin 1978). Also 
unknown is whether the same site governs the 
recovery process. 

2.4 Adaptation and Recovery 

The AR cannot maintain a steady response to a 
prolonged stimulus. It adapts from Aimax to an as- 
ymptotic value A~, exhibiting a fast phase followed by 
a slow phase. For a BBN, the fast phase lasts about 
4 min, with an asymptotic response of 40-50% Aimax 
(H&u and Carreau 1977). We shall only be interested 
by the fast phase. 

The amount of adaptation is independent of the 
stimulus level when absolute changes of immittance 
are considered (Wilson et al. 1978). When responses are 
expressed as percentage of Ai . . . .  adaptation decreases 
at high intensity for frequencies below 2000 Hz; this 
means that the ratio of Aimax to A~ decreases with 
increasing intensity. Typically (Wilson et al. 1978), for a 
10 dB re:ART BBN, t'1/2 = 18.5 s (standard deviation 
13.1). 

�9 Above 2000 Hz, the majority of studies report no 
dependence of adaptation on intensity within a 20 dB 
range above ART (Silman 1984). 

Adaptation is less pronounced as the frequency is 
lowered. At 2000 Hz, t'~/2 = 14 s while at 500 Hz it is 
greater than 31 s (Wilson et al. 1984). The presence of 
silent intervals inhibits adaptation partly or com- 
pletely. Measures of this "recovery", characterized by 
T,~c, show large variability because recovery is only 
asymptotically complete. The time necessary for a 50% 
recovery T~o(1/2) is more accurate. For a BBN, 
T ~ 6 0  s, while at 2000 Hz it is worth 1-3 s with 
T~o~(1/2),-~250ms (Borg and Odman 1979). Recovery 
seems to be an exponential function of the duration of 
the silent interval (Borg and 13dman 1979; Lalande and 
H&u 1979). 

It is believed (Lutman and Martin 1978) that 
adaptation, in its fast phase, is not due to stapedius 
muscle fatigue. In fact, the stapedius is composed 
mainly of fast resistant (type 2A) muscle fibers (Lyon 
and Maimgren 1982; Teig and Dahl 1972). 
Corroborating this assumption is the following 
experimental evidence: an adapted response can be 
suddenly "reviewed" by modifying the stimulus 
frequency, an indication that the stapedius was intact 
despite adaptation in the afferent pathways specific to 

2.5 Open-Loop and Closed-Loop 

When the feedback loop is closed, the stimulus elicits 
the contraction of both stapedii, thus attenuating the 
input to the cochlea. The loop can be opened in a 
variety of ways. In animals, one can perform a 
myotomy of the ipsilateral stapedius. In humans, the 
stapedius can be paralyzed for a few weeks during 
unilateral Bell's palsy. This permits a comparison on 
the same subject of closed-loop (CL) and open-loop 
(OL) response, which is important in view of the high 
variability of clinical measurements. The loop can also 
be opened by a high frequency sound at which the 
feedback gain is very small, or with a very short pulse 
of sound (<  10 ms) in which case the feedback signal 
cannot attenuate the input because of the response's 
delay. 

The OL response is slower, never oscillatory, but 
the intensity dependence of Tlat and Tri~e still exists. A 
comparison of SRC's in OL and CL for patients with 
Bell's palsy is given in Borg (1968) (see our Fig. 2). A 
faster saturation can be seen in CL, due to another 
nonlinear effect superposed to the normal saturation of 
the reflex response: a decoupling of the incudo- 
stapedial joint at very high stapedius tensions. 

3 Development of the Model 

The neural circuitry of the AR, a knowledge of which is 
essential if a mathematical model is to bear any 
resemblance to reality, has been well studied by BOrg 
(1973a) in the rabbit, although the central portions 
(superior olivary nucleus, etc.) where adaptation is 
thought to occur, remain quite obscure. The direct 
ipsilateral pathways comprise 3 or 4 neurons, the 
contralateral one always 4. Besides other indirect 
polysynaptic pathways, there exist many entry points 
to the reflex arc through which the central nervous 
system (CNS) can influence the AR response. 

It comes as no surprise that the first models of the 
AR proceeded from linear system analysis since that 
was the approach used to model the middle-ear. 
Moller (1961) was probably the first to study the 
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stapedius reflex from an impedance point of view by 
incorporating the stiffened muscle into the middle-ear 
circuit. He also calculated (Moller 1962) the closed- 
loop transfer function of the AR relating impedance 
change to sound pressure at different stimulus fre- 
quencies. He concluded that, at a given intensity and 
frequency, the AR acted as a lowpass filter with a cutoff 
frequency around 5 Hz, and that the oscillations at 
onset were due to the high feedback gain at low 
frequencies. 

Dallos (1964) arrived at the same result for a 110 dB 
BBN. He derived a piecewise linear model to account 
for the URS displayed by the AR in the asymmetry of 
the speed of the onset and offset responses. By using 
external feedback. He rendered the system oscillatory 
and showed the asymmetry of the limit cycle in the 
phase plane. 

Dallos (1973) proposed another model taking into 
account the threshold nonlinearity and the intensity 
dependence of the response, both of which he in- 
corporated into the muscle dynamics. His simulations 
reproduced well the AR nonlinearities, although he 
neglected a few processes in the reflex arc such as 
temporal summation, pool of motor units, ... 

Borg (1973b) remarked that the AR nonlinearities 
were common to many polysynaptic somatomotor 
reflexes. He developed a model of such a reflex and 
applied it to the study of the AR in the rabbit. It 
accounted for the onset-offset asymmetry and the 
intensity dependence of Tlat and T~iso in open and 
closed-loop. Thirty "reflex units" (a reflex unit encom- 
passing properties of the muscle fibers, motoneurons 
and interneurons) of differing characteristics were 
arranged in a parallel path configuration thus doing 
justice to the neuroanatomy and neurophysiology of 
the AR. The model included slow and fast twitch as 
well as phasic units. The input signal they received was 
filtered by the temporal summation, a process long 
known to operate in the afferent arc, and first modeled 
by Zwislocki (1960) as a low pass first order system 
with a 200 ms time constant. 

To best approximate the OL response, the higher 
threshold units, which were either of the fast twitch or 
partly of the phasic type, had shorter time constants 
than the low threshold slow twitch units (with a 
gaussian distribution of thresholds amongst the units). 
This organization is known to occur in motor unit 
pools according to the "size principle", a term coined 
by Henneman (Henneman et al. 1965). 

Borg's model is again piecewise linear. It does not 
include the adaptation and recovery processes. 
Moreover, the units are recruited in an all-or-none 
fashion, a hypothesis he remarks is valid if the firing 
rate of the units can be regarded constant in the major 
part of the dynamic range. 

According to Zwislocki (1960), adaptation has a 
strong influence on temporal summation. He cleverly 
interrelates both in his model. The excitation brought 
by an action potential tapers off exponentially; thus 
temporal summation is accomplished by an imperfect 
integrator (or leaky integrator: see Inbar and Ginat 
1983; Holden 1976). Furthermore, the initial strength 
of an excitation decreases with the number of action 
potentials generated. This form of adaptation is of the 
gain control type (see e.g. Zeevi and Bruckstein 1981). 

Tietze (1969a) obtained an equation describing the 
onset and adaptation, and formulated an electrical 
model of the process (1969b) in which the response 
appears as the sum of two exponentials. This model 
fitted well the data for times less than about 50 s 
(Wilson et al. 1978), but predicts wrongly a null as- 
ymptotic activity. 

3.1 Objectives of the Model 

We wish to incorporate into a model of the type Borg 
proposed the most recent physiological data concern- 
ing the stapedius and the organization of neuromus- 
cular system in general in order to properly simulate 
the recruitement of the motor units in OL and CL. We 
then wish to incorporate the adaptation and recovery 
processes to study their effect on the AR dynamics as 
well as their nonlinearities. 

Evidently, we must restrict ourselves to one stimu- 
lus composition. We shall choose 2000Hz for the 
following reasons: 1) the OL and CL responses are 
known (Borg 1968); 2)adaptation has a relatively 
short half-life (10-20 s), an important factor for com- 
puter time; 3) adaptation does not vary with intensity, 
thus suggesting an intensity independent time con- 
stant; 4) the recovery process has been studied [250 ms 
half-life, according to Borg and 0dman (1979)]. It will 
be interesting to suggest how to extend our model to 
other stimuli. Throughout our model the frequency of 
action potentials will be considered the important 
analog quantity; we shall not study the effect of 
individual action potentials. 

3.2 Neural Transduction and Temporal Summation 

We shall assume, as Borg did, that the input to the 
cochlea is already in decibels, even though logarithmic 
compression occurs in the inner ear. We then consider 
the effect of the stapedius contraction as a summation 
(negative) in log units instead of a multiplication. Also 
the mechanical to neural transduction occuring in the 
cochlea is considered to be mediated by a linear high 
pass system; we thus neglect the rectifying effects of the 
hair cells, their sigmoidal SRC, their very fast adapta- 
tion (see Smith and Brachman 1982), etc. Temporal 
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summation is identical to the one in Borg's model. It is 
a leaky integrator with a 200 ms time constant which 
filters any incoming neural signal of any intensity. The 
step response of this unit gain first order filter is (a step 
corresponding to a unit value of action potential 
frequency in arbitrary units): 

U~u~,(t) = 1 - e x p ( -  t/a), (2) 

where a = 0.2. 
The transfer function is: 

tL om(s )  = l l ( s  + 1/a)  . (3) 

3.3 Model of Adaptation and Recovery Processes 

Three parameters determine the adaptive response: 
1) the rate at onset; 2) the asymptotic value A~; 3) the 
rate of recovery at offset. From Wilson et al. (1984) we 
can estimate Ao~=0.25 Ai . . . .  T~ec(1/2)=250ms and 
t'a/2 = 14 s. Knowing A~ we can deduce the real half-life 
from (1):tl/2 =8.8 s (or a time constant T= 12.7 s). 

We may first try to formulate a model which would 
produce both the adaptation and recovery character- 
istics depending on the value of the input. Although we 
have chosen the temporal summation to precede 
adaptation, their order would be irrelevant if both are 
linear systems. The model must somehow be normal- 
ized so as to preserve the units of the output of the 
temporal summation process. For example, if the input 
is 10 dB, the steady-state output of the summation is 
also 10 dB; after one half-life the output should equal 
6.25 (half-way between 25% and 100% of 10). The 
reason motivating this normalization is that we want 
to calibrate the motor units of the stapedius according 
to the SRC relating decibels to immittance change 
(Sect. 4). 

It is known that cochlear neurons exhibit a two 
phase adaptation; the rapid phase lasts a few millisec- 
onds and the slow phase about 40 ms (Smith and 
Brachman 1982). Duifhuis and Bezemer (1983) have 
given a summary of multiplicative (gain control) and 
additive (feedback) models of adaptation in these 
neurons. In these, the ratio A(O)/A(oo) of the onset and 
asymptotic activities increases with intensity, which 
means more adaptation at high intensity, a behavior 
opposite to that of the AR below 2000 Hz. Eggermont's 
stochastic model of this process (1975) and Schroeder 
and Hall's (1974) synaptic depletion model (of the gain 
control type) also feature the opposite behavior. These 
models were only for the slow phase: the former has an 
intensity independent time constant, but not the latter. 
They also account for other characteristics: sudden rise 
in the neuron activity at onset and a nonzero steady- 
state. More recently, Zeevi and Bruckstein (1981) 
proposed a model to account for two phase adaptation 

in the stretch receptor of the crayfish. The slow phase 
time constant increased while the fast phase one 
decreased, like for the AR below 2000Hz. They 
hypothesized that a linear negative feedback system, 
identified with a self-inhibitory current, is responsible 
for the slow phase, while an adaptive threshold 
(automatic gain control) accounts for the fast phase. 
Their hybrid model unfortunately does not reproduce 
the correct variation of A(O)/A(oo), which would have 
been useful for the AR model. 

But since we are working at 2000 Hz, with an 
intensity independent ratio, and since even the fast 
phase of the AR adaptation is comparatively slow, it is 
tempting to use their linear slow phase model. 

Adaptation of the pupillary light reflex exhibits 
static and dynamic behaviors quite similar to those of 
the AR. For instance the response to a small step of 
light adapts rapidly, a phenomenon termed "pupillary 
escape"; the response adapts very slowly to a strong 
light step: this is "pupillary capture" (Semmlow and 
Chen 1977). Thus the ratio A(O)/A(oo) shows the same 
intensity nonlinearity as for the AR. A linear model has 
been proposed by Stark (1959). His transfer function is 
of the "leadlag" type as is the one of Zeevi and 
Bruckstein (1981), although the latter was derived in a 
less ad hoc fashion. 

The use of this linear process for the AR has a 
serious drawback: the offset response. Equal disconti- 
nuities in the input appear as equal discontinuities 
(with the same sign) in the output, and the output of the 
process is zero for a null input. Thus negative values 
can arise at offset, which precludes any identification 
with action potential frequency. Also, in the absence of 
any input, the output shows generally a spontaneous 
(noisy) activity. At offset, the activity is depressed 
below the noise level, and then recovers to the level 
prior to onset (see e.g. Schroeder and Hall 1974; 
Duifhuis and Bezemer 1983). We have been unable to 
find any evidence that this is the case for the neurons 
involved in AR adaptation. It has been reported (Fisch 
and Schulthess 1963) that noise does exist in the arc, 
which could be related to a resting tonus in the 
stapedius. One must carefully justify a linear additive 
adaptation model. 

Another point of interest is the rate of recovery; in 
all the models quoted here, recovery was much slower 
than adaptation (except for the linear models where the 
rates are equal). In the AR, we know that recovery time 
is about two orders of magnitude faster than adapta- 
tion time. 

We prefer to choose a simple linear process as Stark 
(1959) and Zeevi and Bruckstein (1981) have done. We 
will assign a different time constant (independent of the 
intensity) for onset and offset. The ratio A(O)/A(oo) is 
constant, conforming to most reports at 2000 Hz in a 
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Fig. 3, Linear model of adaptation (Zeevi and Bruckstein 1981) 

limited intensity range; the spontaneous value is zero 
and there is a negative undershoot at offset. We adopt 
the notation of Zeevi and Bruckstein (1981) (see Fig. 3) 
(2 is the firing rate): 

2*(t)=2(t)--gAD[R(t), %] (4) 

= 2(0 -- 2a (t) 2.(t) < 2(0 

= 0 2,(0 => 2 (0 ,  (5) 

% 2 . + 2 . = M R ( t ) ,  (6) 

R(t) = Go2*(t ) . (7) 

The transfer function is 

Had(S ) -- Go(1 + zas)/(1 + MG o + ZaS). (8) 

The response to a pulse of duration x is 

R(t) = F(t) U (t) - F ( t -  x) U (t - x) , (9) 

where U(t) is Heaviside's function and where 

F(t) -- Go 2o ( 1 + M G o ) - t  { 1 -- exp [ - -  t(1 + MGo)/Z.] } 

+ Go2o exp [ -  t(1 + MGo)/% ] . (10) 

Also 

A(O)/A(~)  = 1 + M G  o (11) 

(independent of 2). 
Defining Pa =z ,  and P2 =%/(1 +MGo)  we write: 

Pa = kFo. off -[- P1 (off)' (i2) 

where 

Fon off = 1 o n s e t  

= 0 offset. 

Values of k and P1 (off) will be calculated in Sect. 4. 

3.4 Model of the Stapedius Neuromuscular System 

3.4.1 Properties of  the Stapedius (ST) .  The human 
stapedius is a penniform skeletal muscle measuring 
6-7 mm in length (the smallest in the human body). 
The nerve fiber diameter distribution is nearly ex- 
ponential (Blevins 1968). The histogram of motor unit 
(MU) diameters in man has not been published to our 
knowledge. In view of Henneman's "size principle" 
(1965, 1981), according to which a small nerve fiber 
innervates a small motor unit having a slow and weak 
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contraction and a low recruitment threshold and 
tetanus-twitch ratio, we expect this histogram to be 
similar to the one for nerve fibers. 

About 250 nerve fibers innervate some 1000 muscle 
fibers (Blevins 1967). The proportion of sensory fibers 
is not known, and the same can be said for the presence 
of spindles. We will therefore neglect proprioception. 
Supposing however that half the fibers are sensory this 
gives an innervation ratio of about  1 to 7, with 
approximately 160 MUs. The cat stapedius (ST) is 
quite similar to man's (Blevins 1964, 1967) and we will 
use the abundant data on it for our model. 

The ST contraction is isometric (Teig 1972a) with a 
tetanus of 13.9 g in the cat and 15.4 g in the rabbit. We 
will suppose the tetanus to be 20 g in man, that the M U  
twitches are distributed (like in the cat) exponentially 
between 10 and 200 ms (Teig 1972b) and the contrac- 
tion times between 10 and 50 ms (Teig reports values 
between 14 and 39 ms in the cat). We thus attribute a 
slightly stronger force to the human ST, and as long as 
the absolute values of twitch and tetanus tensions are 
coherent among themselves, they should yield reason- 
able responses when expressed in relative units. 

We consider only twitch contractions (those involv- 
ing the propagation of an action potential on the 
sarcolemma). We neglect phasic contractions (in which 
the tension eventually goes to zero even with a 
sustained firing rate in the motoneuron or at its input) 
because 1) Borg has shown that the AR nonlinearities 
can be reproduced without them; 2)we want to 
decouple the effects of AR adaptation and of stapedius 
fatigue to study adaptation; 3) the models which we 
shall refer to comprise only twitch contracting units; 
4) as we have seen in Sect. 2, there is a predominance of 
fast fatigue resistant fibers in the cat ST. Teig (1972b) 
also has reported tetanus-twitch ratios between 2.8 
and 4.2 in the cat. 

3.4.2 Organization of  Motoneuron Pool and Motor 
Units. Important facts on the organization of 
motoneuron pools are revealed in the study by Milner- 
Brown et al. (1973) of the fast isometric contractions of 
the first dorsal interosseous (FDI) muscle of the hand. 
The total muscle tension Fti at which the i t~ M U  is 
recruited depends linearly on its twitch tension gi- At 
high input levels to the pool, tension is increased not by 
recruitment but by rate-coding. 

We assume the ST neuromuscular system to obey 
rigidly the size principle and the Milner-Brown et al. 
relations, as has done Christakos (1982a, b) for the 
FDI. To facilitate numerical simulations, we group the 
fibers by four, reducing their number to 40, and 
distribute their tensions exponentially (cf. Milner- 
Brown et al. 1973) in the interval [10, 200] mg accord- 
ing to the simple rule: the relative frequency of a 
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tens ion  va lue  is ha lved  for every 4 0 m g  increase.  
N o r m a l i z i n g  the re la t ive  f requency  d i s t r i bu t i on  so tha t  
its in tegra l  over  the  tens ion  in te rva l  equals  40, we 
o b t a i n  the  n u m b e r  of  fibers giving tens ions  less t han  o r  
equa l  to  g a n d  m o r e  t han  10rag :  

N(g) = 4 9 . 4 [ e - ~  e -  17"3~ . (13) 

Inve r t ing  this r e l a t ion  gives the  value  ofgi  for  1 < i < 40. 
These  values,  mul t ip l i ed  by  4 because  of  the g rouping ,  
a p p e a r  in T a b l e  1 a long  with  o the r  values  to be  
calcula ted.  

W e  assume l ike Chr i s t akos  (1982b) tha t :  1 ) t h e  
uni ts  a re  i n d e p e n d e n t l y  ac t iva ted ;  2) a t  a given tens ion  

the n u m b e r  of  act ive M U s  and  the average  ac t ion  
po ten t i a l  f requencies a re  cons tan t ,  a n d  tha t  the  length  
and  speed of  the fibers va ry  very  l i t t le a r o u n d  their  
n o m i n a l  values;  3) the  tens ion  can  va ry  f rom min ima l  
to m o d e r a t e l y  high;  4) the  last  M U  recrui ts  a t  75% of  
the  te tanus  tens ion  (15 g in ou r  case). The  con t r ac t i on  
t ime 71(s) of  a twi tch  is given by  (Chr i s takos  1982b): 

7 i = 0 . 0 4 7 8 -  0.0322 loglo[18.75  gi]. (14) 

They  a p p e a r  in Tab le  1. The  first two cons tan t s  in 
this  re la t ion  are  ca lcu la ted  f rom ?imin and  Yimax and  
18.75 is the  s lope of  the l inear  equa t ion  re la t ing  M U  
twi tch  tens ion  to M U  rec ru i tmen t  level: Fa = Bgi. B is 

Table 1. Stapedius motor units. OL and CL refer to open-loop and closed-loop respectively. CT is the contraction time and TTR is the 
tetanus-twitch ratio. See text for the detail of calculations 

Fiber Twitch F-recruit. I-rec (OL) I-rec (CL) co CT S TTR 
No. mg % Fma x dB re:ART dB re:ART rad/s ms g/dB - 

1 45.6 4.28 0.153 0,220 18,8 50.0 0.743 2.41 
2 51.4 4.82 0.301 0.428 19.4 48.3 0,775 2.14 
3 57.3 5.37 0.443 0.636 20.0 46.8 0,770 1,99 
4 63.4 5,94 0.591 0.842 20.7 45.4 0.807 1.85 
5 69.6 6.53 0.736 1.05 21.3 44.1 0.812 1.74 
6 76.1 7,13 0,885 1.26 21,9 42.8 0.827 1.63 
7 82.7 7,75 1.04 1.47 22.5 41.7 0.840 1.52 
8 89.4 8.38 1.18 1.67 23.1 40.6 0.852 1.48 
9 96A 9.04 1.34 1.91 23.7 39.5 0.846 1.37 

10 104 9.75 1.50 2.14 24.4 38.5 0.906 1.39 
11 111 10,4 1.66 2,36 24.9 37.5 0.894 1.30 
12 119 11.2 1.82 2.59 25.6 36.6 0.893 1.26 
13 127 11.9 1.98 2.83 26,3 35.7 0.928 1.21 
14 135 12.7 2.15 3.07 27.0 34.8 0.941 1.18 
15 144 13.5 2.32 3.32 27.7 33.9 0.938 1.16 
16 152 14.3 2.50 3.57 28.3 33.2 0.967 1.14 
17 162 15.2 2.68 3.83 29.0 32.3 0.952 1.11 
18 171 16.0 2.87 4.09 29.8 31.5 0.979 1.10 
19 181 17.0 3.06 4.35 30.6 30.7 1.00 1.08 
20 192 18.0 3.25 4.65 31.4 29.9 1.01 1.07 
21 203 19.0 3.46 4.94 32.2 29.1 1.01 1.07 
22 214 20.1 3.67 5.25 33.0 28.4 1.02 1.05 
23 226 21.2 3.89 5.56 34.0 27.6 1.03 1.06 
24 239 22.4 4.13 5 .89  35.0 26.8 1.05 1.07 
25 253 23.7 4.37 6.24 35.9 26.0 1.05 1.07 
26 267 25.0 4.63 6.61 37.1 25.3 1.06 1.08 
27 283 26.5 4.90 7.00 38.3 24.5 1.06 1.09 
28 299 28.0 5.19 7.41 39.6 Z3.7 1.08 1.12 
29 317 29.7 5.50 7.85 41.0 22.9 1.09 1.14 
30 336 31.5 5.83 8.33 42.4 22.1 1.08 1.17 
31 357 33.5 6.19 8.85 44.0 21.2 1.09 1.21 
32 380 35.6 6.59 9.42 46.0 20.3 1.08 1.26 
33 406 38.1 7.04 10.1 48.1 19.4 1.08 1.33 
34 434 40.7 7.53 10.8 50.7 18.5 1.07 1.42 
35 467 43.8 8.11 11.6 53.6 17.5 1.05 1.54 
36 505 47.3 8.79 12.6 57.2 16.4 1.02 1.71 
37 551 51.7 9.64 13.8 61.7 15.1 0.961 1.94 
38 609 57.1 10.8 15.4 68.0 13.7 0.857 2.37 
39 685 64.2 12.4 17.8 76.9 12.1 0.508 3.14 
40 800 75.0 16.7 23.8 93.8 9.9 0.500 4.00 



calculated knowing that Ft40 = Bg4o = B(0.8) = 15 g, 
and this permits us to calculate the recruitment level of 
each MU (see Table 1). Notice that the recruitment 
level of the first MU is nonzero; we must assume that 
there is a rest tension not accounted for by the 40 fibers 
of the model. 

3.4.3 Dynamics of Muscle Contraction. The twitch 
response has been shown to resemble the impulse 
response of a second order system at a given firing rate 
and length (Christakos 1982a). Inbar and Ginat (1983) 
derive a third order transfer function for the twitch by 
making explicit the muscle's mechanical components. 
The internal force generating process is assumed to be 
second order. Of the global process this can also be 
true if one neglects tendon filtering and considers only 
deviations from a rest tension in an isometric contrac- 
tion. We thus express the twitch response of a MU in 
the Laplace domain as: 

s = Ki/(s 2 + 2~is + co2) (15) 

(Ki constant of the i th MU) .  

gi(t) = (KJ2co,F/) {exp -coit  (~,--/~) 

- e x p -  co,t (~f + F~)}, (16) 

where Fi = (42 - 1) 1/2. The contraction time is given by 

Yi = (1/2cod~) In {(~i + Fi)/({i- Fi)}. (17) 

Christakos (1982b) simulates contraction by cal- 
culating the effect of each action potential. However, in 
a model with feedback, it is preferable to  consider the 
analog value of firing frequency and thus to simulate 
contraction by the response to a step of that frequency 
value. We shall also consider the response linear (4 and 
co independent of firing rate), The response to a firing 
rate 2~ step is 

Gi(t ) = {,~iKJ2co~ F~(Fi-- ~i)} [exp - co~t (~i--/~) -- 1] 

+ {2iKJ2co 2 Fi(F/+ ~i)} [-exp" coit (~i + Fi) - 1]. 
(18) 

We next establish the importance of rate-coding in 
our model. Borg (1973b) chose to neglect rate-coding 
altogether, while Christakos (1982b) used a linear 
variation of firing rate with total muscle tension. It is 
known that MUs recruit and saturate, but little 
knowledge on rate-coding properties is available. We 
propose that a MU increases its tension linearly with 
increasing input, and that it saturates at the recruit- 
ment level of the next MU. This "staircase recruit- 
ment" approach probably does not do justice to the 
real system, but it is intermediate between those of 
Borg and Christakos, and it can easily accommodate 
new data on rate-coding. 
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S~ is defined as the rate-coding in g/dB. It is the ratio 
DTJD~; DTi is the tension unit (i) must produce to 
recruit unit (i + 1) and it is equal to Fi+ 1 - F i ,  where F~ 
is the recruitment level in grams; D~ is the correspond- 
ing input increase in dB equal to I~+ ~ -I~,  I being the 
recruitment level in decibels. 

In the next section we determine the remaining 
model parameters and convert the recruitment levels 
from grams to decibels. 

4 Calibration and Parameter Identification 

Figure 4 shows our model in block-diagram form. The 
graph inside each block represents the step response or 
the static characteristic of the process. The 40 MUs are 
organized in the parameter distributed parallel path- 
way configuration at the output of the adaptation- 
recovery processes. Tension is applied to the stapes 
after a delay z9 and multiplication by the feedback 
gain. 

A value of 75 ms is assigned to zD, which is slightly 
inferior to the shortest latency time observed at 
2000Hz (cf. Silman 1984). It is obtained at high 
intensity where the contraction is the fastest. It does 
not comprise contraction time which is handled by the 
model of the ST. 

To simulate the URS manifested by the slower 
offset, the co, values at onset are worth three times their 
offset values (cf. Dallos' transfer functions 1964). 

Feedback gain is forced to zero at offset, because 
the system must return to the resting state without any 
influence of ST tension. If the gain were not zero at 
offset, input  would be negative instead of zero, which 
would incorrectly accelerate the offset. 

4.1 Open-Loop Calibration of the Stapedius 

The Milner-Brown et al. (1973) relation specifies that a 
MU recruits when the total muscle tension has reached 
a certain value. This empirical relation is valid math- 
ematically, but it is not causal physiologically because 
a MU recruits only when the input to its motoneuron 
has reached a certain value. In order to preserve this 
relation, we must convert total muscle tension to 
stimulus input in decibels which is directly related to 
motoneuron units. This is done via the SRC at 
2000 Hz. We neglect adaptation and temporal summa- 
tion in the calibration because of their small effect on 
Aim,~ (see Sect. 4.3). 

The closed-loop SRC is useless because we would 
have to find a way of writing the peak output Aimax as a 
function of the input, and this would obviously require 
a knowledge of MU recruitment and saturation values, 
which is the initial problem. A further complication is 
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the presence of feedback: the input to each MU is 
dependent upon the output of all of them. 

In order to calibrate the recruitment levels in 
decibels, we suggest to use the open-loop SRC which 
can be calculated from Borg's (1968) study of patients 
with Bell's palsy. The OL-SRC is higher than the 
CL-SRC (see Fig. 2). Attenuation is a measure of the 
horizontal distance between the two curves, If attenua- 
tion increases linearly with intensity, we say that the 
regulation expressed in dB attenuation per dB increase 
in intensity, is constant. Linear feedback systems 
obviously exhibit a constant regulation, but this can 
also be the case for certain ranges of input in nonlinear 
systems (for which the SRCs are nonlinear). This is the 
case for the AR in a range greater than 20 dB. At 
2000Hz, the data of Borg (1968, 1971) shows a 
0.2--0.3dB/dB regulation at 2000Hz, while it is 
0.6--0.7 dB/dB at 500 Hz. We use the value of 0.3 dB/dB 
at 2000 Hz to calculate the open-loop SRC from the 
closed-loop SRC of Wilson and McBride (1978) ob- 
tained with a 660 Hz probe tone (which is close to the 
800 Hz tone used by Borg (1968) and by Borg and 
(3dman (1979) for the study of recovery). 

The CL-SRC and the calculated OL-SRC appear 
in Fig. 2. In CL, the stimulus varies from 0 to 24 dB 
corresponding to a response of 0 to 75% of the 
maximal obtainable response. In OL, the same range 
of response is covered for inputs between 0 and 

16.6dB. The response above 75% is uninteresting 
because of the incudostapedial joint nonlinearity and 
because Borg and Odman (1979) study adaptation and 
recovery with Aim,x=75% at 2000 Hz. It is also the 
tension at which the last MU is recruited in our model. 
In fact, knowing the SRC in OL and CL, it is possible 
to calculate the recruitment levels in decibels by 
identifying the 75% response with the 15 g tension. 

These values are shown in Table 1, along with the 
rate-coding values S~ which can also be calculated. The 
last column contains the tetanus-twitch ratios varying 
between 1 and 4, which is acceptable in view of Teig's 
data (1972b). The ST calibration produces the 
OL-SRC of Fig. 5. It is a piecewise linearization of the 
calculated one in Fig. 2. This is apparent only at high 
intensity, e.g. when the 39 th unit recruits at 64.2% and 
increases its tension linearly thereafter. 

4.2 Feedback Gain 

Mainly because of the incudostapedial joint nonlinear- 
ity the feedback gain can be assumed constant only in a 
25 dB range (where regulation is constant). We simu- 
late the CL response at a given intensity with different 
gains and converge on the value producing the proper 
attenuation at that intensity. A gain of 0.49 produced a 
75% response with a 24 dB input. Keeping this value, 
we can reproduce the whole closed-loop SRC with less 
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than a 4% error, demonstrating the coherence of our 
constant gain calibration of the ST. 

4.3 Calibration of Adaptation Processes 

The model should produce a ratio A(O)/A(oo) = 4 with 
za=12.7s.  Using (11) we can simulate the response 
with MGo = 3. Simulations (see Sect. 5) reveal that, in 
open loop, the response does exhibit these characterist- 
ics; however in closed-loop the ratio is less than 4 and 
za > 12.7. The effect is illustrated with different param- 
eters in Fig. 7. Negative feedback increases the time 
constant of adaptation�9 To substantiate this effect, we 
refer to the simpler system of Fig. 6, comprising the 
adaptation prooess alone with a forward gain C, 
representing the static behavior of the ST, and a 
feedback gain G=0.49.  The response to a step E is: 

Y(O = [~C/(1 + GC)] 

�9 {1 - e x p  [ -  t(1 + GC)/(P2 + GCPI)]} 

+ [ECP~/(P2 + GCP~)] 

�9 exp [ -  t(1 + GC)/(P2 + GCP~). (19) 

Since we have chosen P2 < PI (P1 = %, 
P2 = %/(1 + MGo) ) the CL time constant 
TCL = (P2 + GCP1)/(1 + GC) is greater than the OL one 
(P2), and also y(0)/y(co) = PI(1 + GC)/(P 2 + GCP~) is 
less than the OL  ratio PI/P2. 

~Y 
X=E L~ 

Fig. 6. Feedback system with leadlag adaptation, direct gain and 
feedback gain 

Having analytically justified the increase of za in 
CL, it remains to find the right za to produce a 12.7 s 
time constant in CL. We can solve for TCL--- 12.7 and 
y(O)/y(oo)=4; the solution is P l = 5 0 . S s  and 
P1=12.7-38.1 (GC). The constant C simulates the 
average slope of the ST SRC in OL. To evaluate it, we 
consider a 10 dB step, for which Aim,~ = 37.8% in CL, 
corresponding to 7.57 g. The steady-state value should 
be 4 times smaller: 1.89 g. From (19): 
y (o o )=1 .8 9 =1 0  C/(I+GC) yielding C=0.21,  and 
P2=8.78s ,  MGo=4.79.  This means that in OL, % 
should equal 8.78 s (or tl/2 = 6.1 s) with 
y(O)/y(oo) = 5.79. 

Figure 7 shows the response of the circuit in Fig. 6 
to 7dB in OL and 10dB in CL (each yielding 
Aim,x-= 37.8% without temporal summation). We see 
that the summation reduces Aim,x by about  5 % (e.g. to 
35.7 in CL), but it does not alter the adaptation time 
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constant significantly. The small reduction of Airaa x 

justifies our neglect of temporal summation in the 
calibration of the ST in OL and CL. 

For these reasons we will assume in the following 
that Aimax occurs at t = 0  (like in the absence of 
temporal summation) and thus we will measure half- 
life from t = 0 (we neglect zD). Of course this is for 
mathematical rigor, and it is not practical in experi- 
ments because one cannot infer Aimax = 37.8% from a 
measurement of 35.7%. 

Returning to Fig. 7, we find that the y(O)/y(c~) 
ratios and time constants are as predicted, in OL as in 
CL. The next step is to incorporate this "calibrated 
adaptation" in the system containing the real ST with 
the sigmoidal SRC instead of the constant C which 
only scaled the adaptation output. It should be 
obvious that an exponential adaptation seen through 
this SRC now has nothing of an exponential. 

To calculate the time course of the adaptation 
process itself, we must deduce its output by correcting 
the tension values with the OL-SRC: this curve always 
establishes the link between the adaptation and ST 
outputs, in CL as in OL. (Actually our linearized 
OL-SRC would be the right choice, but there is only a 
slight difference between it and the OL-SRC for which 
we have an analytical expression). For example, in OL, 
at t = 0  A~,,~=37.8% corresponds to a 7 dB adapta- 
tion output (this of course for a 7 dB step input). In 
steady-state (Fig. 8) A(ec)=8.48% corresponding to 
1.21 dB, giving exactly the right A(O)/A(oo) ratio (5.79). 

Midway, at 4.10 dB (giving 22.3% tension) one reads 
off tl/2 ~ 6.3 s, which is close to the expected value of 
6.1s. 

Without correcting with the OL-SRC and associat- 
ing tl/2 to the ST output halfway between 37.8% and 
(37.8/5.79)%, one also finds tl/2 .~ 6.3 s. Why then this 
tedious correction? It becomes necessary at intensities 
out of the linear range of the OL-SRC. Figure 9 shows 
the 75% response to a 16.6 dB input in OL and 24 dB 
input in CL. In OL, without correction tl/2~8.75 s 
instead of 6.1 (and this corresponds to l l .0s  when 
measured as in the literature, at 50% corresponding to 
37.5 %). Without correction, half-lives appear longer at 
high intensity. We shall return to this important point 
in the discussion. 

These conclusions are equally valid in CL. At 10 dB 
(Fig. 8) tl/2 ~ 7.2 s with or without correction, and at 
24 dB (Fig. 9) t~/2 ~ 11.0 s without correction instead of 
7.2 s. Notice that the corrected values do not corre- 
spond to the expected half-•e of 8.8 s (z = 12.7 s). 

If we replace the ST model with a static nonlinear- 
ity in the form of the third degree polynomial we used 
to fit the OL-SRC, we obtain the same behavior. This 
makes sense intuitively because the muscle dynamics 
are very fast and thus hardly influence adaptation. We 
conclude that the nonlinear SRC is responsible for the 
7.2-8.8 discrepancy. 

Upon closer look, the process is not exactly 
exponential because the feedback to the adaptation is 
not proportional to its output but filtered by the 
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nonlinear SRC. We can only measure a pseudo half-life 
in CL. In fact, for 10 dB (as in Fig. 8), a 100 s simulation 
revealed a 1.56 dB steady state (obtained by correcting 
the output with the OL-SRC) instead of 1.75 dB (7/4). 

This corresponds to a pseudo half-life of  7.5 s, again 
inferior to 8.8 s. 

Adaptation outputs is intrinsically exponential (for 
step inputs). This is also true in the whole  reflex model  
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in OL; in CL, it is true only for a constant SRC slope, 
not for the real sigmoidal SRC. 

We keep our calibration as it stands because it 
illustrates the effect of feedback on r, and gives values 
close to the expected ones. 

4.4 Calibration of the Recovery Process 

From the piecewise linear model in 3.3, 

Tre e = Za/(1 + M Go) = P I (off)/(1 + M Go) , (20) 

where we distinguish between P1 <off) and P~ <o~) = 50.8 s 
determined in Sect. 4.3. Since z~r ms, Pt(off) 
=0 .36 (1+MGo)=2 .26  and k = 5 0 . 8 - 2 . 2 6 = 4 8 . 5  
so that 

P~ =2.26+48.5 (Fonoff) . (21) 

The negative output of this process is forced to zero by 
the MU thresholds�9 

t 
Xad (t)  = I hsom (t  - -  z) [ i (z)  - -  G R s (z ) ]  

o 
t 

�9 d r -  ~ g~d( t -z )  X,d(Z)dz. (35) 
0 

The system appears as two nonlinear coupled 
integral equations with input dependent parameters. 
These were simulated on a IBM SYS-370 using the 
Continuous System Modeling Program CSMPIII,  
which seemed the most appropriate to treat the 
nonlinearities and  reveal the fine structure of MU 
recruitment. We found the fix step 4 th order Runge- 
Kutta algorithm to be faster than the more indicated 
Stiff method. We shortened the step-size around the 
input discontinuities. 

6 Discussion 

5 Simulations 

Referring to Fig. 4, we can write down the equations of 
the model (we have included a mechanical coupling 
transfer function - see discussion)�9 In the Laplace 
domain we have 

E = I -  GRS, (22) 

X =  H~omE , (23) 

Xad = n a a x  = (Go 1 + G,d)- X X , (24) 

YTI-IR,(s) = THR,[X ,d  ] , (25) 

YS A T~ (s) = S A T~ [ Y THR,  (s)], (26) 

Z, = YSA T~(s) F, ,  (27) 

40 
Z T O T =  Z Z , ,  (28) 

i=1 

Z T E N D  = HtenaZ TO T,  (29) 

S = Z T E N D  (exp- szo), (30) 

H,om = 1/(1 +s%),  (31) 

an. = M/(1 + sT.), (32) 

Had = Go(1 + sT,)/(1 + MGo + sT.). (33) 

Defining Y T H R i  and YSAT~ respectively as the 
threshold and saturation operators acting on a func- 
tion, we can write the global time domain equations: 

t-~D 40 x 
s ( t ) =  ~ h t e n a ( t - - x - - z D )  Y', ~gi(z)dz Y S A T  i 

o i=1 o 

�9 { Y T H R 1  "IXi~hsom(X-Z-~)[ i (~) -GRs(oO] 

l} �9 dot-  I g . , ( x - - z - - f f )  Xad(t')dt' dx ,  (34) 
0 

6.1 General Discussion 

Our model seems to combine enough ingredients to 
reproduce the fundamental behaviors of the AR at 
2000 Hz. In CL, Tl.t falls from 0.17s to 0.14s and TS 
from 0.65 s to 0.56 s when the intensity increases from 4 
to 24 dB (Fig. 10B). The same behavior is observed in 
OL (Fig. 10A), a property related to the distributed 
nature of the parallel pathways. 

Feedback is seen to accelerate the response and to 
decrease Aima~- At high frequencies, the overdamped 
response is the result of two synergetic effects: a low 
feedback gain and a rapid adaptation (we shall see 
further that the two are related). Figure 1i illustrates 
the oscillations produced in CL when the feedback 
gain is raised to G = 2. 

For intensities going from 4 to 24 dB, T~o 1 drops 
from 660 to 460ms while Tri~e varies from 260 to 
170 ms, which properly simulated URS (see Sect. 2). 

Our value of TS (0.6 s) is low compared to 2.7 s 
reported by Wilson et al. (1984) at 2000 Hz (even 
though their standard deviations is 90%). This is 
probably due to the absence of mechanical coupling (at 
the tendon). We have found that by assigning a 400 ms 
time constant to a first order system simulating this 
coupling (Inbar and Ginat 1983), TS can be well over 
1 s, without a significant influence on adaptation and 
recovery. It is interesting to notice that such a time 
constant would make the ST the slowest component of 
the AR, the one which determines the low frequency 
response (cutoff ~ 7 Hz - see Sect. 2). 

The rigid calibration procedure at 2000 Hz may 
appear as a major shortcoming if one wishes to extend 
the model to other stimuli�9 The efforts is warranted 
when precise intensity dependent effects are the object 
of study. For another stimulus, a new calibration of the 
force levels in decibels would have to be done with the 
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corresponding SRC; however the recruitment levels in 
grams would remain unchanged, because they are a 
property of the stapedius. 

6.2 Discussion of the Adaptation Model 

Ignoring the precise site and mechanism of adaptation 
we chose to model it by a linear system in which there is 
no noise (zero input entails zero output). However, the 
first MU recruits at 0.854g (Ftl=Bgl), a level we 
assume is produced by noise or rest tonus. We remark 
that this is also the case in the SRC; for example, in 
Wilson and McBride (1978), the admittance change is 
3.7% at ART. 

In Sect.4.3, it was shown that the higher the 
feedback gain, the longer the time constant of adapta- 
tion. This is conceivable intuitively since negative 
feedback opposes output variations. Our calculations 
predict that the adaptation time constant in open- 
loop is 6-7 s at 2000 Hz, with a ratio A(O)/A(c~) ~ 5.8. 

It is known (e.g. Wilson et al. 1984) that 4, in CL 
increases when stimulus frequency decreases. Also, z, is 
proportional to the feedback gain. Since feedback gain 
is higher at low frequencies, we conclude from our 
model that the frequency dependence of the adaptation 
time constant is due to the frequency dependence of the 
feedback gain, a property of the middle ear, and is not a 
property of the neural circuits responsible for 
adaptation. 

This would require either that the process is 1) the 
same in every afferent frequency specific pathway or 2) 
located at a level where frequency is no more encoded. 
However we know (Sect. 2) that the adapted response 
can be revived by a change of frequency; this fact lends 
support to the first possibility. 

Experimental data agree on the intensity inde- 
pendence of "c, and A(O)/A(~) below 2000 Hz. Our 
simulations show however that without correcting 
with the OL-SRC, "(7 a increases at higher intensity [and 
A(O)/A(~) decreases], be it in OL or in CL. This may 
explain the intensity dependence reported in the 
literature at frequencies below 2000 Hz and the am- 
biguity in the 2000-4000 Hz range. Referring to Fig. 12 
and reasoning in OL, we see the exponential adapta- 
tion filtered by the OL-SRC. The output is obviously 
not exponential. Let us consider the linearized 
OL-SRC used for our simulation (Fig. 12C). The 
adaptation output R(0) is converted to a tension F(0). 
In steady state, R(~)=R(0)/5.79 produces F(~) .  If 
the tangent at (R(0), F(0)) is taken as the real SRC, the 
asymptotic force is F ' (~) .  Knowing the equation of 
this tangent, one could deduce the correct values of "Ca 
and of R(O)/R(~). 

But the slope changes, and F ' (~ )  decreases so the 
exponential is scaled differently as time goes on. The 
effect on uncorrected measurements (or on the t5o% 
reported in the literature) is an increase of za with 
intensity. This appears clearly and somewhat 
artificially in Fig. 9 where one sees the change in 
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Fig. 12A-C. Intensity dependence 
of  adaptation rate. R(t) refers to 
the adaptation output in db at 
time t, and F(t) refers to the 
corresponding tension. A Output 
of  adaptation process. B Open- 
loop SRC. C Linearized version of 
the OL-SRC 

scaling when the 39 th MU drops out at 64%; in fact 
the rate-coding $39=0.508, while $38=0.857. The 
effect is visible at 2000 Hz because in the range of 
study our SRC is nonlinear. It should be even more 
pronounced at low frequencies where the saturation 
of the response occurs earlier. 

Our second conclusion is the following: the sigmoi- 
dal SRC is responsible for the more sustained response 
(longer %) at high intensities and low frequencies. Of 
course our conclusions are contingent on the choice of 
a linear system exhibiting an exponential step response 
for adaptation. A nonlinear model could also account 
for the behaviors. For example, it may be that the AR 
has MUs for which z, varies inversely with recruitment 
level. The model we have chosen is referred to as a "self 
inhibitory feedback current model" by Zeevi and 
Bruckstein (1981) in which an electrogenic Na § pump 
generates a self inhibitory current, producing slow 
adaptation transients (see also Fohlmeister 1979). 

Another possibility is a feedforward model as used 
by Semmlow and Chen (1977) to account for the 

pupillary escape and capture. This more complicated 
model uses low gain feedforward pathways short- 
circuiting the adaptation processes (slow and fast). 
They relate this bypass to crosstalk between the 
pathways. One cannot refute the plausibility of such a 
process in view of the complexity of the neural circuitry 
involved. 

6.3 Discussion of the Recovery Model 

The mechanisms governing recovery are even more 
obscure than those responsible for adaptation. The 
striking feature of recovery is its speed, a property none 
of the models studied could reproduce. We have 
assumed that recovery does not affect the adaptative 
phase, but they are probably intertwined. It may be 
that adaptation is faster than recovery, as in cochlear 
neurons, but that it is slowed down by another process. 
This question cannot be resolved by our model. It is 
possible, as Borg and (3dman have pointed out (1979), 
that adaptation and recovery balance each other out 
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partially, but are based on different mechanisms 
operating in separate sites. 

The negative values are problematic, and refine- 
ments towards nonlinear models are certainly needed. 
However, our main concern is the presence of a 
memory of the last onset, even though the output is 
shorted to zero at offset. 

The exponential memory determines the level that 
the response to the next onset Bi,,a x will reach. It should 
equal Ai,,ax if the silence lasts many recovery time 
constants. This is illustrated in Fig. 13 where pauses of 
different lengths occur at 40% (as in Borg and 0dman 
1979). Figure 14 compares recovery with a 1-s pause at 
60% (t= 5.5 s) and 40% (t = 15 s). It is nearly the same 
in both cases, meaning it is almost independent of pre- 
offset level when the silence is long enough. 

Finally, we notice on the 60% curve of Fig. 14 that 
recovery becomes quite rapidly constant (within 2 
pauses) and that a stimulus with periodic silent inter- 
vals does produce a more sustained response. 

7 Conclusion 

Our model of the AR in man has been developed to 
properly account for the open-loop and closet-loop 
nonlinearities at 2000 Hz in order to study the adapta- 
tion nonlinearities. The parameter distribution to the 
parallel pathways in accordance with Henneman's size 
principle and the relations of Milner-Brown et al. 
produced a staircase recruitment of the ST MUs 
resulting in a piecewise linearization of the OL-SRC. 

The key factor in the calibration was the opening of the 
feedback loop with Borg's 0.3 dB/dB regulation value. 

Our analysis permitted us to explain two adapta- 
tion nonlinearities, within the hypothesis of a linear 
system to model it: the frequency and intensity de- 
pendence of the adaptation rate, manifestations re- 
spectively of the frequency dependence of the feedback 
gain and of the sigmoidal SRC. 

Open-loop measurements are highly indicated to 
verify the model predictions relative to the frequency 
independence of the open-loop adaptation rate. We 
could verify this by redoing our calibration at 500 Hz 
for example, and verifying whether the same constant 
Za~6--7 S can account for the slow closed-loop 
adaptation rate. 

We must insist on the importance of knowing the 
asymptotic activity and the SRC to characterize 
central processes of the arc such as adaptation. There is 
a large gap between our way of measuring adaptation 
rate (or pseudo half-life in CL) and the methods 
reported in the literature. In fact, a prime motivation of 
this work has been to sensitize clinicians to the physical 
quantities relevant in the modeling context. We remain 
aware, however, of such practical difficulties as the 
large variability and drift in the results, of the complica- 
tions involved in the determination of an asymptotic 
response, etc. 

It may turn out that only a macroscopic descrip- 
tion of the neural activity of adaptation and recovery, 
based on sound neurophysiological evidence, will 
eventually elucidate their mechanisms. We hope the 
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"exper iments"  c o n d u c t e d  on  this m o d e l  wiU suggest  
new exper imen ta l  p rocedures  while s t imula t ing  fur ther  
theore t ica l  studies.  
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List of Abbreviations 

ART: Acoustic reflex 
BBN: Broadband noise 
CL: Closed-loop 
CNS: Central nervous system 
CSMP: Continuous system modeling program 
EMG: Electromyogram 
FDI: First dorsal interosseous 
MU: Motor unit 
OL: Open-loop 
SPL: Sound pressure level 
SRC: Stimulus-response curve 
ST: Stapedius 
TS: Summation time 
URS: Unidirectional rate sensitivity 
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