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In many network models of interacting units such as cells or insects, the coupling
coefficients between units are independent of the state of the units. Here we ana-
lyze the temporal behavior of units that can switch between two ‘category’ states
according to rules that involvecategory-dependent coupling coefficients. The be-
haviors of the category populations resulting from the asynchronous random up-
dating of units are first classified according to the signs of the coupling coefficients
using numerical simulations. They range from isolated fixed points to lines of
fixed points and stochastic attractors. These behaviors are then explained analyt-
ically using iterated function systems and birth–death jump processes. The main
inspiration for our work comes from studies of non-hierarchical task allocation
in, e.g., harvester ant colonies where temporal fluctuations in the numbers of ants
engaged in various tasks occur as circumstances require and depend on interac-
tions between ants. We identify interaction types that produce quick recovery from
perturbations to an asymptotic behavior whose characteristics are function of the
coupling coefficients between ants as well as between ants and their environment.
We also compute analytically the probability density of the population numbers,
and show that perturbations in our model decay twice as fast as in a model with
random switching dynamics. A subset of the interaction types between ants yields
intrinsic stochastic asymptotic behaviors which could account for some of the ex-
perimentally observed fluctuations. Such noisy trajectories are shown to be ran-
dom walks with state-dependent biases in the ‘category population’ phase space.
With an external stimulus, the parameters of the category-switching rules become
time-dependent. Depending on the growth rate of the stimulus in comparison to
its population-dependent decay rate, the dynamics may qualitatively differ from
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the case without stimulus. Our simple two-category model provides a framework
for understanding the rich variety of behaviors in network dynamics with state-
dependent coupling coefficients, and especially in task allocation processes with
many tasks.

c© 2001 Society for Mathematical Biology

1. INTRODUCTION

1.1. Non-hierarchical task allocation. Task allocation is a process that directs
individuals or units into particular categories or modes of behaviors (tasks), with-
out centralized control. Instead, simple local information exchanged between units
or between a unit and its environment allows the system to beneficially regulate the
number of individuals carrying out various tasks and properly respond to environ-
mental changes (Gordon, 1996). Models of task allocation aim to determine the
extent to whichinteractionsbetween essentially identical individuals, rather than
intrinsic differences between individuals, account for group behavior. Examples
of task allocation in biology include division of labor in insect societies (Gordon
et al., 1992; Tofts and Franks, 1992; Deneubourg and Franks, 1995; Bonabeau
et al., 1997, 1998a), gene regulation and transcription (Somogyi and Sniegoski,
1996), and cellular differentiation. Applications beyond insect societies include
human job markets and group dynamics (Trainoret al., 1993, 1997), and general
studies of the interaction between task diversity and the specialization of individu-
als in communities [see, e.g.,Borkaret al. (1998)].

In certain insect societies, division of labor is a function of specific physical at-
tributes of the individuals such as size. However, bees, wasps and most ant species
are monomorphic (i.e., there is only one size of worker), and polymorphism can
thus not account for task allocation (Gordon, 1996). It is known that in many
monomorphic insect colonies, the number of workers performing a given task is
adjusted according to the changing needs of the colony. In fact, in species such as
harvester ants, the numbers of workers engaged in each task continually change,
even hour to hour (Gordon, 1999a). Further, tasks in those colonies are interde-
pendent, meaning that the number of workers that go into each specific task is a
function of the number of workers currently performing each task.

Our work ultimately concerns the emergence of such non-hierarchical task allo-
cation through interactions between individuals, with and without a global environ-
mental stimulus. However, the study of the dynamics of a collection of interacting
units such as cells or agents poses great challenges (Parrish and Edelstein-Keshet,
1999; Beshers and Fewell, 2001). Models which are complex enough to exhibit a
range of interesting dynamical behaviors are usually too complex to characterize
fully either analytically or numerically. Often the analysis of such systems eludes
treatment because of the combination of deterministic and stochastic dynamics,
as well as the possible coexistence of many attractors for a given parameter set,
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i.e., ‘multistability’ (Poon and Grebogi, 1995). These problems have received con-
siderable attention in the context of neural networks. For example, the Hopfield
model (Hopfield, 1982) of a network of globally coupled neurons with symmetric
interactions is an exceptional example of a system where the dynamical behaviors,
and the multistability in particular, are well-understood owing to the existence of a
global Lyapunov function.

There are numerous examples of other networks, neural, genetic, immunologi-
cal, societal and other where the dynamics are not so well understood, either be-
cause the couplings are asymmetric, time- or state-dependent, or simply because
units can have more than two states. Much progress has nevertheless been made.
For example, the complex dynamics of neural networks have been studied using
spin-glass theory (Hertz et al., 1991) and symbolic dynamics onN-dimensional
hypercubes (Lewis and Glass, 1992). Studies of collective computations in soci-
eties, induced by interactions among individuals, have made use of globally cou-
pled maps and statistical complexity theory [see, e.g.,Delgado and Solé (1998)
and references therein]. And our knowledge of genetic and evolutionary networks
has been advanced through the analysis of Boolean networks (Kauffman, 1990)
and special classes of differential equations (Hofbauer and Sigmund, 1991). One
result of our paper is that stochastic processes known as birth–death jump pro-
cesses with state-dependent transition probabilities are useful for studying non-
hierarchical task allocation.

1.2. State-dependent coupling strengths and task allocation.Interactions be-
tween units depend on coupling strengths, which are typically assumed constant
unless, as in training a neural net, the system is in a learning mode. For example,
for ‘classical’ neural networks, the rule that governs the switching between neu-
ron states uses a weighted sum over the (analog or digital) states of other neurons
(Hertzet al., 1991), and the coupling strength between two neurons does not de-
pend on the state of these neurons. Likewise, in the Ising model of magnetic spins
(which has much inspired the neural network literature), the contribution to the
energy function of each pairwise interaction involves the triple product of each
state in a pair and a coupling coefficient. This coefficient does not depend on the
states (up or down) of the spins in the pair, but rather on the physics (e.g., ferro-
magnetic vs anti-ferromagnetic) of the magnetic interaction.

The specific focus of our paper is the dynamical behavior of a population of units
whose coupling coefficients depend on the ‘state’ of those units. Task allocation
has recently been modeled using this state-dependent coefficient approach (Gordon
et al., 1992). The model ants in that study change categories through deterministic
switching rules based on fields, which can be interpreted as the summed chemical
or contact cues from other individuals. Conditions were found for which the time
evolution of category populations showed similarities to experimental data on task
allocation in certain ant species. Numerical analysis of the model also revealed
a fascinating and bewildering array of dynamical behaviors including multista-
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bility, a consequence of the large number (eight) of categories assumed in their
model.

1.3. From eight to two categories.The complexity of the eight-category model
of Gordonet al.(1992), with its three fields and numerous parameters, has severely
impeded efforts to organize the dynamical behaviors of this class of models and to
gain strong intuition about its properties, though some progress has been made
(Torres and Trainor, 1993; Trainor et al., 1997). Consequently, it is difficult to
constrain model parameters, such as the numerous interaction coefficients, using
experimental data. The problem would be larger still if environmental effects, such
as the circadian activity of the nest, or population age-structure properties such as
temporal polyethism, were to be accounted for.

There is, nevertheless, a need to better understand task allocation dynamics aris-
ing from explicit interactions between units performing different tasks [see Sec-
tion 2.1,Gordon(1999a), andBonabeauet al. (1998a)]. This fact, together with
the aforementioned problems with the eight-category model, inspires the analysis
of the two-category model presented in this paper. Its architecture is simple enough
to allow us to determine analytically its surprisingly rich repertoire of dynamical
behaviors. And in the presence of an external stimulus (such as the availability of
food), our analysis also allows us to understand some of the very wide range of
behaviors. Our goal is achieved through numerical simulation, as well as analyti-
cal work that reduces the dynamical behavior to that of an iterated function system
and also of a birth–death stochastic process. All possible interaction matrices are
classified into a limited number of category interaction types, which in turn deter-
mine the resulting attractors and their basins. Our analysis provides much needed
insight into the nature of the solutions and complexity of many-category models.
It reveals the types of category interactions that lead to stable populations that re-
cover quickly from perturbations, and that allow the ‘equilibrium’ populations to
be chosen by suitable parameter choices.

In Section2, we describe the two-category model and its switching rules, and an-
alyze the intrinsic dynamics (i.e., without external stimuli) in terms of analytically
determined critical population numbers. In Section3, we classify the key behav-
iors of the model using the concepts of attractors and of activation/inhibition. We
also characterize the decay time of perturbations from the attractors, and further
compare these features to those for random switching dynamics. Section3 ends
with a summary of couplings that produce attractors. In Section4, we present an-
other dynamical view of our two-category model, based on two discrete-time maps
that are used with varying probability at each time step. This ‘iterated function
system’ in turn suggests a birth–death stochastic process formulation. Solving the
associated master equation (AppendixA) yields the exact steady-state probability
distribution of population numbers. The task allocation process is then explained
intuitively as a random walk in a quadratic potential between reflecting boundaries,
themselves computable functions of the interaction matrix coefficients. Section5
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gives a preliminary analysis of the range of behaviors to be expected when the units
interact not only between themselves, but also with an external stimulus that can
be altered by the units (such as a food source). The discussion and outlook onto
future work follow in Section6.

2. TWO-CATEGORY NETWORK M ODEL

2.1. Background for modeling task allocation.Models of task performance and
task allocation in insect societies have focused on interactions between units, and
between units and their environments [see, e.g., the different kinds of foraging or-
ganization in ant species inDeneubourget al. (1986)]. An excellent review of
modeling studies of task allocation in the context of ant societies can be found
in Bonabeauet al. (1998a) and Beshers and Fewell(2001). Recent work has
shown how regulation of tasks can arise from decisions based on exposure to stim-
uli, without any explicit interaction between individuals [see the threshold model
of Bonabeauet al. (1998a), or the foraging for work model ofTofts and Franks
(1992)]. Interestingly, Bonabeauet al. noted, despite the success of their model,
that as ants probably update their tasks by also using information from direct in-
teractions with other ants, a full model should combine both kinds of interactions.
Earlier,Page and Mitchell(1990) proposed a Boolean network model of task allo-
cation in honey bees in which a binary unit (a bee) switches state based on the sum
of contributions from the units it is connected to, as well as on external fields (re-
lated to task-specific stimuli). Our model, like the threshold network model ofGor-
donet al.(1992), which is its inspiration, shares some similarities with that of Page
and Mitchell, except that it focuses on the emergence of task regulation through in-
teraction between units, and its coupling coefficients change with the states of the
units. Our work is thus complementary to this and other threshold models.

Specifically, our model involves a collection of identical units which belong to
either of two categories. Even though they are in principle identical, units can take
on different tasks based on the stimuli they have received from other units. In the
case of ants, these stimuli are probably communicated through antenna contacts,
trophallaxis (exchange of food), or pheromone fields. One possible assignment
of the two categories is the total populations of active vs inactive ants in, e.g.,
the Gordonet al. (1992) or Soĺe et al. (1993) models. This latter work [see also
Delgado and Solé (1998)] analyzes short-term oscillations in the number of active
ants in a certain species, with state-dependent coupling coefficients as inGordon
et al. (1992). In contrast with our work, their analysis relies on Markov chains,
is confined to a coupling matrix with positive identical elements, and focuses on
the critical density of ants necessary for oscillations to appear; ants also become
spontaneously active with a certain probability in their model.

An alternate possible assignment of the two categories is to the populations inside
vs outside the nest (Sendova-Franks and Franks, 1995). The number of ants that a
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given ant surveys to update its task is a parameter in our model. This number will
be dependent on the particular modeling context, e.g., on the ant species, on how
well the populations are mixed (such as near the entrance of the nest), or on the
specific properties (local vs global, persistence) of the cues used for updating.

Our model aims to capture the fashion in which a population can be organized
or subdivided into categories dynamically so that the category any unit finds itself
in stays fixed changes from time to time; and overall, category populations are
maintained within some range of values. Thus we want stable population numbers
and a stable and rapid ‘regulatory’ response to perturbations. Additionally, we
wish to understand how these properties depend on the state-dependent coupling
strengths between units, as well as on the parameters underlying the interaction of
the units with external stimuli (such as food sources) (Section5). We will assume
that interactions may be asymmetric and that units are updated asynchronously.
Finally, our model should ideally be flexible enough to allow arbitrary values for
both the stable category populations (attractor location) and their range of variation
(attractor width). The important variables are the category populations, which are
experimentally accessible observables.

2.2. Category switching rules: field thresholds.In the two-category model ex-
amined here, each uniti in a set ofN identical units is characterized by a binary
variableSi . All units with Si = 1 are defined to be in category 1, and those with
Si = −1 in category 2. The fundamental interaction between thei th and j th units
is category dependent. Since there are only two categories, there are four matrix
elements,

αI J =

(
α11 α12

α21 α22

)
,

whereαi j corresponds to the effect on a unit in categoryi of a unit in category
j . The two-category model was first proposed and briefly analyzed numerically in
Trainoret al.(1997), using a switching rule that ensured the monotonic decrease of
an energy function (a ‘spin-alignment’ rule), and a symmetric interaction matrix.
Here, we consider switching rules based on the values of fields with respect to
thresholds, and do not impose any symmetry on the interaction matrices. We then
explore the whole range of possible dynamics for this model.

The variables of interest aren1 andn2, the population in category 1 and 2, respec-
tively, with n1 + n2 = N. Dynamics are generated by theswitching rules, which
determine whether a unit, chosen at random for updating, will switch categories.
We associate with each uniti a fieldFi , which is a weighted sum of inputs from all
other elements excluding the interaction of a unit with itself, viz.

Fi =

2∑
k=1

nkαik Sk − αi i Si ,
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wherek runs over categories (1 and 2). The second term on the right-hand side
cancels out the interaction of uniti with itself which has been included in the sum.
Note that we will distinguish this interaction of a unit with itself from what we will
call ‘self-interaction’, by which we designate the interaction of a unit with another
unit in the same category. Also, we have assumed that the unit computes its field
over the whole population. The effect of computing the field over a fraction of the
population on the dynamics will be discussed in Section6.

The switching rules are taken as follows. A unit in category 1 will switch to
category 2 upon updating ifF1 < 0. Likewise, a unit in category 2 will switch to
category 1 ifF2 > 0. In numerical simulations we used an asynchronous updating
procedure wherein a unit was chosen at random for updating, its field evaluated,
the switching rule applied, and then the category updated. The dynamics of the
switching rule are entirely deterministic but stochasticity enters in the choice of
unit that will be updated.

Despite this stochastic element, important characteristics of the dynamics as a
function of the category interaction matrix elements can be derived. For a given
αI J we can determinecritical populationvaluesna andnb (defined later), above
or below which switching can occur.These critical population values define the
boundaries of dynamical structures in the model.Looking again at our expression
for the field, we find that for a unit in category 1, the fieldF1 can be expressed as:

F1 = n1α11S1+ n2α12S2− α11S1 (1)

= n1(α11+ α12)− α11− Nα12. (2)

For a unit in category 2, the fieldF2 is:

F2 = n1α21S1+ n2α22S2− α22S2 (3)

= n1(α21+ α22)− (N − 1)α22. (4)

According to the switching rules, when a unit in category 1 is chosen for updating,
it will switch categories ifF1 < 0, that is, if

n1(α11+ α12) < α11+ Nα12.

Similarily, a unit in category 2 will switch ifF2 > 0, that is, if

n1(α21+ α22) > (N − 1)α22.

We define critical population values as:

na =
α11+ Nα12

α11+ α12
, nb =

(N − 1)α22

α22+ α21
.

The result of applying the switching rules is thus that a unit in category 1 will
switch if
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1. n1 < na, for (α11+ α12) > 0, or if
2. n1 > na, for (α11+ α12) < 0.

Similarly, a unit in category 2 will switch if

1. n1 > nb, for (α22+ α21) > 0, or if
2. n1 < nb, for (α22+ α21) < 0.

Furthermore, since 0≤ n1 ≤ N, we can determine the outcome of the switching
dynamics as a function of particular signs and magnitudes of the interaction matrix.
This follows becausena andnb can be calculated once theα matrix is known.

3. MODEL DYNAMICAL BEHAVIORS

3.1. Characterizing behaviors.In this section, we examine the range of charac-
teristic behaviors which arise from different choices of the elements of the inter-
action matrix, and in particular, their sign patterns. The inclusion of coupling to
an environmental stimulus that can be altered by the units (such as a food source
depleted by foraging ants) will be studied later in Section5. It will prove useful
to classify the matrix elements of interaction pairs in terms of their effects with
respect toactivationand inhibition. It will also prove useful to draw on concepts
from dynamical systems theory.

Because the spatial position of units is not considered in our two-category model,
the only state variables of interest are the discrete variablesn1 andn2. Further,
sinceN = n1 + n2, there is only one independent state variable, which we will
choose asn1. A spatial extension of our model onto a spatial lattice would be
straightforward.

An attractor is a region of population space that is invariant under the dynamics,
i.e., a set of points that transforms into itself as time evolves, and that attracts
neighboring points; together these neighbors and the attractor form thebasin of
attraction. A repelleris an invariant set which cannot be reached from outside. The
attractors and repellers in our study can further be characterized asdeterministic,
having a strictly predictable constant value, orstochastic, where fluctuations occur
within their boundaries. The deterministic attractor/repeller consists here of one or
more contiguous population values, each of which is a fixed point. The extent of a
stochastic attractor includes every point that can be reached through fluctuations.

Figure1 illustrates the coexistence of a line of fixed points and a stochastic at-
tractor; note that the fluctuations in this attractor are always on the lower side of
nb = 16.5. A line of fixed points may more appropriately be called ‘interval of
fixed points in the discrete phase space(0, N)’, but we will nevertheless use the
more common terminology ‘line of fixed points’. With two categories, we find
from our numerical simulations that there exist at most two attractors or repellers.
Dynamical evolution can either be constant, change monotonically with fluctua-
tions, or just fluctuate randomly.
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Figure 1. Category 1 population vs time for various initial conditions from model simu-
lations of an activator–inhibitor interaction. The system exhibits bounded fluctuations on
a stochastic attractor forn1 < nb, monotonically decaying solutions fornb < n1 < na
that lead to the trapping regionn1 < nb, and constant solutions for the line of fixed points
na < n1 < N. N = 100,α11 = 1, α12 = 5, α21 = −5, α22 = −1. Herena = 83.5 and
nb = 16.5.

3.2. Activators, inhibitors, bigots and loners.The units of each category will
be classified according to whether their self-interaction (i.e., their interaction with
other units in the same category) is activating or inhibiting, and whether their effect
on the other category of units is activating or inhibiting (see Table1, and the fol-
lowing text). From the switching rules, it is clear that a positiveα11 and a negative
α12 have an activating effect on category 1, in the sense of increasing or stabilizing
its population. Similarly, for a unit in category 2, a negativeα21 and a positive
α22 have an activating effect on populationn2. The activator–activator interaction,
characterized by the sign pattern

α =

(
+ −

− +

)

results in a non-attracting state in which the initial populations remain constant
in time. Each population value is then a fixed point, and the phase space motion
corresponds to a line of fixed points. On the other hand, the inhibitor–inhibitor
interaction

α =

(
− +

+ −

)
,
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Table 1. Activation–inhibition classification of interaction types. The interaction type of
a unit in a category is defined by the effect it has on units in the same category (self-
interaction), and on units in the other category (cross-interaction).

Type Self- Cross-
activator activator activator
inhibitor inhibitor inhibitor
bigot activator inhibitor
loner inhibitor activator
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Figure 2. Simulations of a bigot–loner interaction, resulting in positive feedback for the
category 1 population. All initial conditions lead ton1 = N through fluctuating yet mono-
tonically increasing trajectories.N = 100,α11 = 1, α12 = −5, α21 = 5, α22 = −1,
resulting inna = 124.75 andnb = −24.75.

yields continued switching. Thus we find that for the self-interactions, activation
arises fromα > 0 values, and inhibition arises fromα < 0 (α referring here
to matrix coefficients). Conversely, for cross-interactions, inhibition arises from
α > 0 and activation fromα < 0.

In the classic activator–inhibitor two-species model [see, e.g.,Hofbauer and Sig-
mund (1991)], the activator species has a positive effect on both itself and the
inhibitor species, and the inhibitor has a negative effect on both itself and the acti-
vator. This translates into the following sign pattern for our model:

α =

(
+ +

− −

)
.

Such dynamics are shown in Fig.1. It is interesting to note two different asymp-
totic behaviors that coexist (i.e., multistability) and which can be accessed through
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Table 2. Behaviors for the eight symmetric sign patterns of the interaction matrix. The
switching behavior determines the dynamics, i.e., the presence of deterministic (det.) or
stochastic (stoch.) attractors or repellers. Deterministic attractors are in fact isolated fixed
points or lines of fixed points. Lines of fixed points, as in Figs3 and5, are here considered
attracting when they attract solutions starting outside of their set; however, (constant) orbits
starting within the line of fixed points are not stable to perturbations.

Interaction Interaction Cat1 switch Cat2 switch Dynamical
matrixα type condition condition structure

Both categories same interaction types
++ bigot n1 < na n1 > nb det. or stoch.
++ –bigot repeller
+− activator none none det.
−+ –activator attractor
−− loner n1 > na n1 < nb det. or stoch.
−− –loner attractor
−+ inhibitor all all stoch.
+− –inhibitor attractor

Categories different interaction types
++ bigot n1 < na all stoch.
+− –inhibitor repeller
−+ inhibitor all n1 > nb stoch.
++ –bigot repeller
+− activator none n1 < nb det.
−− –loner attractor
−− loner n1 > na none det.
−+ –activator attractor

the choice of initial condition. For the initial population numbern1(0) > na, the
states do not change. We have in this case a line of fixed points extending from
na to N. Initial conditions less thanna all lead to an attractor which we describe
as ‘stochastic’:n1 is a stochastic variable that randomly fluctuates between 0 and
nb; the probability density of the stochastic variablen1, P(n1), increases monoton-
ically over the interval(0,nb). The dynamical origin of the multistability and of
the fluctuations in this case will be explained in Section4.

A traditional ‘positive-feedback’ interaction pattern requires:

α =

(
+ −

+ −

)

with corresponding dynamics shown in Fig.2. It is clear in this case that the origin
is a repellor, and thatn1 = N is a deterministic attractor.

We further introduce two other interaction types or ‘species’, which we again
describe using the activation/inhibition terminology. The ‘bigot’ is self-activating
and cross-inhibiting, i.e., it encourages the proliferation only of those like itself.
The ‘loner’ is self-inhibiting, and cross-activating, i.e., it encourages the prolifera-
tion only of those different from itself. All types are summarized in Table1.



1136 W. A. M. Brandtset al.

Table 3. Behaviors for the eight asymmetric sign patterns of the interaction matrix. As in
Table2, the interaction matrix determines which dynamical structures will arise.

Interaction Interaction Cat1 switch Cat2 switch Dynamical
matrixα types condition condition structure
++ activator n1 < na n1 < nb nb > na
−− –inhibitor det. attractor

stoch. repeller
−− inhibitor n1 > na n1 > nb nb < na
++ –activator det. repeller

stoch. attractor
+− bigot none all
+− –loner det. attractor
−+ loner all none det. repeller
−+ –bigot
++ activator n1 < na none
−+ –bigot det.
+− bigot none n1 > nb repeller
++ –activator
−− inhibitor n1 > na all
+− –loner stoch.
−+ loner all n1 < nb attractor
−− –inhibitor

There are 16 possible sign patterns in all, eight symmetric, and eight asymmetric.
For the asymmetric cases, sign patterns can be grouped into pairs within which the
roles of n1 and n2 are interchanged. Thus there are actually only four distinct
interaction schemes for the asymmetric matrices. Tables2 and3 show the possible
dynamical behaviors for, respectively, the symmetric and asymmetric cases. The
behaviors are classified as deterministic or stochastic, and as repelling or attracting.

The correlation between activation and repellor dynamics, and between inhibi-
tion and attractor dynamics, is evident from Tables2 and3. Intuitively, one can
understand that activation, which has a positive effect on the same category and
the opposite category, leads to positive feedback and repelling behavior where one
population will take over. On the other hand, inhibition, which has a negative ef-
fect on both the same and opposite categories, promotes switching back and forth
between categories, asymptotically leading to attracting states with or without fluc-
tuations. Below we will comment on the subset of interaction schemes which lead
to stable attractors which are of interest for task allocation; in this respect, both
symmetric and asymmetric interactions are relevant.

3.3. Attractor dynamics. The existence of an attractor and its corresponding
basins is the predominant dynamical feature of our model. As can be seen from
the examples described in our work (Figs1–5 and Figs7–8), depending on the in-
teraction matrixα, the attractors can vary widely in type, width, or location, even
for the same sign pattern of coefficients. Moreover, these variations produce very
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Figure 3. Wide deterministic attractor made up of a line of fixed points fromna for loner–
loner interactions. The fixed points themselves are not stable, but the regionnb < n1 < na
attracts all solutions.αi i = −1,αi j = −5,na = 83.5,nb = 16.5. The attractor and basins
are symmetric aboutn1 = N/2= 50. N = 100.

different characteristics for the populations, such as stable values, ranges of fluctu-
ations, and rate of decay of perturbations. This is true even though the sign pattern
of the matrix may be the same, as we illustrate using the following three examples
of loner–lonerspecies interactions.

For an interaction matrix with cross-interactions that are large relative to self-
interactions, such as

α =

(
−1 −5
−5 −1

)
,

the dynamics possess a wide line of deterministic fixed points, bounded below by
nb = 16.5 and above byna = 83.5 (Fig.3). These boundary values attract mono-
tonic trajectories situated, respectively, belownb and abovena. Note also that the
dynamics are centered about the population valuen1 = N/2 = 50; in fact,sym-
metric interaction matrices lead to such symmetric dynamical pictures. Small per-
turbations to a population (i.e., staying within the attractor) will not be ‘corrected’
by the dynamics; the population just moves from one fixed point to another. In con-
trast, large perturbations that bring the population out of the attractor boundaries
are kept in check, since they decay monotonically back to the attractor. This case
of loner–loner interaction could be appropriate for a situation in which loner units
are very inert, the populations remaining mostly fixed and the interactions serving
to keep large perturbations of the populations in check.
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Figure 4. A narrow deterministic attractor center or fixed point arises for a loner–loner
interaction with matrix elementsαi j = −1, na = 50.5. The critical population values are
na = 50.5 andnb = 49.5. All initial conditions rapidly converge to the equi-population
state.N = 100.
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Figure 5. An asymmetric stochastic attractor arises for loner–loner interaction with matrix
elementsαi i = −5, α12 = −1, α21 = −10. The critical population valuesna = 17.5
andnb = 33, are not centered onN/2. All initial conditions converge to solutions that
fluctuate persistently nearnb (see also Fig.9). N = 100.
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An interaction matrix reflecting equal emphasis on self- and cross-interactions,

α =

(
−1 −1
−1 −1

)
,

gives a deterministic fixed point atn1 = N/2 due to symmetry (Fig.4). All per-
turbations decay monotonically back toN/2. This loner–loner interaction allows,
solely by means of interactions between units, to control the populations within
tight bounds. This case can also be seen as a limiting case of the previous one
(Fig. 3).

A loner–loner case with asymmetric (‘non-reciprocal’) interactions between the
units of both categories is

α =

(
−5 −1
−10 −5

)
,

which leads to the stochastic attractor shown in Fig.5. The attractor and basin are
asymmetrically located with respect toN/2, due to the relatively weak activation
of units in category 1 by units in category 2. All perturbations decay monotonically
back to the stochastic attractor bounded byna = 17.5 andnb = 33. This case is
appropriate to maintain unequal populations within fairly narrow bounds and yet
permit the flexibility of constant fluctuation within these bounds.

3.4. Rate of decay of perturbations and scaling.In this section, we investigate
the rate of decay of perturbations for our two-category model, with particular em-
phasis on the role of the total populationN. In the next section, we carry out a
similar analysis for random switching dynamics, enabling us to conclude that per-
turbations in those dynamics decay slower than for our two-category model with
state-dependent coupling coefficients. The analysis in AppendixA reveals that the
mean of the populationn1 evolves according to

d

dt
〈n1(t)〉 = 〈t

+
[n1(t)]〉 − 〈t

−
[n1(t)]〉, (5)

wheret+ (t−) is the transition probability per unit time of an increase (decrease) in
n1. For the case of a trapping region with a stochastic attractor, it will be shown in
Section4 thatt+ = 1− n1/N andt− = n1/N. Consequently,

d

dt
〈n1(t)〉 = 1− 2n1/N (6)

which has a fixed point atn∗1 = N/2. Thus, the location of the attractor scales
linearly with N. The relaxation rate onto this fixed point is given by the eigenvalue
of the dynamics aroundn∗1, i.e.,−2/N, corresponding to a decay time constant
of N/2. Thus the decay time simply scales withN. The validity of these scaling
behaviors for the equilibrium mean and for the time constant has been verified by
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fitting an exponential to responses to perturbations averaged over 1000 realizations
(not shown) (each ‘realization’ being one trajectory with its distinct random updat-
ing sequence). However, the probability values themselves do not scale linearly
with N; this is not surprising given that numbers of states increase in a binomial
fashion withN (see Section4.2).

3.5. Comparison with random switching.We may ask to what degreerandom
dynamicsalone are capable of generating organized behavior. Thus in this section
we examine the evolution of category numbers for a random switching rule instead
of the deterministic field-based rules used up to now. This will enable us to assess
how important the interactions are for producing self-organized population control,
as well as to compare speed and tunability of the dynamics.

In the random switching dynamics, a unit is chosen at random at each time step,
and it is simply assigned to category 1 with probabilityp, or to category 2 with
probability 1− p. The states of the other units do not affect this assignment. Fig-
ure 6 shows that, for random dynamics withP = 0.5, the mean population con-
verges towardsN/2. Individual trajectories (‘realizations’) continually fluctuate
around this value. Large perturbations away from this value return to the region,
but not monotonically. The set of values that can be taken byn1 in the asymptotic
time limit is the attractor. This attractor corresponds to the whole state space, as
we will reason later. Hence, this random switching leads to stochastic attractors
that occupy the whole phase space. The probability of finding the different values
of n1 is, however, not uniform, and in fact is peaked aroundN/2.

Let us compare the random dynamics behavior to the dynamics that give stochas-
tic attractors, such as in Fig.5 (see also Fig.7). In Fig. 5, n1 changes by one
(upwards or downwards) at each time step; the evolution thus appears jagged. For
random switching withp = 0.5, the population changes by one only for one-half
of the time steps, on average. Evolution is smoother than that in Fig.5.

Varying the interaction matrix elements causes a shift in the location of the at-
tractor for the field-based dynamics. The location of the most probable population
value for random switching can also be shifted by changing the value ofp; this
is equivalent to introducing a deterministic bias. The random dynamics then lead
to an asymmetric probability density over the phase space, with a maximum at
n1 = pN (not shown). Such a stationary probability density is useful to character-
ize the stochastic process underlying the random dynamics, and to compare model
and experimental data; this is true as well for our two-category model, for which
we compute densities in Section4.2. The probability density giving the fraction
of the time spent by the system at the valuen1 can be obtained for the random
dynamics as follows. We place the states of theN units in a vector labeled from 1
to N. Each state is set to 1 with probabilityp. The probabilityP(n1) thatn1 units
are in category 1 is then the binomial

P(n1) =

(
N
n1

)
pn1(1− p)N−n1. (7)
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Figure 6. Random dynamics in the two-category network (N = 100), with switching
probability P = 0.5. All initial conditions converge non-monotonically towards the equi-
population distribution, about which the solutions exhibit large persistent fluctuations.

This density has meanN p and standard deviation
√

N p(1− p). Also, for N large
and N p large, the binomial can be approximated by a Gaussian density with the
same mean and standard deviation. Hence, the density is approximately Gaussian
for the random dynamics under these conditions, which is the case for Fig.6.

However, the random dynamics cannot be ‘tuned’ to make the fluctuation region
narrower; the fluctuations are always present, and can bring the trajectory any-
where in phase space. Further, since evolution is never monotonic, perturbations
take longer to die out. This can be further verified by comparing the speed of re-
covery from perturbation for the two dynamics. As in the previous subsection, this
can be done using the formalism of AppendixA [equation (5) or equation (A10)].
For random switching dynamics, the probabilityt−(n1) that n1 decreases by one
in a time step is given by the probability of choosing a category 1 unit (n1/N)
times the probability of changing it to a category 2 unit, which is(1− p). Con-
versely, the probabilityt+(n1) thatn1 increases by one in a time step is given by
p(1− n1)/N. The mean of the corresponding birth–death process thus evolves as
dn1/dt = (p− n1)/N, with a fixed point atn∗1 = p, as expected, and decay (‘re-
covery’) time constant equal toN. These scaling behaviors for the fixed point and
the time constant have also been verified numerically using trajectories obtained
by ensemble averages over many (1000) realizations of the model (not shown). At-
tractor location thus depends solely onp, and the recovery time is twice as long as
for the field-based rules.
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In summary, random dynamics can reproduce some of the important features of
the two-category model with certain interaction matrices, namely the return to a
neighborhood of some (chosen) population value, with intrinsic fluctuation about
that value. What random dynamics cannot do is reduce the range ofn1 values
over which the solution fluctuates to an arbitrary level, nor demonstrate fast mono-
tonic return of the mean populationn1 back to its steady-state value. The particu-
lars of the biological system to be modeled will dictate whether random dynamics
are sufficient to explain the experimental observations, or whether interactions are
required.

3.6. Summary of couplings that produce attractors.In this subsection, we sum-
marize the dynamics that lead to either deterministic or stochastic attractors for the
intrinsic dynamics (i.e., without external forcing). The interactions that give rise
to these attractors are then potential ‘coupling candidates’ for task allocation. We
write ‘potential’, because a full analysis of network dynamics in the presence of
a variety of external stimuli is required before one can narrow the field of possi-
ble couplings that underlie task allocation in a given context, e.g., in a given ant
species. However, we note that our preliminary analysis of the dynamics of our
model with added coupling between ants and an external environmental stimulus
(such as a food source) reveals that the same behaviors as those summarized here
occur, as long as the stimulus does not become too strong, andna andnb are not
too close; in fact, sincena andnb vary with the stimulus level, their ordering may
change with time which generally leads to switches between qualitatively different
dynamics.

We can make a first summary based on the number of positive and negative cou-
pling coefficients. As mentioned in Section3.2, activation tends to be associated
with repellors, and also lines of fixed points, while inhibition tends to lead to at-
tractors. In particular, one can see from Tables2 and3 that more than two negative
signs in the coupling matrix leads to attractors; more than two positive signs leads
to repellors. And equal numbers of both signs are borderline cases that can lead
to either attracting or repelling dynamics. Inhibitory cross-interactions lead to a
deterministic attractor (which may in a few cases coexist with a repellor); and self-
inhibition tends to lead to stochastic attractors (except for certain cases with two
negative and two positive signs).

Of the 16 possible activation/inhibition sign patterns, we find that as many as four
produce stable but fluctuating (‘stochastic’) population dynamics (Tables2 and3).
These sign patterns, two symmetric and two asymmetric, correspond to three dif-
ferent types of interaction pairs, viz., loner–loner (symmetric), inhibitor–inhibitor
(symmetric), and inhibitor–loner (or loner–inhibitor) (asymmetric). Furthermore,
the asymmetric borderline activator–inhibitor case (or inhibitor–activator) may
yield a stochastic attractor that coexists with a deterministic repellor whennb < na.
Our model thus predicts coupling conditions where intrinsic fluctuations occur,
which could add to other sources of noise (such as sampling errors), and which
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Table 4. Attractors for loner–loner interaction.

Figure α matrix Attractor type

3

(
−1 −5
−5 −1

)
symmetric, deterministic, wide

4

(
−1 −1
−1 −1

)
symmetric, deterministic, narrow

5

(
−5 −1
−10 −5

)
asymmetric, stochastic, narrow

8

(
−2 −1
−1 −2

)
symmetric, stochastic, wide

may account for some of the experimentally observed fluctuations. This is true for
task allocation, and more generally for networks, neural and other, which evolve
according to these coupling rules.

Other attracting dynamics that are interesting for task allocation are those that
produce deterministic attractors. They are, for the symmetric cases: activator–
activator, loner–loner, activator–loner, loner–activator. For the asymmetric case,
we have bigot–loner, and as before, the activator–inhibitor (or inhibitor–activator)
case whennb > na.

We illustrate our findings by highlighting two couplings that lead to typical kinds
of attractors. The first coupling is loner–loner, which leads to a variety of deter-
ministic and stochastic attractors depending on the magnitude of the coupling co-
efficients (see Table4). The sign pattern is:

α =

(
− −

− −

)
.

For the chosenα values of Fig.7, a symmetric stochastic attractor is generated
(cf. asymmetric stochastic attractor of Fig.5). The category populations are con-
trolled deterministically at high and low values by amonotonic returnto the attrac-
tor region. The population then fluctuates aroundN/2. Other loner–loner attractors
(for other values ofα) can contain constant (‘stalled’) states as well (e.g., Figs3
and4).

The matrix for the inhibitor–inhibitor pair,

α =

(
− +

+ −

)
,

also yields a stochastic attractor that spans the whole phase space (Fig.8). This
is similar to the random switching dynamics of Section3.5. One difference, how-
ever, is the presence here of switchings at each time step; in contrast, the random
switching rule did not produce changes inn1 at each time step. The populations
are controlled herenot by attractor boundaries or basins, but by the (random) se-
lection of units for updating. The category to which the chosen unit belongs here
matters, which is not the case for random switching. This leads, as we have seen
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Figure 7. A symmetric stochastic attractor arises for loner–loner interactions with matrix
elementsαi i = −2 andαi j = −1. All initial conditions converge monotonically to the
attractor, itself characterized by large fluctuations. Herena = 34 andnb = 66 with
N = 100.

in Section3.5, to faster decay of perturbations in comparison with the random
switching case.

In summary, the interaction schemes summarized in this section produce attrac-
tors that are either deterministic or stochastic, symmetric or asymmetric, and with
or without attractor edges. In particular, the fluctuating behavior around the mean
is similar in all the stochastic cases. It is in the behavior far from the mean (and for
certain cases, outside the attractor) that the difference between population control
strategies is most apparent.Also, we find that all the species (inhibitors and loners)
which qualify for self-organized task allocation are self-inhibiting(only one of the
two is self-inhibiting in the borderline case of activator–inhibitor or its reverse).
Such a prediction could also serve to test the model experimentally.

4. ITERATED FUNCTION SYSTEM AND BIRTH –DEATH FORMULATIONS

Comparisons between model predictions and experimental data are difficult to
make if: (1) the dynamics have a significant component of randomness, and/or
(2) the experimental data itself exhibits fluctuations. Model validation in the steady
state can nevertheless be done by comparing, e.g., first and second moments of
fluctuating time series, or better still, the whole probability density of various state
variables. The computation of this density and the origin of the basin structure



Two-category Model of Task Allocation 1145

0 100 200 300
Time

0

10

20

30

40

50

60

70

80

90

100

P
op

ul
at

io
n 

in
 C

at
eg

or
y 

1

stochastic attractor
(no trapping region)

Figure 8. A stochastic attractor arises for inhibitor–inhibitor interactions with matrix
elementsαi i = −2 andαi j = 1. All initial conditions converge non-monotonically but
rapidly (cf. random dynamics in Fig.6) towards the equi-population value but fluctuations
persist. Herena = −98 andnb = 198 with N = 100.

covered in Section3 are the subject of this section. The results of our analysis
further yield insight into the dynamical nature of the stochastic attractors. One of
our main results is that the constrained motion on ‘stochastic’ attractors is in fact
a random walk through a specific (and calculable) part of the population number
phase space, with probabilities of stepping to the right (increasingn1), to the left
or of standing still being a function of the current population.By extension, this
result implies that such state-dependent random walks are equally at work in the
Gordon et al.model (1992), but their analysis is complicated there by the presence
of three fields (rather than one here); further elaboration of our work to more than
two categories is currently under investigation.

We first show that the dynamics of our model can be formulated in terms of
an iterated function system (IFS). The IFS representation leads to a deeper un-
derstanding of the dynamical behaviors exhibited by our model and, in particular,
explains the basin structure we have observed numerically. In addition, the IFS
representation suggests a subsequent one, based on a birth–death master equation.
This latter formulation enables us to predict, among other things, the probability
distribution of the category numbers.

4.1. The two-category model as an iterated function system.We begin by es-
tablishing that the two-category model behaves as an IFS. In our model, units are
updated asynchronously, with one unit being randomly selected at a given time
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Figure 9. Representation of the dynamics of the network model in terms of an iterated
function system composed of two deterministic maps. At each time step, either the number
of ants in category 1 is updated using the map M1 on the left, or the number of ants in
category 2 is updated using the map M2 on the right. Which map is used at a given time
step is determined randomly, with a probability that is a function of the number of antsn1
in category 1. Note that, in each case, the maps (solid curve) are either the identity function
(the diagonal, represented by a dashed curve), or a value that deviates from the identity by
one. The maps were generated using the parameters for Fig.7, for which na = 34 (the
break point in the M1 map) andnb = 66 (the break point in the M2 map).

step. This unit can be either in category 1 or 2. Switching between categories is
governed by the deterministic field-updating rules of Section2.1. If the unit chosen
at a given time step is in category 1, the number of category 1 units,n1, can either
decrease or stay the same. Alternatively, if it is in category 2, the numbern1 can
either increase or stay the same. The parametersna andnb, which are functions
of the interaction matrix elements, thus set boundaries between ‘change’ and ‘no
change’.

We can summarize these rules using two maps, one for each category. This is
shown in Fig.9 using the parameters for Fig.7; however, our analysis is valid for
any matrix elements.If the chosen unit is in category 1 (2), the next value of the
populationn1 will change as a function of the current value according to the map
on the left (right) in Fig.9. The break points in the curves occur, respectively, at
n1 = na = 34 for the M1 map (associated with category 1), and atn1 = nb = 66
for the M2 map (category 2). Note that the abscissa (i.e., the domain 0≤ n1 ≤ N)
is the same for both maps. An interval of the domain over which the curves for
each map have a given shape will correspond to a certain dynamical behavior.

For example, in Fig.7, for 0 ≤ n1 ≤ na, the M1 curve is the identity, while the
M2 curve is the identity plus one. This corresponds to the following behavior: if
a category 1 unit is chosen, do nothing; if a category 2 unit is chosen, increment
n1 by one (i.e., switch the unit to category 1). Hence, whenn1 is in this interval,
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the value ofn1 remains either constant or it increases, in agreement with Fig.7.
Likewise, fornb ≤ n1 ≤ N, n1 stays constant or decreases. Both these intervals
constitute the basins of the attracting regionna ≤ N ≤ nb, which as we can see
simply from these maps, is the trapping region found in Fig.7.

In this trapping region,n1 either increases by one (if category 2 is chosen) or de-
creases by one (if category 1 is chosen). This leads to a random walk forn1; thus,
in this case the dynamics are in fact stochastic. However,and this is the crux of the
matter, the probability of stepping to the right or left, i.e., of increasing or decreas-
ing n1 by one, depends on the current value ofn1. In other words, the dynamics
in this trapping region are similar to a random walk with state-dependent biases.
In particular, the state-dependent biases for our model in Fig.7 produce a greater
driving force towards the centerN/2 than for the random dynamics in Fig.6.

The reason for these state-dependent biases lies in the fact that the probability of
using M1 isn1/N, i.e., the probability of choosing a unit in category 1. Likewise,
the probability of using M2 is

(
1− n1

N

)
. Hence, the following dynamical picture

emerges: the dynamics evolve according to a random sequence of choices between
two deterministic maps, with the probability of choosing between these maps at
the beginning of each time step being a function ofn1 at the beginning of each
time step. Whenn1 is large (small), M1 is chosen more (less) often. This type of
dynamical system is an iterated function system with state-dependent probabilities,
and has been studied in, e.g., Barnsleyet al. (1985).

All the behaviors of our two-category model can be analyzed using this iterated
function representation. For example, the regions referred to as ‘lines of fixed
points’ (see, e.g., Figs1 and3) correspond to phase space intervals where M1 and
M2 are the identity function on overlapping subdomains; thus, regardless of which
category the chosen unit belongs to, the value ofn1 does not change over a time
step, i.e., it is a fixed point. Also, the explosive ‘positive feedback’ behavior seen
in Fig. 2 occurs becauseN < na = 124.75, nb = −24.75; this leads to M1
being the identity over 0≤ n1 ≤ N, and M2 being the identity plus one over the
same domain. Thus,n1 increases or stays constant; and asn1 approachesN, the
M1 ‘identity’ map is chosen more often, until the globally attracting fixed point
n1 = N is reached.

4.2. The two-category model as a birth–death process.The fact that the pop-
ulation n1 changes by a random yet finite amount at each time step suggests that
the dynamics are similar to a stochastic process known as a one-dimensional birth–
death process [see, e.g.,Gardiner(1985)]. Further, the fact that the probability of
births (increasingn1 by one) or deaths (decreasingn1 by one) varies as a function
of the state variable suggests that the transition rates in the birth–death process are
state-dependent. Here we show that this similarity can be exploited to derive the
probability density for the stochastic variablen1 in the steady state. We confine
our discussion to the trapping regions of Figs5 and7; an identical analysis can be
applied to all the behaviors found in our study.
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Figure 10. Normalized probability density of the number of ants in category 1, for the
parameters corresponding to (a) Fig.7 and (b) Fig.5. The histograms were obtained from
iteration of the model for 30 000 time steps, discarding the first 1000 time steps as tran-
sients. Superimposed on the histograms (solid curves) are, for each case, the theoretical
normalized probability density predicted from our analysis of the two-category model in
terms of a birth–death jump process. In both cases, the agreement is seen to be excellent
within statistical fluctuations.

Later we use the stochastic variablex in place ofn1. The birth–death system
is characterized by the conditional probabilityP(x, t |x0,0), wherex0 is the initial
population at timet0 (t0 is chosen here to be zero). This probability evolves accord-
ing to a ‘master equation’; this equation is described and solved for its asymptotic
densityPs(x) for the special cases of Figs5 and7 in AppendixA. This steady-
state probability densityPs(x) is plotted in Fig.10 alongside the density obtained
from numerical simulations of our two-category model for the parameters of Figs5
and7. The agreement is seen to be excellent, as expected, since this is an exactly
solvable model. It is also seen that the density in Fig.10(a) has a bell-shape, and a
truncated bell-shape in Fig.10(b).

It is interesting to note the simplicity of the resulting density: the probability
that the populationn1 has a certain valuex at a given time (in the allowable range
bounded byna andnb) is proportional to the number of ways of choosingx units
out of N units, i.e., the standard binomial coefficient. Note also that the density
differs from the standard ‘binomial distribution’, found, e.g., here in our study for
the random switching dynamics in Section3.5, since the latter further involves the
factor pn1(1− p)N−n1.

That fact that the density is proportional to the number of possible ways of choos-
ing x elements out ofN elements also establishes a link between the dynamics
of such networks and the ‘entropy’ encountered in classical statistical mechanics
and information theory [see, e.g.,Pathria(1984)]. There, the entropy of a given
macrostate, i.e., a state characterized by macrovariables such as the valuen1 in our
context, is proportional to the number of associated microstates compatible with
this microstate. In our case, a microstate consists of the specification of the state
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of each of theN units, the units being distinguishable. Hence, our analysis reveals
that the macrostate of highest probability is that to which corresponds the largest
number of microstates, i.e., the largest entropy. Although our mean-field model
is concerned only with macrostates at this point, these entropy considerations are
likely to be useful for extensions of our work to account for the spatial distribution
of interacting units.

Assuming that the time step equals unity, the iterated function analysis previously
discussed further suggests the following evolution of the mean ofx for the general
case (neglecting fluctuations):

dx

dt
=

x

N
(H [F1(x)] − 1)+

(
1−

x

N

)
H [F2(x)], (8)

whereF1 andF2 are the fields defined in Section2.2, andH is the Heaviside func-
tion, H [F < 0] = 0, H [F > 0] = 1. For the cases of Figs5 and7, our analysis
in terms of maps, or the analysis of the equation above, reveals a trapping region
with a stochastic attractor. In that region, the mean number of units in category 1
is obtained by solving the equality between right and left transition probabilities
per unit time (see AppendixA): t+(x∗) = t−(x∗), i.e.,x∗ = N/2. Intuitively, the
behavior of the mean is like the highly damped motion of a particle in a parabolic
potential; however, this motion is constrained by the reflecting boundaries of the
trapping region.

Interestingly, the birth–death formalism is also used to study chemical reactions
in systems of atoms and molecules. Switching according to mean field rules and
state-dependent coefficients thus embodies a kind of ‘task allocation chemistry’,
where molecules change their properties and composition via reactions, and the
course of these reactions in turn depends on the properties of the different kinds of
molecules. The formalism also enables the computation of correlation functions
and other temporal properties of the solutions. These properties, as well as their
generalization to more than two categories, will be left for future work.

5. TWO-CATEGORY DYNAMICS WITH AN EXTERNAL STIMULUS

Up to now, we have only considered the behavior of the two category model
in its autonomous regime, focusing solely on the effect of the interaction matrix
on population numbers. A more general theory for the behavior of such neural
networks should include the combined effect of these autonomous dynamics along
with the response to external stimuli (Bonabeauet al., 1998a; Gordon, 1999a).
In the context of insect colonies such as harvester ants, these stimuli can relate,
e.g., to specific colony needs and/or to the influence of external factors such as
the availability of food sources. Another obvious external stimulus is the position
of the sun, since it is known that colony behavior varies according to a circadian
clock (Gordon, 1999a). In the context of neurons, the external stimulus is simply
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any activity that drives the network from outside its boundary; it may arise from
another group of neurons, or from physical stimuli such as sound. The main focus
of our paper has been on the dynamics arising from interactions between units,
because of the lack of knowledge about such dynamics in the literature. In this
section however, we describe some interesting findings on the stimulus driven two-
category dynamics; a full account of such dynamics will be given elsewhere.

It is straightforward to extend our model to account for the effect of external
time-dependent stimuli. This can be done either by introducing a bias term in an
appropriate field, or alternatively, by making the threshold for a given field vary
with the stimulus associated with that field [see, e.g.,Bonabeauet al. (1998a)].
The level of an external stimulus could be independent of the category numbers
(such as for the circadian activity), in which case the category numbers would be
enslaved to the particular time variations of the stimulus. In our model, this simply
leads to temporal variations in the parametersna andnb that are enslaved to the
stimulus. The model dynamics then simply boil down to what we already know
from the previous sections, with, however, the added possibility that attractors as
well as their boundaries move around in time. Note, however, thatna andnb can
cross, which may lead to qualitative dynamical changes (see later).

The dynamically more interesting case is the one in which the stimulus is a
time-dependent function of the number of ants performing a task relevant to that
stimulus. The model would then induce couplings between categories via stimuli
(Bonabeauet al., 1998a), as well as via the intrinsic direct interactions between
categories which have been the focus of our work up to now. We consider one
external stimuluss(t), which increases at a constant rateI and decreases at a rate
γn1/N, i.e., a rate that depends on the number of ants performing the task (arbi-
trarily) associated with category 1:

si+1 = si + I − γ ∗ n1/N (9)

where the labeli denotes discrete time. Further, we require (arbitrarily) that a
strong stimulus motivate more ants to switch to category 1. This is achieved by
reducing the threshold for ants in category 2 to switch to category 1, and by in-
creasing the threshold for category 1 ants to switch to category 2 ants. The critical
populationsna andnb in Section2.2now become time-dependent:

nai = [−si + α11+ α12 ∗ N]/(α11+ α22) (10)

nbi = [−si + (N − 1) ∗ α22]/(α21+ α22) (11)

It is clear from equation (9) that, if the mean of the stimulus reaches an equilibrium
value, the mean ofn1 will reach a value aroundI N/γ . This is shown in Fig.11
for the same intrinsic parameters as in Fig.1. For this specific case, switches from
category 1 to category 2 occur ifn1 < na, and from 2 to 1 ifn1 < nb. Note that
the initial values for the boundary parameters,na0 andnb0 also depend now on the
initial value of the stimulusso. Further,na andnb are bounded on one side by their
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Figure 11. Population of category 1 units (n1) vs time for the activator–inhibitor coupling
matrix of Fig. 1, in the presence of an external stimulus (s) that evolves according to
equation (9) (see Section5). Also plotted are the critical populationsna andnb. Other
parameters are the initial population of category 1,n0 = 82, the initial stimulus strength
s0 = 50, the rate of increase of the stimulusI = 0.34, and the decay factorγ = 1.0. Note
that asymptotically,nb lies at the upper bound of then1 time series.

values for zero stimulus; so if the parameters for the stimulus evolution are such
that the stimulus reaches zero in the steady state, the dynamics ofn1 will tend to
those that prevail in the absence of stimulus.

Numerical simulations for Fig.11reveal that there are now a number of possible
kinds of dynamics, depending on the choice of parameters. The picture is in fact
more complex than without stimulus. But for certain parameter sets, the dynamics
are essentially the same. Specifically, initial conditions beyondna will remain
constant (line of fixed points), but the lower boundaryna of this line may vary in
time. Likewise, the boundarynb will vary. Note that in Fig.1 na = 83.5 andnb =

16.5. One can also understand, using the analysis in terms of the iterative function
systems (Section4.1), thatn1 tends to the lower boundarynb. Consequently, we
have thatn∗1 ≈ n∗b ≈ I N/γ = 34. This is approximately the upper bound ofn1 in
Fig. 11. Substitution into equation (11) yields an equilibrium stimulus strength of
s= (N − 1)α22− (α21+ α22)I N/γ ≈ 104 andna ≈ 66, as observed.

Thus, in the presence of an external stimulus that drives switches of ants to cate-
gory 1, the resulting dynamics in Fig.11are ‘qualitatively’ similar to those without
external stimulus: the attractor is asymmetric with fluctuations occurring below a
value around (the new value of)n∗b = 34. We have found that this is generally true
for the different dynamics encountered in our study, as long as the stimulus growth
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Figure 12. Same as for Fig.11, except thatn0 = 60 and the stimulus rate of increase is
higher atI = 0.5. The critical populationsna andnb evolve from their initial values of
75.2 and 24.8, respectively, and cross each other repeatedly over time, leading to qualitative
shifts in the dynamics.

is not too large compared to its decay, and as long asna andnb are not too close
to one another. If, for example, an initial stimulus strength makes these boundaries
close, the resulting evolution may make them cross more times, leading to quite
different dynamical behaviors in comparison to the case without external stimulus.
The same is true ifna andnb are already close without stimulus; then, even a small
initial stimulus strength can reverse the ordering ofna and nb, leading again to
qualitatively different dynamics. A case where the two values cross repeatedly is
shown in Fig.12.

In summary, our model can be used to explore the dynamics with both ant–ant
interactions and interactions between ants via an external stimulus whose decay
rate depends on the number of ants in a certain category. This can be extended
to higher numbers of categories as well. The full classification of the interaction
matrices for situations with such an external stimulus will be an arduous task; but
at least the dynamics can be decomposed into those found for the model with ant–
ant interactions alone. And these behaviors will prevail when stimulus strength is
not too large and the critical population numbers are suitably distant.

6. DISCUSSION AND OUTLOOK

6.1. Summary of two-category network dynamics.In this paper we have uncov-
ered and analyzed the rich dynamical behavior of a two-category network model
of task allocation without central control. We were able to determine the full reper-
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toire of dynamical behaviors as a function of the interaction matrix. We found
that the sign patterns of the interaction matrices (eight symmetric, eight asym-
metric) could be usefully classified into a limited number (10) of category inter-
action types using the notion of ‘activator’ and ‘inhibitor’ for the self- and cross-
interactions. We then showed how particular category interaction types determined
the characteristics of the resultant behavior in the long-time limit, i.e., of the ‘attrac-
tor’ behavior. Some of these attractors (summarized later) exhibited continual fluc-
tuations in a bounded domain determined by the critical population numbersna and
nb. These intrinsic fluctuations are one prediction of our model with respect to the
sources of variability in measurements of population numbers for different tasks.

The attractors were described by defining and analyzing features such as their
stability, boundaries, deterministic vs stochastic nature, location, width, the mono-
tonicity of their transient solutions, and the rate of decay of perturbations. All these
features can be obtained from time series data of category population numbers, and
thus direct comparisons between data and model are possible. We also studied a
number of general features of our network model. We found that symmetric inter-
actions, where the coupling coefficient of category 1 with category 2 is the same
as for category 2 with category 1, lead to symmetric dynamical pictures in phase
space. Also, for two categories, a maximum of two coexisting long time behaviors
(each accessible via a specific set of initial populations) could occur. Comparison
of our model to one based on random switching further revealed that the latter can
capture some of the stochastic behavior of category switching dynamics, but few of
the more desirable ‘self-regulation’ aspects of our model, such as narrow attractor
widths or fast monotonic returns. Our analysis in fact revealed that our model ex-
hibits rates of decay of perturbations that are twice as fast as for random switching
dynamics (Sections3.4–5).

We further determined the conditions on the interaction matrix which lead to
dynamically stable behavior of the category populations, with a chosen mean equi-
librium value dependent on coupling parameters to other units and to the environ-
ment, and recovery from perturbations. We isolated a number of category interac-
tion types, viz. loner–loner (Figs5 and7), inhibitor–loner (Fig.9), and inhibitor–
inhibitor (Fig. 8), all of which yield stochastic attractors, as candidates for task
allocation models. We have also identified those interactions that lead to determin-
istic stable attractors. Also, the activator-inhibitor scheme (Fig.1) can, for certain
parameters, produce a stochastic attractor.

Finally, we have given preliminary analyses of the kinds of behaviors that can
arise when the units respond to an environmental stimulus such as a food source
that can be altered by the ants in a given category (such as the active ones). We
have modeled this response via its effect on the switching thresholds. The same
qualitative behaviors as without such a stimulus (i.e., those described in Section3)
are found when the stimulus does not dominate the dynamics (Section5); other-
wise, there can be alternations between qualitatively different dynamical behaviors
over time.
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6.2. Mathematical insights into non-hierarchical task allocation.Despite the
simplicity of its network architecture, our model is capable of producing a startling
variety of behaviors. Isolated fixed points, neutrally stable lines of fixed points with
a basin of attraction, stochastic attractors characterized by fluctuations in a bounded
area of population number space, and transients that decay either monotonically or
not onto the aforementioned attractors, are the key behaviors of our model.

We also proposed an analysis of the two-category model using an iterated func-
tion system, which allowed us to understand the origin of attractor basins and the
nature and robustness of the different kinds of attractors. This in turn led to a
birth–death process analysis, which enabled us to exactly compute the probability
density of the fluctuations seen, e.g., in the trapping regions of Figs5 and7. The
dynamical picture of non-hierarchical task allocation that emerges is then one in
which the interaction matrix coefficients establish phase space boundariesna and
nb; the particular signs of the coefficients, along with the initial conditions, then
determine whether the long-time dynamics are constant, or a biased random walk.
As the biases of this ‘walk’ (increasing, decreasing, or constant) are themselves
dependent on the current population number, these walks lead to various kinds of
stochastic attractors characterized by their location, width, symmetry, number of
underlying ‘microstates’, and basin(s) of attraction.

This birth–death formalism could also be used to compute temporal properties
of the solutions, such as the autocorrelation of the fluctuations within one cate-
gory, or the cross-correlation between the fluctuations of two categories (in our
two-category model, this latter cross-correlation is obviously trivial). We anticipate
that our analysis will further enable us to study category switching and perturbation
propagation between categories in models with two or more categories. In fact, our
theoretical and numerical analyses together suggest that the complexities exhibited
by the eight-category model (Gordonet al., 1992; Torres and Trainor, 1993), and
more generally, by network dynamics with state-dependent coupling coefficients,
are of the same nature as those found in our two-category model. Although the
analysis in not likely to be straightforward, it is expected that the phase space of a
higher-dimensional model will also be parceled into (perhaps more) subregions by
boundaries (hyperplanes), with stochastic motion arising in certain regions, analo-
gous to higher-dimensional random walks with state-dependent biases.

6.3. Possible extensions of our model.It is possible to extend our model to
account for more aspects of the biological reality. In the context of task allocation
in harvester ants, there exist empirical data as well as other modeling studies that
can motivate these extensions, and especially provide estimates for model parame-
ters. Here we discuss a few possible extensions. We first consider the effect of the
sampling fraction, which was set equal to one in our analysis. We then discuss the
incorporation of ‘contact rate’ with other ants. We then speculate on other aspects
of the model that would be interesting to pursue in future studies.
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6.3.1. Sampling fraction. In Section2.2, we have chosen to compute the field
as inGordonet al. (1992), i.e., by using an average over the whole ant population.
However, an ant is not expected to use input from every other ant for its updating
procedure. Instead, it may sample a certain fraction 0< c < 1 of the whole
population. Assuming again that the categories are well-mixed, such as near the
entrance of the nest, the expression for the field then becomes:

Fi =

2∑
k=1

c nkαik Sk − αi i Si .

The general dynamical properties of the model remain basically unchanged except
for the fact that the critical population numbers are now:

na =
α11+ cNα12

c(α11+ α12)
, nb =

(cN− 1)α22

c(α22+ α21)
.

Thus, the sampling parameterc will change attractor boundaries in a way that
depends on the sign of the interaction matrix coefficients and onN. This can have
important consequences for the characteristics of the attractors such as location,
width and basin structure. For example, ifc is small, the magnitudes and even
signs ofna andnb may be altered, leading to perhaps totally different dynamics
with respect to thec = 1 case. One could even imagine thatc is a stochastic
variable, makingna andnb intrinsically stochastic variables as well. The result is
then that these critical populations will fluctuate in time, causing effects similar to
those seen when they fluctuate because of external stimuli (Section5).

Nevertheless, the same kind of attractors as forc = 1 will be produced by our
model withc less than but close to 1. For example, for Fig.7, a sampling fraction
of 0.1 rather than 1 leads to the same kind of stochastic attractor (not shown);
the only difference is that the boundaries are moved to(na,nb) = (40,60) from
(34,66), i.e., the attractor is narrower. We note as well that asN increases [cf.
a colony of harvester ants can reach a population upwards of 10 000 after many
generations—seeGordon(1999a)], the excluded interaction of an ant with itself as
well as the sampling fractionc become insignificant determinants of the behavior
of the model. In fact, for largeN, na ≈ Nα12/(α11+ α12) andnb ≈ Nα22/(α21+

α22). These changes in dependency asN increases in our model agree with our
intuition that the estimate of the field for largeN should not depend sensitively on
which ants are met; a ‘mean field’ can be accurately estimated from a fraction of
the ants.

6.3.2. Asynchronous updating and contact rate.In our model, updating is
asynchronous. One time step corresponds to the mean interval between one ant
in the population assessing the task cue (e.g., a pheromone concentration) and the
next ant doing so. The real-time value of this computational time step is expected
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to decrease for increasing ant populations, since more ants are expected to assess
their tasks per unit of real time when the population is large. A given ant assesses
its cues on average once everyM time steps, whereM equals the total number of
time steps used in a simulation divided by the total number of ants. In our model,
the cue (or ‘field’) is computed using a fixed fraction of the total ant population.

If the population of category X is large around the time an ant is updating its
category, this category X will contribute strongly to the field sampled by this ant.
Likewise, if the population of X is large, the encounter rate of the ant with category
X ants will be high. The role of encounter rates as well as their regulation as a
function of colony density (Gordonet al., 1993) has been under scrutiny recently
in the context of foraging efficiency and flexibility (Bonabeauet al., 1998b) and
task allocation (Gordon, 1996; Gordon and Mehdiabadi, 1999b). Our model could
thus be interpreted as one in which the rate of encounter with ants of different
categories is the driving force behind the field assessment. Our time step could
then be interpreted as the mean time interval required to estimate ‘a rate of contact’,
and thus to decide whether or not to switch categories. It would be worthwhile to
further investigate the behavior of recovery time with increasingN under various
assumptions [e.g., as inPacalaet al. (1996)], with and without external stimuli.

However, our model does not keep track of the fluctuations in, e.g., category X
during the whole time interval (M time steps) between two successive updates of
the same ant. Rather, the updating is done based on current population numbers
at the time of updating. This could nevertheless provide a reasonable estimate of
encounter rate if fluctuations in population numbers are slow, which may or may
not be the case depending on model parameters. As our birth–death formalism
allows the calculation of such fluctuation properties, we could determine the con-
ditions where fluctuations on stochastic attractors are slow; this will be left for
future work. A more accurate estimation of contact rate, in a more sophisticated
version of our threshold model (or of the eight-category model ofGordonet al.,
1992) could be done, for example, by using field values that are weighted averages
over population numbers during some recent time window.

6.3.3. Other avenues of interest.It would also be of interest to include spa-
tial segregation of tasks, e.g., as inSoĺe et al. (1993). In the birth–death repre-
sentation, the model would become equivalent to a spatially extended nonlinear
chemical system (see the end of Section4 for an analogy of our model with chem-
ical reactions). One could also study how task allocation generates and updates the
dynamical rulesdetermining the distribution into different tasks for each ecological
situation. It would be interesting then to examine how natural selection could have
acted to provide for an optimal way to switch from one task to another, instead of
producing fixed ratios of individuals occupied at various tasks. For example, in an
ant colony, there may have been a propensity for an outside worker to switch to for-
aging when a new food source appeared, rather than selection for higher numbers
of foragers (Gordon, 1996, 1999a).
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Following this scenario, the interaction matrix can be thought to have changed
over the course of evolution. Initially, there may have been no switching be-
tween categories, such as if behaviors of the units were preprogrammed in the
genetics. Alternately, there may have been, initially, no interactions, but instead a
propensity to switch, e.g., randomly or depending on environmental stimuli; this
propensity could have been programmed into each unit. Subsequently, interac-
tions within a category may have developed, followed by interactions between cat-
egories. Our preliminary investigations of one evolution scenario, starting from an
initial ‘interactionless’ situation, suggests that the evolution of a cross-interaction is
‘safe’ for a species because it does not alter drastically its own current population
dynamics. Only later on, as cross-interactions become as strong as self interac-
tions, would behavior be altered significantly as tighter population control (smaller
attractor widths) arises. Our model offers a simple tool for the investigation of such
evolution scenarios with and without external stimuli.

Finally, it would certainly be of interest to explore the dynamics of similar mod-
els but with higher numbers of categories. This would be directly relevant to the
aforementioned studies of task allocation in insects (Bonabeauet al., 1998a; Gor-
don, 1999a; Beshers and Fewell, 2001). It would be particularly exciting to under-
stand from a dynamical point of view why a given species has a given number of
worker categories and what aspects of the global network organization are being
optimized by the dynamics.
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APPENDIX A

A birth–death process such as the one we used to model task switching is char-
acterized by the conditional probabilityP(x, t |x0,0), wherex0 is the initial popu-
lation at timet0 (t0 is chosen here to be zero). This probability evolves according
to the following so-called ‘master equation’ (Gardiner, 1985):

∂P(x, t |x0,0)

∂t
= t+(x − 1)P(x − 1, t |x0,0)+ t−(x + 1)P(x + 1, t |x0,0) (A1)

−(t+(x)+ t−(x))P(x, t |x0,0). (A2)

Here, t+(x) is the transition probability per unit time of a forward transition
x → x + 1, while t−(x) is the transition probability per unit time of a back-
ward transitionx → x − 1. The first term on the right-hand side accounts for the



1158 W. A. M. Brandtset al.

increase ofP(x, t) due to forward transitions from the statex − 1, while the sec-
ond accounts for the increase ofP(x, t) due to backward transitions from the state
x + 1. The last two terms account for decreases inP(x, t) due to, respectively,
forward and backward transitions from the statex.

Confining our analysis to the trapping region in Fig.7 (or Fig. 5), we have the
aforementioned transition probabilitiest+(x) = 1− x

N andt−(x) = x/N, which
are, respectively, the probabilities of choosing the CAT 2 map and the CAT 1 map
shown in Fig.9. Since we are in the trapping region, we also havet−(na) =

t+(nb) = 0, and the steady-state probabilitiesPs(x) = 0 for 0 ≤ x ≤ na − 1 or
(nb + 1≤ x ≤ N).

It is possible to solve the master equation analytically for the steady-state prob-
ability Ps(x) (we omit the conditional notation for clarity). In terms of the proba-
bility current J(x)

J(x) = t−(x)Ps(x)− t+(x − 1)Ps(x − 1) (A3)

the steady-state condition can be written as

0= J(x + 1)− J(x). (A4)

Summing this equation fromx = na to x − 1 leads to:

0=
x−1∑
z=na

[J(x + 1)− J(x)] = J(x)− J(na). (A5)

Thus, the steady-state condition isJ(x) = J(na), i.e., J(x) = 0 by the boundary
conditions previously given. This implies that

Ps(x) =
t+(x − 1)

t−(x)
Ps(x − 1) (A6)

and hence, that

Ps(x) =
t+(x − 1)t+(x − 2) . . . t+(na)

t−(x)t−(x − 1) . . . t−(na + 1)
Ps(na). (A7)

This probability depends on the numberPs(na), which in practice can be factored
into a normalization factor for the probability density, yielding the normalized den-
sity:

Ps(x) =

∏x
x=na+1

t+(x−1)
t−(x)∑nb

na+1

∏nb
x=na+1

t+(x−1)
t−(x)

. (A8)

Further simplification of this expression is possible by writing in the expressions
for t+(x) andt−(x) and by introducing binomial coefficients. It is straightforward
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to show that the numerator is in fact given by the binomial coefficient

(
N
x

)
di-

vided by

(
N
na

)
. The asymptotic density can thus be written more simply as:

Ps(x) =

(
N
x

)
∑nb

x=na+1

(
N
x

) . (A9)

The birth–death master equation formalism also allows us to compute the evo-
lution of moments of these distributions and of correlation functions of the state
variable. For example, in the presence of fluctuations, the mean evolves accord-
ing to:

d

dt
〈x(t)〉 = 〈t+[x(t)]〉 − 〈t−[x(t)]〉, (A10)

where the brackets denote ensemble averages over the different possible paths of
this stochastic process. The corresponding deterministic equation isdx/dt =
t+(x) − t−(x). In the steady state, the mean is then simply given by the solution
of t+(x∗) = t−(x∗), i.e., x∗ = N/2 for the example given previously. Intuitively,
the dynamics are similar to the stochastic overdamped motion of a particle in a
parabolic potentialU (x) (the negative gradient of which equalsd〈x(t)〉/dt); this
motion is constrained by the reflecting boundaries of the trapping region.
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