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Abstract One of the fundamental computational problems in cancer genomics
is the identification of somatic single nucleotide variants (SNVs) from DNA se-
quencing data. Many statistical models and software implementations for SNV
calling have been developed in the literature, yet, they still disagree widely on
real datasets. Based on an empirical Bayesian approach, we introduce a local
false discovery rate (LFDR) estimator for SNV calling. Our approach learns
model parameters without prior information, and simultaneously accounts for
information across all sites in the genomic regions of interest. We also pro-
pose another LFDR-based algorithm that reliably prioritizes a given list of
mutations called by any other variant-calling algorithm.We use a suite of gold-
standard cell line data to compare our LFDR approach against a collection
of widely used, state of the art programs. We find that our LFDR approach
approximately matches or exceeds the performance of all of these programs,
despite some very large differences among them. Furthermore, when prioritiz-
ing other algorithms’ calls by our LFDR score, we find that by manipulating
the type I-type II tradeoff we can select subsets of variant calls with minimal
loss of sensitivity but dramatic increases in precision.
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1 Introduction

Recent developments in next generation sequencing (NGS) technologies pro-
vide an insight into the task of mutation calling [1] and have made it possible
to characterize the genomic alterations in a tumor in an unbiased manner
[2]. With the advancement of NGS technologies, the number of large-scale
projects (especially cancer projects) dealing with point mutation in various
tumor types has been increased rapidly, and many bioinformatics tools have
been developed.

Several packages with different algorithms have been introduced in recent
years to increase the accuracy in the mutation detection procedure. Perhaps,
SAMtools [3] is the most cited package for manipulating and converting align-
ments to different formats. It is also used for sorting and merging alignments,
generating per-position information in pileup and mpileup formats, as well as
calling single nucleotide variants (SNVs) and short insertion and deletions (IN-
DELS). VarScan2 [4], a newer version of VarScan [5], reads SAMtools’s pileup
or mpileup output and detects SNVs, INDELs and copy number variations
using separate commands. Mutect2 [6], an algorithm based on a Bayesian
classifier, is claimed to be highly sensitive in the detection of very low fre-
quency SNVs. VarDict [7] calls different types of mutations, including SNVs,
multiple-nucleotide variants, INDELs, complex and structural variants at the
same time. Pisces [8], which includes a variant-collapsing algorithm to unify
variants broken up by read boundaries, basic filtering algorithms, and a simple
Poisson-based variant confidence-scoring algorithm, is aimed to reduce noise
or increase the likelihood of detecting true variants. In a recent study, Karim-
nezhad et al. [9] compared the performance of the above-mentioned variant
callers on different sets of NGS datasets sequenced on different platforms. For
a recent up-to-date list of mutation callers, readers may also refer to Xu [10],
where 46 mutation callers are reviewed.

Most variant callers in the literature rely on several pre-defined but ad-
justable parameters such as minimum base call quality (BQ), minimum map-
ping quality (MQ), strand bias threshold, etc. Remarkably, many of the pa-
rameters as well as their default values are not the same among the existing
variant callers. For example, there is no minimum allele frequency defined in
Mutect2. See Table 1 for a list of selected parameters along with their default
values in some selected algorithms. These parameters can strongly affect the
output of the variant-calling algorithms. Best values for the parameters may in
general depend on the type of sequencing data, the type of mutations sought
(somatic or germline), noise characteristics of the dataset, etc. As such, most
users/analysts may not have enough expertise to adjust those pre-determined
parameters properly. On the other hand, relying on default values for pa-
rameters may result in unreliable results and is problematic when comparing
programs, because their default parameters differ.

The above approaches are either conventional Bayesian or frequentist meth-
ods, and do not take multiplicity and testing efficiency issues into account.
Moreover, many programs fail to output a criterion by which SNV calls can
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Table 1: Default values for options in different mutation callers. A dash means
that the corresponding parameter was not defined in the caller’s settings.

Option Mutect2 VarScan2 SAMtools VarDict Pisces
threshold for allele fre-
quency

– 0.01 – 0.05 0.01

min BQ score 10 15 13 22.5(Illumina) 20
15(PGM)

BQ score threshold 18 – – – —
max BQ score – – – – 100
min MQ 20 null 0 null 1
mean min MQ – null – null –
maximum min MQ null – – – –
min coverage – 8 – – 10
maximum coverage – – 250 – –
supporting reads to call
a variant

– 2 – – –

minimum variant qual-
ity score

– – – – 15

threshold for variant
quality score filter

– – – – 20

strand bias filter – – – – 0.5
minimum reads to
strand bias

2 – – – –

be ranked, such as p-values, so that adjusting preference between type I and
type II errors or constructing ROC curves is not naturally supported. In a
recent study, Zhao et. al [11] have developed an optimal empirical Bayesian
testing procedure to detect variants in NGS data, which is based on pooling
a normalized amount of DNA from multiple samples. Due to a capacity is-
sue, they assume samples may be distributed and sequenced independently
in M > 1 pools and each pool consists of N individuals. Although having M
pools with N individuals may be cost-effective, however, our available samples
(similar to many other clinical labs) instruct us to base the model only on one
DNA sample for one individual.

In this paper, we use an empirical Bayesian approach to develop a local false
discovery rate (LFDR) estimator for SNV detection. In contrast to existing
algorithms, our novel approach calls SNVs not just on a site-by-site basis, but
by simultaneously using information across all the sites to build a probabilistic
model of the data.

To the best of our knowledge, LFDR estimation has not been employed
in the task of variant-calling, but it has been well developed in a variety of
other contexts, and different strategies have been introduced in the literature.
To name a few LFDR estimation based approaches, readers may refer to Pan
et al. [12], Efron et. al [13], Efron [14], Padilla and Bickel [15], Yang et al. [16],
Karimnezhad and Bickel [17], and Karimnezhad [18].

Obviously, all variant-calling algorithms determine mutations based on
some observed evidence, but since evidence supporting variants (including
number of reference and alternative read counts) differs from site to site, the



4 Ali Karimnezhad, Theodore J. Perkins

confidence in calling a site as a variant site varies. We fill this gap by intro-
ducing an LFDR-based algorithm that meaningfully scores variants called by
any variant caller and prioritizes them from most to least probable variants.
This helps with significantly reducing many false positives.

The structure of this work is as follows. In Section 2, we provide a detailed
presentation of the model, method and the algorithm we propose. In Section 3,
we use a suite of gold-standard cell line data to evaluate the performance of our
proposed LFDR approach against a collection of widely used, state of the art
programs: MuTect2, SAMtools, VarScan2, VarDict, and Pisces. In Section 4,
we propose a modified version of the LFDR algorithm so that it can prioritize
variant called by any desired variant caller. Some discussion and concluding
remarks are provided in Section 5.

2 Statistical Model and Methods

We consider analyzing a single DNA sample extracted from a tumor, mixture
of tumor and normal tissue from a patient, or tissue from a healthy patient,
where only germline mutations are expected to be seen. We also assume that
the data has been mapped to a reference genome, which specifies one of A,
C, G, or T bases for every position. Each mapped read shows one of the four
possible bases (A, C, G, or T ) for the same position. With no loss of generality,
we also suppose, for a replicate (technical or biological), that sequencing covers
p sites (individual positions in the genome) of which p0 sites are non-mutant.
For each locus i, i = 1, . . . , p, we assume that there are Ki (short) known
number of reads covering the locus i. At each locus i, we suppose there are four
possible bases (A,C,G, T ) of which Ri random reads carry the reference allele.
We further suppose that of the remaining Ki−Ri reads, Mi random number of
reads carry the most alternative (dominant) allele and, we assign the remaining
random alternative reads to X1i and X2i. We briefly refer to these random
variables by Xi = (Ri,Mi, X1i, X2i). Generally, the larger Mi is, the more
support we have for an alternative allele being present at site i in the DNA
being sequenced. Indeed, if the data had no sequencing or mapping errors,
Mi > 0 could only arise as the result of an alternative allele being present.
However, it is well-recognized that sequence data does contain errors. Although
those errors can arise in many ways, the standard model error employed by
the community is the error in mistakenly reporting an alternative allele as one
of the other three possible alleles, and vice versa. We refer to this error by e.
Obviously, if there is no error, mutant sites are expected to be those p − p0
sites, for which Mi is positive.

To relate the observed data at site i, Xi, to the model parameters, µi, θi,
we assume that each read is drawn independently from either the reference
or alternative allele pools. However, we also assume an independent chance e
of read error in each read at each site, which randomly changes the correct
allele to one of the other three options. Then, as in Mutect2 [6], we define
four probabilities. The probability that a randomly chosen read covering site
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i shows the reference allele is pRi = θi
e
3 + (1 − θi)(1 − e). This is explained

as the sum of the probabilities that the DNA actually contained the reference
allele at site i and it was correctly read, (1− θi)(1− e), and probability that
the DNA actually contained the alternative allele but it was misread, and by
chance, it was misread as the reference allele, θi

e
3 . Similarly, the probability

that a random read covering site i shows the alternative allele is pMi
= θi(1−

e) + (1− θi) e3 , which arises either as correct reading of the alternative allele or
misreading the reference allele as the alternative. Finally pX1i = pX2i = e

3 is
the chance that one of the two other alleles that are not reference or alternative
occurs at site i. Note that although these probabilities only include θi and not
µi, they implicitly depend on µi in that θi = 0 if and only if µi = 0. Putting
these together, the probability of the total data at site i, Xi, is multinomial
with Ki tries (reads) and probabilities of reference, alternative, and the other
two alleles. At this point, we diverge from the model of Mutect2 by proposing
a new hierarchical model governing the parameters µi and θi, which ultimately
allows us to develop our empirical Bayesian LFDR approach:


Xi|θi ∼ Multi (Ki, pRi

, pMi
, pX1i

, pX2i
) ,

θi|µi ∼ µig(θi),

µi ∼ Ber(1− π0),

(1)

where pRi = θi
e
3 + (1 − θi)(1 − e), pMi = θi(1 − e) + (1 − θi) e3 , pX1i = e

3 ,
pX2i = e

3 , i = 1, . . . , p.
To discover whether site i is a mutant site, we propose testing the null

hypothesis H0i : µi = 0 against the alternative hypothesis H1i : µi = 1,
i = 1, . . . , p. To do so, we focus on estimating ψi ≡ P (µi = 0|Xi), the posterior
probability that the null hypothesis H0i is true. Once estimated, it is compared
with a pre-specified threshold leading to either rejecting or failing to reject the
null hypothesis. This quantity is well-known in the literature as LFDR.

With the above settings, the following probability functions are derived
under the null and the alternative hypotheses, respectively,

P (Xi|µi = 0) =

(
Ki

Ri,Mi, X1i, X2i

)
(1− e)Ri

(eij
3

)Mi+X1i+X2i

=

(
Ki

Ri,Mi, X1i, X2i

)
(1− e)Ri

(eij
3

)Ki−Ri

(2)

and

P (Xi|µi = 1) =

∫
P (Xi|µi = 1, θi)g(θi|µi = 1)dθi

=

∫ 1

0

(
Ki

Ri,Mi, X1i, X2i

)(
θi
e

3
+ (1− θi)(1− e)

)Ri

×
(
θi(1− e) + (1− θi)

e

3
)
)Mi

(e
3

)X1i+X2i

g(θi)dθi. (3)
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Now, using the Bayes formula, the LFDR can be expressed by

ψi =
π0P (Xi|µi = 0)

π0P (Xi|µi = 0) + (1− π0)P (Xi|µi = 1)
, (4)

where P (Xi|µi = 0) and P (Xi|µi = 1) are given by (2) and (3), respectively,
and π0 is the proportion of non-mutant sites. Both the parameters π0 and
g(θi) (in P (Xi|µi = 1)) are unknown and need to be estimated before making
any inference.

Now, let δi be a binary decision rule corresponding to ith set of hypotheses
H0i and H1i. We assume that δi = 1 if the null hypothesis H0i is rejected, and
δi = 0, otherwise. But since such binary decisions can lead to some errors, we
define the following loss function when testing the null hypothesis at site i,
i.e.,

L(µi, δi) =


0 δi = µi = 1 or δi = µi = 0,

lI δi = 1, µi = 0,

lII δi = 0, µi = 1,

where lI and lII are loss values incurred due to making type I and type II
errors, respectively, see Karimnezhad and Bickel [17]. Also, see Zhao et. al [11]
where a specific version of this loss with lI = λ and lII = 1 is used.

To take all p sites in a sample to account, suppose that δ = (δ1, . . . , δp) rep-
resents a vector of estimators of µ = (µ1, . . . , µp) and measure the aggregated
loss by L(δ,µ) =

∑p
i=1 L(µi, δi), which takes both type-I and type-II errors

into account. Now, to derive a Bayesian decision rule in the above-mentioned
hypothesis testing problem, let ρX(µ, δ) = E[L(µ, δ)|X] denote the posterior
risk of choosing a decision vector δ, where X = (X1, . . . ,Xp). Then, similar
to Karimnezhad and Bickel [17], it can be verified that the Bayesian decision
vector δB = (δB1 , . . . , δ

B
p ) with

δBi =

{
0 ψi >

lI
lI+lII

,

1 ψi ≤ lI
lI+lII

,
(5)

where ψi is given by (4), minimizes the posterior risk w.r.t. δ.
The above equation suggests that mutant sites can be determined by es-

timating ψi, i = 1, . . . , p, and then comparing it with the threshold lI
lI+lII

.
However, estimating ψi is challenging due to the complicatedness of the form
of P (Xi|µi = 1) as well as g(·), the distribution of AFs.

One immediate solution to estimating g(·) would be to assign a non-
informative prior to the alternative AFs θi. In a similar situation, Zhao et. al
[11] consider a uniform distribution on the interval (0, a), and then they es-
timate the value of a as well as π0 using the traditional method of moments.
While simple, this assumption seems unrealistic. Figure 1 represents the dis-
tribution of AFs at known mutant as well as non-mutant sites from TST-
GM12878 data (see Section 3 for more information).
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Fig. 1: Histogram of distribution of alternative AFs from TST-GM12878 data.

From Figure 1, we observe that the assumption that AFs take any number
between 0 and 1 with equal probability is unrealistic. Estimating π0 may be
connected to the estimation of g(·) and consequently, a bad estimate of g(·)
may directly lead to a bad estimate of π0. This indeed is true in some datasets
with ambiguous AF ranges, including our datasets. Clearly, from this figure,
AFs of mutant sites is distributed around either 0.5 or 1. This highlights the
importance of finding a suitable estimate of g(·). Dependency of estimated val-
ues of parameters of LFDR to each other can be seen in different algorithms in
the literature. See for example Zhao et. al [11] where their proposed estimator
of π0 is a function of the estimated value of the upper bound a in the uniform
prior assigned to the alternative AF. For other examples, see Pan et al. [12]
and Karimnezhad and Bickel [17].

If it was possible to fit a known density function to g(·), then perhaps one
reasonable solution could be to apply the Monte-Carlo integration technique.
But, as Figure 1 suggests, the alternative AFs do not seem to follow one of
the well-known distributions in the literature. As an innovative approach, we
suggest estimating g(·) empirically, based on the alternative AFs at a set of
known or suspected mutated sites. This raises the question of which set of sites
to use.
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An immediate solution to the above problem would be to take all sites
for which Mi counts are positive. But as many non-zero alternative AFs in
NGS studies turn out to correspond to artifacts, we need to find and exclude
them from our list so that a precise empirical distribution for g(·) can be
estimated. Suppose that Is stands for the set of s indices of those non-zero
θi corresponding to mutant sites, and θ̂s is the vector of the corresponding
empirical AFs. In our seetings, s represents the number of elements of the
set Is. Now, let G(·) represent the cumulative distribution function (CDF)
that corresponds to g(·). Then, the corresponding empirical CDF is given

by Ĝs(t) = 1
s

∑
l∈Is 1θl≤t, t ∈ <. Obviously, due to the strong law of large

numbers, Ĝs(t) converges to G(t) as n → ∞ almost surely, for every value of

t, and this implies that Ĝs(t) is a consistent estimator. Then, one may estimate
P (Xi|µi = 1) by

Pθ̂s(Xi|µi = 1) ' 1

s

∑
l∈Is

{(
Ki

Ri,Mi, X1i, X2i

)(
θl
e

3
+ (1− θl)(1− e)

)Ri

×
(
θl(1− e) + (1− θl)

e

3
)
)Mi

(e
3

)X1i+X2i
}
. (6)

Since Is includes many artifacts, s needs to be optimally learned. In the next
subsection, we propose an algorithm that allows for repeatedly updating the
set of mutant sites and leads to a precise estimate of g(·).

2.1 An empirical Bayes mutation detection procedure

To discover mutant sites, we propose the procedure outlined in Algorithm
1. The proposed algorithm, like many existing procedures in the literature,
including VarScan2 [4], Mutect2 [6], VarDict [7] and Pisces [8], is comprised
of three main steps.

In the pre-processing step, we propose excluding low quality bases from the
input file (either FASTQ or BAM format). Thus, observations in our model are
only those bases that pass a minimum average BQ and average MQ threshold.

BQ corresponds to an error rate of e = 10−
BQ
10 , see for example Cai et al. [6]

and Dunn, et al. [8]. Thus taking BQ = 20 corresponds to an error rate of 0.01
which can be inferred as expecting one miscalled base in reading 100 bases.MQ
is related to aligning reads to a reference genome, and it usually varies between
0 and 60. Similar to Pisces, we impose a threshold of 20, and 30 to the minimum
BQ and MQ, respectively. We also reflect the corresponding error rate in Step
2.2 of our model by taking e = 0.01. This assumption facilitates the speed of
computation, as our data analyses convinced us, it has an ignorable effect
on the number of detected mutations. Different publicly available softwares
such as SAMtools[3] and bam-readcount (https://github.com/genome/bam-
readcount) can be applied to exclude such low quality reads. Once low quality
bases are excluded, the counts Ki, Ri, Mi, X1i and X2i need to be formed.
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Although in equation (6) we only include all non-zero empirical AFs, one
may tweak the algorithm by just assuming that AFs follow, for example, a
uniform distribution on the interval (0, 1), or a subset of it. Thus, Ijs in Step 2.6
of the algorithm, may be alternatively taken to be a set ofN (for example 1000)
sites for which their AFs are randomly generated from a uniform distribution
on the interval (0, 1). However, once the estimation procedure enters Step
2.10, the updated Ijs set will only depend on the actual empirical AFs. A
third approach would be to estimate LFDRs by focusing only on the original
uniformly sampled AFs, without updating the set of indices Ijs in step 2.10,
i.e., for all j, Ijs = I1s . We refer to this approach by “uniform” estimation. For
comparison purposes, we use these three methods in our data analysis and will
refer to them by “empirical”, “uniform/empirical” and “uniform” estimation
of g(·), respectively. In Step 2.10, we took ε = 0.001.

In the post-processing step, we take 0.01 and 10 as default AF thresh-
old (AFT ) and read depth threshold (DPT ) values, respectively. This is not
uncommon, and many variant callers impose such thresholds. For example,
Pisces [8] has the same default values for these thresholds. We remark that
one may apply this filtering in Step 1. However, the final estimated π0 will
reflect the proportion of non-mutant sites w.r.t. the filtered input file rather
than the original one.

3 Performance evaluation

We now focus on evaluating our proposed mutation calling algorithm on some
data generated by clinical assays. We employ DNA sequencing data gener-
ated from two well-characterized Coriell cell lines, GM12877 and GM12878,
studied by Karimnezhad et al. [9]. The corresponding genomes have been
well characterized and thus, there are lists of known mutations compared to
the reference human genome that help us measure whether or not mutations
detected by our proposed algorithm are correct. Among such lists, we rely
on a list of known mutations published by Eberle et al. [19] where a com-
prehensive and genome-wide catalog of high-confidence variants mutations for
a collection of Coriell cell lines, including GM12877 and GM12878 is pre-
sented (available through https://www.ncbi.nlm.nih.gov/gap/ under accession
phs001224.v1.p1). The data we used was sequenced in two different ways: 1)
on an Illumina NextSeq500 sequencer using Illumina’s TruSight170 targeted
sample preparation method (TST170 for short), and on an Ion Torrent PGM
sequencer using an Oncomine Focus targeted panel (OF for short).

The TST170 data spans 514761 total bases, covering parts of 170 genes,
and includes six technical replicates of each of the Coriell cell lines GM12877
and GM12878. By intersecting the list of known mutations with the TST170
genomic regions, we determined that our GM12877 and GM12878 data should
contain 336 and 343 mutations, respectively. The OF panel covers 29008 total
bases in 47 genes, and includes three technical replicates of each of the Coriell
cell lines GM12877 and GM12878. There should be 24 and 26 known mutations
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present in each replicate of the GM12877 and GM12878 data, respectively.
For more information regarding the datasets and also sequencing platforms,
readers may refer to Karimnezhad et al. [9].

For a given single replicate, let TP =
∑p
i=1 δ

B
i µi, FP =

∑p
i=1 δ

B
i (1− µi),

FN =
∑p
i=1(1 − δBi )µi represent the total number of true positives, false

positives, and false negatives, respectively. We measure the performance of
the algorithms by computing precision or positive predictive value Prec =

TP

TP + FP
and sensitivity Sens =

TP

TP + FN
. A good algorithm is expected

to have high Prec and Sens rates.

To apply the algorithm on the TST170 as well as OF replicates, we used
the bam-readcount package to calculate the counts Ki, Ri, Mi, X1i and X2i,
and then followed Steps 1-3 of Algorithm 1. We then compared the list of
final detected variants with the lists of known mutations. Also, to investigate
the impact of a chosen LFDR threshold in Step 2.1 of the algorithm on the
detection accuracy, we picked 10−300, 10−200, 10−100, 10−50, 10−20, 10−10,
10−2 and 0.5.

We measured the performance of the proposed approaches by calculating
TP, FP, FN , and consequently Prec and Sens values for different datasets and
LFDR thresholds. As a second performance measurement, we compared the
proposed algorithm with Mutect2[6], VarScan2[4], SAMtools [3], VarDict[7]
and Pisces [8]. Illumina offers Pisces for the analysis of TST170 data through
their customized pipeline. The application accepts paired-end fastq files as
inputs, generates BAM files, and after aligning to the reference human genome
(hg19) by the Isaac aligner [20], uses Pisces [8] to generate a list of mutations.
Then, the final list of mutations is generated after some internal filtering.
We should add that, to compare the performance of our proposed algorithm
with Pisces, as well as VarScan2, Mutect2, SAMtools and VarDict, we used
the same aligned BAM files to reduce some possible alignment errors. Because
differences in default parameters of the five algorithms in Table 1 are potential
sources of discrepancies in the list of final mutations, we set their parameters
as similar as possible. We set the minimum variant AF to 0.01. For MuTect2,
which does not have such a parameter, we post-filtered the results to remove
MuTect2 calls with apparent frequency less than 0.01. We set minimum base
call quality and minimum mapping quality to 20. Finally, we set the minimum
coverage for a called variant at 10 reads.

Figure 2 represents the average Prec and Sens values over replicates based
on calls made by the LFDR approach for different thresholds, as well as the
other five variant callers. From this figure, we observe that for all the LFDR
thresholds, Sens values are high while Prec is increased by decreasing the
LFDR threshold. Indeed, when the LFDR threshold is high, say 0.5 for ex-
ample, many false positives are allowed to be in the list of variants called.
However, a strict LFDR threshold, say 10−50 for example, leads to few(er)
false positives and consequently an improved Prec is gained. All the three
approaches methods performed nearly the same. Especially, when the LFDR
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Algorithm 1 LFDR-based variant-calling algorithm.

Step 1. Pre-processing. Exclude reads not passing minimum average base call quality
(BQ) and minimum average mapping quality (MQ) thresholds.

Step 2. Estimation.
Step 2.1 Specify the LFDR threshold lI/(lI + lII).
Step 2.2 Specify the error rate e, i = 1, . . . , p.
Step 2.3 For each i = 1, . . . , p, calculate P (Xi|µi = 0).
Step 2.4 Take j = 1. This represents an iteration number.
Step 2.5 Choose an initial value for π0 ∈ (0, 1), set π̂j

0 = π0.

Step 2.6 Define Ijs to be the set of all sites for which Mi is positive, and let θ̂js = θ̂s
represent the vector of the corresponding empirical AFs.

Step 2.7 For each i = 1, . . . , p, calculate P
θ̂
j
s
(Xi|µi = 1).

Step 2.8 Estimate LFDRs by

ψ̂j
i =

π̂j
0P (Xi|µi = 0)

π̂j
0P (Xi|µi = 0) + (1− π̂j

0)P
θ̂
j
s
(Xi|µi = 1)

, i = 1, . . . , p.

Step 2.9 Compute the Bayes rule

δB,j
i =

{
0 ψ̂j

i >
lI

lI+lII
,

1 ψ̂j
i ≤

lI
lI+lII

.

Step 2.9 Step up j by one, i.e., j = j + 1.

Step 2.10 Reset Ijs to be the set of indices i where δB,j−1
i = 1, and update θ̂js based

on the new Ijs .
Step 2.11 Define π̂j

0 = 1− 1
p

∑p
i=1 δ

B,j−1
i .

Step 2.12 Repeat Steps 2.7-2.11 until the difference between the new estimate of π̂0 and
its previous value does not exceed a small number ε, i.e., |π̂j

0 − π̂
j−1
0 | < ε. Refer to

the last j by j∗.

Step 2.13 Now, any site i for which δB,j∗

i = 1 is a mutant site.
Step 3. Post-Processing. Exclude sites with AF and read depth (or coverage) not passing

a pre-determined threshold.

threshold is below 10−50, the three approaches led to the same Prec and
slightly different Sens values.

Comparing with the other variant callers, we observe that the LFDR ap-
proach has equal or better Sens for some LFDR thresholds compared to all
other algorithms. And for other thresholds, it has equal or better Prec. For ex-
ample, from panel (a) in Figure 2 we observe that the LFDR approach with a
threshold of 10−50 outperforms all the other five variant callers in terms Prec.
However, it reports a smaller Sens. When looking at other panels, slightly
different but remarkable performance is observed. For example, by choosing
the same LFDR threshold, we observe in panel (b) that the LFDR approach
outperforms MuTect2 in terms of Prec, and has almost the same Sens, and
outperforms the remaining four variant callers in terms of Prec. However, its
Sens is a bit smaller than the others. But when looking at panel (d), we ob-
serve that the LFDR approach with the same LFDR threshold outperforms
all the other variant callers in terms of both Prec and Sens. We observe that



12 Ali Karimnezhad, Theodore J. Perkins

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

Precision

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

Precision

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

Precision

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

Precision

S
en

si
tiv

ity

M
V

S D
P

LFDR Threshold

0.5
0.01
1e−10
1e−20
1e−50
1e−100
1e−200
1e−300

Estimation Method

Empirical
Uniform/empirical
Uniform

(a) TST-GM12877

0.2 0.4 0.6 0.8 1.0

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity
0.2 0.4 0.6 0.8 1.0

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity
0.2 0.4 0.6 0.8 1.0

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity
0.2 0.4 0.6 0.8 1.0

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

M

VS DP

LFDR Threshold

0.5
0.01
1e−10
1e−20
1e−50
1e−100
1e−200
1e−300

Estimation Method

Empirical
Uniform/empirical
Uniform

(b) TST-GM12878

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

M

VS DP

LFDR Threshold

0.5
0.01
1e−10
1e−20
1e−50
1e−100
1e−200
1e−300

Estimation Method

Empirical
Uniform/empirical
Uniform

(c) OF-GM12877

0.2 0.4 0.6 0.8 1.0

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

0.2 0.4 0.6 0.8 1.0

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

0.2 0.4 0.6 0.8 1.0

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

0.2 0.4 0.6 0.8 1.0

0.
96

0.
97

0.
98

0.
99

1.
00

Precision

S
en

si
tiv

ity

M

V
S

D
P

LFDR Threshold

0.5
0.01
1e−10
1e−20
1e−50
1e−100
1e−200
1e−300

Estimation Method

Empirical
Uniform/empirical
Uniform

(d) OF-GM12878

Fig. 2: Average of Prec and Sens values over replicates based on calls made
by the LFDR approach for different LFDR thresholds. Average of Prec and
Sens values over replicates based on calls made by the other five variant callers
were added for comparison purposes. M, V, S, D and P stand for MuTect2,
VarScan2, SAMtools, VarDict and Pisces, respectively.

having a varying LFDR threshold allows for a wide range of tradeoff between
Sens and Prec.

Figure 3 represents convergence of estimated π0 in replicate 1 of each
dataset for different values of LFDR thresholds. From this figure we observe
that the algorithm converged mostly in 3-8 iterations, and most remarkably,
for stringent LFDR thresholds (10−100 or less), it converged in 3 iterations. We
also note that in each panel, those stringent LFDR thresholds resulted in the
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Fig. 3: Estimated π0 in replicate 1 of each dataset for different values of LFDR
thresholds. The solid grey line represents the true π0.

greatest accuracy in estimating π0. In fact, the lower is the LFDR threshold,
the more accurate is the corresponding estimated π0. Comparing with Figure
2, we also observe that the most accurate estimated π0 leads to the highest
Prec. However, this is not neccessarily true when looking at Sens values.

We also investigated the impact of each method on the magnitude of LFDR
estimates. Figure 4 represents estimated LFDRs for replicate 1 of each of our
datasets based on taking 10−300 as the LFDR threshold. This figure reflects
that both the empirical and uniform/empirical approaches coincide on detect-
ing the same variants. The corresponding estimated LFDRs are mostly either
close to zero (that corresponds to mutant sites) or one (that corresponds to
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Fig. 4: Estimated LFDRs for replicate 1 of each dataset based on taking 10−300

as the LFDR threshold.

non-mutant sites), revealing that both approaches were able to nicely cate-
gorize the sites as either mutant or non-mutant sites. But, LFDRs estimated
using the uniform approach did not follow this structure and there are many
sites with medium estimated LFDRs. This concludes that both the empir-
ical and uniform/empirical approaches outperform the uniform approach in
classifying sites to non-mutant as well mutant categories.
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4 LFDR as a variant prioritization tool

We suggest that our LFDR calculation can be applied to prioritize any list of
mutations called by any mutation caller from most to least probable mutation.
This can be done by modifying Algorithm 1 so that π̂0 is estimated as the
number of reference sites according to the caller, out of all those assayed,
and g(·) is estimated as the empirical distribution of variant sites. The LFDR
calculation is then applied to all variant sites using these estimates of π0 and
g(·). Algorithm 2 outlines the prioritization steps.

Algorithm 2 LFDR-based prioritizing algorithm for calls made by a desired
variant caller.

Step 1 Specify the error rate e, i = 1, . . . , p.
Step 2 For each i = 1, . . . , p, calculate P (Xi|µi = 0) in equation (2).
Step 3 Set π̂0 = 1 − p0

p
, where p represents the total number of sites in a genomic region

of interest of which p0 sites are declared by any chosen variant caller to be non-mutant
sites.

Step 4 In equation (6), define Is to be the set of all p− p0 sites deemed to be variant sites

by the chosen variant caller, and let θ̂s represent the vector of the corresponding AFs.
Step 5 For each i = 1, . . . , p, approximate P

θ̂s
(Xi|µi = 1) in (6).

Step 6 Estimate the corresponding LFDRs by

ψ̂i =
π̂0P (Xi|µi = 0)

π̂0P (Xi|µi = 0) + (1− π̂0)P
θ̂s

(Xi|µi = 1)
, i = 1, . . . , p.

Following the steps in Algorithm 2, we calculated the LFDR values for
variants detected by the five variant callers (MuTect2, VarScan2, SAMtools,
VarDict and Pisces) across replicate 1 of all the datasets. Figure 5 represents
the corresponding LFDRs and whether the variants are TPs or FPs, along with
the number of TPs and FPs. From the figure we observe that all those TPs led
to either zero or very close to zero estimated LFDR values, as expected. For
example, we observe from panel (a) that of the total 1745 variants detected
by MuTect2, 333 variants with estimated LFDR values of zero or very close to
zero are TPs, and 1412 variants with estimated LFDRs varying between zero
and one are FPs. Comparing these numbers with 336, the number of known
variants expected to be present in TST-GM12878 data, we realize that impos-
ing a small LFDR threshold would dramatically reduce the number of FPs,
and consequently Prec gets significantly improved. The lower is the LFDRs
threshold, the more FPs are eliminated from the list of variants. Therefore,
the proposed algorithm, with less complication compared to Algorithm 1, can
prioritize results of other variant callers by simply eliminating FPs based on
their LFDR values.

Naturally, prioritizing another variant caller’s output, and potentially de-
ciding that some of those calls are below threshold, cannot increase Sens. Sens
increase could only be achieved by adding in missed true variants. However,



16 Ali Karimnezhad, Theodore J. Perkins

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
st

im
at

ed
 L

F
D

R
s

TP FP

Variant Caller

MuTect2
VarScan2
SAMtools
VarDict
Pisces

334 335 335 335 335

119810184218 765 354

(a) TST-GM12877

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
st

im
at

ed
 L

F
D

R
s

TP FP

Variant Caller

MuTect2
VarScan2
SAMtools
VarDict
Pisces

341 343 343 343 343

159 338 438 35 618

(b) TST-GM12878

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
st

im
at

ed
 L

F
D

R
s

TP FP

Variant Caller

MuTect2
VarScan2
SAMtools
VarDict
Pisces

22 24 24 24 24

19 22 29 3 11

(c) OF-GM12877

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
st

im
at

ed
 L

F
D

R
s

TP FP

Variant Caller

MuTect2
VarScan2
SAMtools
VarDict
Pisces

25 26 26 26 26

30 38 37 8 18

(d) OF-GM12878

Fig. 5: Estimated LFDRs for TP and FP calls made by the five varian callers
in replicate 1 of each dataset.

prioritization and thresholding has the potential to eliminate many FPs, and
thus increase Prec, hopefully with little or no loss to Sens.

We applied this prioritization approach to all calls made by the five variant
callers in all replicates in the four datasets. We then calculated average Prec
and Sens values for different LFDR thresholds as shown in Figure 6. For
comparison purposes, we also included Prec and Sens values calculated for
each individual variant caller in Figure 2. From Figure 6 we observe that
prioritizing variants using the LFDR method successfully leads to a significant
increase in Prec values of the variant callers with minimal loss of Sens values
for any threshold chosen between 0.5 and 10−50. As an example, from Figure
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Fig. 6: Average of Prec and Sens values for calls prioritized by the LFDR ap-
proach. The pink symbols refer to the Prec and Sens values of each individual
variant caller calculated in Figure 2.

6(a), VarDict led to Prec and Sens values of 0.256 and 0.997, respectively, and
prioritizing its calls using the LFDR approach with a threshold of 0.05, led
to 0.656 and 0.997 as new Prec and Sens values. Thus, LFDR prioritization
appears to be a powerful approach to further filter the output of other variant-
calling algorithms.
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5 Discussion and Concluding Remarks

In this paper we introduced a novel LFDR-based approach that can be built
into a single-nucleotide variant caller, or can be used to prioritize variants
called by other algorithms. The algorithm requires some pre-determined num-
bers including the error rate e, the threshold lI/(lI + lII), and an initial value
for π0. Although, the algorithm is applicable to different error rates for each
site i, we took a global error rate e = 0.01. This corresponds to a base call qual-
ity of 20 which has been set as the default parameter in some well performed
softwares including Pisces [8]. We considered 8 different LFDR thresholds,
and noticed that, thresholds between 10−100 and 10−20 lead to better results
in term of Prec and Sens values on the datasets we studied. To establish
the generality of this observation, further testing would be needed on other
datasets from different sources or of different types.

We used three approaches to estimate g(·) in equation (3). As expected,
both the empirical and uniform/empirical approaches performed the same and
identified the same variants. This is because both approaches lead to the same
Is set. The uniform approach also led to very similar results. This could be
because we are ignoring the magnitude of LFDR values and we just compare
them with the chosen thresholds. One possible explanation could also be the
fact that the data we used in our project do not have any genuine mutations
at low AFs, and thus, accurately estimating g(·) has little effect on the perfor-
mance. However, as we showed in Figure 4, the uniform approach is not able
to firmly categorize sites to either mutant and non-mutants sites.

Both of our LFDR algorithms have few parameters to adjust and thus it is
easier to tune, compared to the five variant callers we used in this study. Like
the five variant callers we used, our algorithm uses some pre-specified numbers
for BQ, MQ and error rate e, but it does not require any other parameter to
adjust, except the LFDR threshold. And yet as an advantage, the threshold
can be controlled by users/analysts and is easy to interpret, due to the fact
that the LFDR is a probability and varies only on the interval [0, 1]. The
closer to zero (one) it is, the more confidence is gained in detecting variant
(non-variant) sites.

We end our discussion with highlighting that in some situations, one may
notice conflicts in calling a site a variant site. This may happen when multiple
replicates are studied simultaneously and a variant caller detects a mutation
at a specific site in one replicate and does not call that variant in the other
replicate(s). One simple way to resolve this inconsistency would be to take the
intersection of the variants called in all replicates. However, this may exclude
some important, if borderline, variants, and in general ignores the confidence
any one replicate gives us. In an extreme case, if a replicate failed to have data
in a region, and thus no variants were called, that lack of data would effectively
overrule the positive data in other replicates. Alternatively, one may seek to
take advantage of advanced decision-theoretic approaches. In a different but
still applicable context, Karimnezhad and Bickel [17] developed an empirical
Bayesian approach that takes advantage of prior information from multiple
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reference classes and leads to a unique decision in conflicting situations. This
could be a potential future research problem.

Data Availability

All sequencing data is available from the Sequence Read Archive under project
accession PRJNA614006. Human genome version hg19/GRCh37 is available
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