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Abstract. Rings are assumed to be commutative. Recent work gives some of

the tools needed to characterize clean, almost clean, weakly clean and uniquely

clean rings by describing their Pierce sheaves. The sheaf descriptions are used
to show that weakly clean and almost clean rings which are pm rings are clean.

A subclass of clean rings, here called J-clean rings, also known as F-semiperfect

rings, is studied. It includes the uniquely clean rings. There is a mono-functor
from commutative rings to J-clean rings which satisfies a universal property.

Earlier non-functorial ways of embedding rings in J-clean rings can be derived
from the functor. Applications to rings of continuous functions are found

throughout.

1. Definitions and preliminaries.

1.1. Introduction. Throughout “ring” will mean a commutative ring with
1 except in the first part of Section 4 where general unitary rings will make an
appearance. Various authors have studied clean rings and related conditions. The
following definition is a composite.

Definition 1.1. (i) A ring R is called clean if each element can be expressed as
the sum of a unit and an idempotent. (ii) A ring R is almost clean if each element
can be expressed as the sum of a non-zero divisor and an idempotent. (iii) A ring R
is weakly clean if each element can be expressed as the sum or difference of a unit
and an idempotent. (iv) a ring R is uniquely clean if each r ∈ R can be written
r = u + e, u a unit and e an idempotent, in a unique way.

An informative history of clean rings is found in [M2]. (Commutative clean
rings coincide with the commutative exchange rings.) The important role of idem-
potents in the definition and the fact that indecomposable rings of each type have
been characterized ([AA], [NZ]), suggest an approach using the Pierce sheaf. This
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method (details are found below) expresses any ring R as the ring of sections of a
sheaf of indecomposable rings over a boolean space (Stone space). One of the aims
of this article is to describe clean, weakly clean, almost clean and uniquely clean
rings in Pierce sheaf terms. Results previously shown for products or even finite
products now have global versions.

The nature of the Pierce sheaf representation of a ring makes it clear that
(1) R is clean if and only if each of its stalks is clean ([BS, Proposition 1.2]),
and (2) R is uniquely clean if and only if each of its stalks is uniquely clean, i.e.,
local and, modulo its maximal ideal, isomorphic to Z/2Z (Corollary 4.3). “Weakly
clean” and “almost clean” do not work quite as easily but do have convenient sheaf
characterizations (Proposition 2.1 and Theorem 2.4), which clarify the nature of
these sorts of rings. Examples and counterexamples are given.

An essential idea in this context is the following:

Definition 1.2. A ring R is called a pm ring if each prime ideal is contained
in exactly one maximal ideal.

A homomorphic image of a pm ring is a pm ring. We recall that any ring of the
form C(X), the ring of continuous real valued functions on a (completely regular)
topological space X is pm ([GJ, 7.15]). Moreover, a clean ring is always a pm ring
([AC, Corollary 4]). We will see in Section 3 that the pm ring condition is very
powerful when dealing with generalizations of clean rings. In fact a pm ring which
is weakly clean or almost clean is clean (Proposition 3.2 and Theorem 3.4). Rings
of the form C(X) have the stronger property that the prime ideals containing a
given one form a chain: We call rings with this property pm+ rings and give several
characterizations (Proposition 3.8) with an application to C(X).

Section 4 concerns a class of clean rings which includes that of the uniquely
clean rings. We call these rings “J-clean”. One way of describing these rings, even
for non-commutative rings, is to say R is J-clean if R/J(R) is abelian regular and
idempotents lift uniquely modulo J(R). These rings are shown to be precisely the
F-semiperfect rings whose idempotents are all central (Theorem 4.1). Once again,
the Pierce sheaf point of view is very useful.

Reverting again to commutative rings we recall from [Ca2] and [CL] that
there are many ways to embed a ring into a J-clean ring. We develop an important
special case of this procedure. We call the categories of commutative rings and of J-
clean rings CR and J C, respectively. A mono-functor jc : CR → JC is constructed
(Construction 4.6). For a ring R, jc(R) is defined as a Pierce sheaf over the boolean
space Y , where Y is Spec R with the constructible topology. The category J C is not
a reflective subcategory of CR but jc does have a universal property (Theorem 4.9):
If φ : R → S is a ring homomorphism where S is a J-clean ring then there is a
unique θ : jc(R) → S which restricts to φ on R.

In [Ca2], M. Contessa constructed a canonical embedding of a ring R into a
J-clean ring RD. The construction is not functorial but, unlike jc, is the identity on
J C. In [CL], the authors describe the space of maximal ideals Max RD for some
special noetherian domains R. The universal property of jc permits a description
of Max RD in general (Theorem 4.12). As a corollary, Max C(X)D is described;
it can be identified with the set of prime z-ideals of C(X) given the constructible
topology.
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1.2. Terminology, notation and preliminaries. The set of non-zero di-
visors (also called regular elements) of R will be denoted R(R), the set of zero
divisors is Z(R), the set of units is U(R) and the set of idempotents B(R). A ring
R is called indecomposable if B(R) = {0, 1}. When B(R) is viewed as a boolean
algebra, the boolean space SpecB(R) = X(R) (or just X) is the base space of
the Pierce sheaf of R. For each x ∈ X, let Rx be the ideal of R generated by the
idempotents in x, then Rx = R/Rx is a Pierce stalk of R. If e ∈ B(R) then Supp(e)
denotes {x ∈ X(R) | e /∈ x}. See [P, Part I] and [J, V 2] for detailed descriptions
of the sheaf; only a few key properties of it will be quoted here.

The base space of the Pierce sheaf for a ring R is X(R) and the espace étalé
is R =

⋃
x∈X(R) Rx which is topologized so that basic open sets in R are elements

of R restricted to sets of X(R) which are both open and closed (such sets are
called clopen). The ring of global sections of the sheaf is isomorphic to R ([J,
2.5 Theorem]). A key fact is that if two sections coincide at some x ∈ X(R) they
coincide over a neighbourhood of x ([P, Lemma 4.3]). Moreover, if a statement
is true on neighbourhoods in X, it is true on clopen neighbourhoods; this along
with the compactness of X, reduces proofs to dealing with a finite number of
neighbourhoods. A tool we will use below is the following which is a special case
of [P, Proposition 3.4].

Lemma 1.3. Let R be a ring, Z an indeterminate and f1, . . . , fn ∈ R[Z].
Suppose that for each x ∈ X(R) there is r(x) ∈ R such that (fi(r(x)))x = 0x,
i = 1, . . . , n. Then for some r ∈ R, fi(r) = 0, i = 1 . . . , n.

Throughout, for r ∈ R and x ∈ X(R), r +Rx will be denoted rx, and similarly
for subsets of R. As an illustration of the methods of Lemma 1.3, suppose r ∈ R
is such that rx ∈ U(Rx) for each x ∈ X(R) then r ∈ U(R). On the other hand, the
analogous statement for R(R) is not true (and this will be important for us).

The expression “local ring” will mean a ring with exactly one maximal ideal; no
chain condition is implied. If p is a prime ideal of R then Rp denotes the localization
at p. For a ring R, Qcl (R) refers to the classical ring of quotients (or total ring of
fractions) of R; the symbol q(R) is sometimes used for this ring of quotients. The
Jacobson radical of R is denoted J(R). The term “regular ring” will always mean
“von Neumann regular ring”, i.e., a ring R such that for all r ∈ R there is r′ ∈ R
such that rr′r = r. In the context of a ring C(X) of continuous functions on a
topological space X, it will always be assumed (as in [GJ, Chapter 3]) that the
space is completely regular.

Before going on to various sorts of rings, we note the following based on [C].

Proposition 1.4. Let R be a clean ring. If m ∈ MaxR and x = m ∩ B(R),
then the Pierce stalk Rx = Rm.

Proof. We have that R is a pm ring and then [C, Theorem III.1(2)] says
that R → Rm is a surjection; moreover, [C, Theorem I.1(4)] also says that the
kernel Om of R → Rm is generated by idempotents. Hence, Om ⊆ xR and, clearly,
x ⊆ Om. �

The following will be used at several points in the article. If S is an extension
ring of a ring R, we say S is an extension by idempotents of R if R is generated, as
a ring, by R and B(S).
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Lemma 1.5. Let S be an extension of a ring R by idempotents. Then, the
Pierce stalks of S are homomorphic images of the Pierce stalks of R.

Proof. Consider the extension of boolean algebras B(R) ⊆ B(S). If z ∈
SpecB(S), let x = z∩B(R) ∈ SpecB(R). An element s ∈ S can be expressed in the
form s =

∑n
i=1 riei, where each ri ∈ R and {e1, . . . , en} is a complete orthogonal set

of idempotents from S. Then, sz = (
∑

ei /∈z ri)z. Hence, the composition R → S →
S/zS = Sz is surjective. Its kernel is zR = {r ∈ R | r = re for some e ∈ B(S)}.
Since xR ⊆ zR, the composition R → Rx → Sz is also surjective. �

Corollary 1.6. Let P be a property of rings such that R has property P if
and only if each Pierce stalk of R has property P and, moreover, P is preserved
under homomorphic images. If R has property P and S is an extension of R by
idempotents then S has property P.

2. Pierce sheaf characterizations of clean and related rings.

It has been known for a long time that a ring R is clean if and only if each
of its Pierce stalks is clean if and only if each of its Pierce stalks is local; see, for
example [BS, Proposition 1.2] (which only requires that the idempotents of R be
central). Since a homomorphic image of a local ring is local, Corollary 1.6 applies
to show that an extension of a clean ring by idempotents is clean.

We will see that weakly clean rings and uniquely clean rings have convenient
characterizations in terms of their Pierce stalks but that the characterization of al-
most clean rings will involve more than just the stalks. The descriptions of uniquely
clean rings and related rings will appear in Section 4.

Clean rings have also appeared in [Ca1] under the name topologically boolean
rings, i.e., those rings R where the mapping MaxR → X(R) given by m 7→ m∩B(R)
is one-to-one and, hence, a homeomorphism ([Ca1, Definition 3.6] and see also
[Ca2, §3]). It is easy to see that this is the same as saying that the Pierce stalks
are all local. The name given to rings of global sections of local rings over boolean
spaces in [OS] is lokal Boolesch. Lemma 3.2 in [OS] says that R is “lokal Boolesch”
exactly when for each m ∈ MaxR, the canonical map R → Rm is onto with kernel
xR, x = m∩B(R); this, again, is the same as saying that each Pierce stalk is local.

2.1. Weakly clean rings. In [AA, Question 1.11] the authors ask whether
a weakly clean ring T which is not clean splits into T ∼= R × S, where R is inde-
composable weakly clean but not clean and S is clean. The answer is “no”. Let
A = Z(p) and B = Z(p) ∩ Z(q), where p and q are distinct odd primes, and let T
be the ring of sequences from A which are eventually constant and in B. The ring
B is weakly clean but not clean by [AC, Example 17]. Since B is a homomorphic
image of T , T is not clean but is easily seen to be weakly clean. However, no direct
factor of T is indecomposable and weakly clean but not clean. In fact, the following
is true.

Proposition 2.1. Let R be a ring. Then R is weakly clean if and only if all
its Pierce stalks are weakly clean and all but at most one of them are clean.

Proof. We note that for x 6= y in X, Rx + Ry = R. Hence, R/(Rx ∩ Ry) ∼=
Rx ×Ry, and, also, that R is clean if and only if every element is the difference of
a unit and an idempotent.
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If R is weakly clean so are all the Pierce stalks by [AA, Lemma 1.2], since the
stalks are homomorphic images of R. Moreover, if Rx are Ry are distinct stalks,
Rx × Ry is a homomorphic image of R and so must be weakly clean and at most
one of the factors is weakly clean but not clean by [AA, Theorem 1.7].

In the other direction, if all the stalks are clean (i.e., indecomposable and clean)
then, as already mentioned, R is clean. If, on the other hand, one stalk is weakly
clean but not clean, say Rz, then, for any r ∈ R, there are two possibilities. If rz

is the sum of a unit and an idempotent from Rz, then rx is the sum of a unit and
an idempotent in Rx, for all x ∈ X. It follows that r is the sum of a unit and an
idempotent from R (an application of Lemma 1.3). If rz can only be expressed as
a unit minus an idempotent in Rz, then, each rx has such an expression and then
so does r. �

2.2. Almost clean rings. The property “almost clean” does not work quite
as smoothly via Pierce sheaves. The notation used above is kept. Recall that a
local ring is (almost) clean and any domain is almost clean. In the first example
which is not almost clean all the stalks are almost clean and all except one are
local. Examples 2.9 contain a ring where all the stalks except one are fields and
the remaining one is Z.

Example 2.2. There is a ring which is not almost clean but whose Pierce stalks
are almost clean; in fact, all of the stalks but one are clean.

Proof. Fix a field K and for odd n let Rn = K[X](X)/(Xn+1) and for even n

let Rn = K[X](X−1)/((X−1)n+1). The example will be the subring R of
∏

n≥1 Rn

defined as the set of sequences of the form (r1, r2, . . .) such that for some m ≥ 1
and for some f ∈ K[X], ri = f (meaning the image of f in Ri) for all i ≥ m.

Notice that if r ∈ R is “eventually” f and s ∈ R is “eventually” g then r = s
implies f = g. Indeed, for all i ≥ m, for some m, f − g = 0̄ showing that, for
some sk ∈ K[X] not divisible by X, (f − g)sk is divisible by each Xk, for large
enough odd k. Hence, f = g. As a result, the function R → K[X] defined by
r = (r1, . . . , rm−1, f , f , . . .) 7→ f is a ring surjection with kernel

⊕
n≥1 Rn. The

stalks are the rings Rn along with one more, R∞ = K[X].
Now consider the element r = (X̄, X̄, . . .). If R were almost clean there would

exist a non-zero divisor s and an idempotent e with r = s+ e. There are two cases.
In the first e is “eventually” 0. Then, for all i ≥ m, for some m ≥ 1, X̄ = si is a
non-zero divisor. This is impossible since for i odd, X̄ is nilpotent. In the second
case, e is “eventually” 1. Then for all i ≥ m, some m ≥ 1, X̄ = si + 1 and X − 1 is
a non-zero divisor. This, too, is impossible since for even i, X − 1 is nilpotent. �

Constructions of rings R where X(R) = N ∪ {∞}, as in Example 2.2, occur in
many places in the literature.

The above example suggests a characterization of almost clean rings in Pierce
sheaf terms.

As shown in [AA, Example 2.9], homomorphic images of almost clean rings
need not be almost clean. However, they are when the kernel is generated by
idempotents.

Proposition 2.3. Let R be an almost clean ring and I a proper ideal of R
generated by idempotents. Then R̄ = R/I is almost clean. In particular, the Pierce
stalks of an almost clean ring are almost clean.
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Proof. It is easy to see that I = {r ∈ R | r = re for some e = e2 ∈ I} (e.g.,
[NR, Lemma 1.2]). If s ∈ R(R) and (s + I)(t + I) = I then st = ste, for some
e = e2 ∈ I. Since st(1− e) = 0, t = te ∈ I. Hence, s+ I ∈ R(R/I). The result now
follows. �

The following result generalizes [AA, Theorem 2.5] which dealt only with finite
products of indecomposable rings. A condition, which will be called the Non-zero
Divisor Condition (NZDC), will simplify statements. In the special case of [AA,
Theorem 2.5], it automatically holds.

(NZDC): For all r ∈ R and x ∈ X = SpecB(R), there is a neigbourhood N of x
such that for all y ∈ N , ry ∈ R(Ry), or there is a neighbourhood N of x such that
for all y ∈ N , ry − 1y ∈ R(Ry).

It is clear that the (NZDC) implies that the stalks of R are almost clean.

Theorem 2.4. Let R be a ring and X = SpecB(R). Then the following are
equivalent.

(1) R is almost clean.
(2) R satisfies the (NZDC).
(3) For each r ∈ R and x ∈ X there is e ∈ B(R)\x such that re+(1−e) ∈ R(R)

or (r − 1)e + (1− e) ∈ R(R).

Proof. Assume (1). If r ∈ R, it can be written r = s + e, s ∈ R(R) and
e ∈ B(R). When x ∈ Supp(1 − e), rx = sx, and when x ∈ Supp(e), rx − 1x = sx.
Since Supp(e) and Supp(1−e) are complementary clopen subsets, (NZDC) follows.

We now assume (2). This direction uses the usual technique of building elements
in a Pierce sheaf. Fix r ∈ R. For each x ∈ X, because Rx is almost clean, there
is a clopen neighbourhood Nx such that for all y ∈ Nx we have ry is a non-zero
divisor in Ry or for all y ∈ Nx we have ry − 1y is a non-zero divisor in Ry. The
compactness of X and the fact the covering X =

⋃
x∈X Nx consists of clopen sets,

show that there is a partition of X into disjoint clopen sets N1, . . . , Nk,M1, . . . ,Ml

such that for each i = 1, . . . , k and all y ∈ Ni, ry is a non-zero divisor in Ry and
for each j = 1, . . . , l and all y ∈ Mj , ry − 1y is a non-zero divisor in Ry. Let e be
the idempotent whose support is M1 ∪ · · · ∪Ml and s ∈ R the element such that
sy = ry if y ∈ N1 ∪ · · · ∪Nk and sy = ry − 1y if y ∈ M1 ∪ · · · ∪Ml; s is a non-zero
divisor in R. We get an expression r = s + e, as required.

The equivalence of (2) and (3) is straightforward. �

The (NZDC) is weaker than the statement: for r ∈ R and x ∈ X, if rx ∈ R(Rx)
then r is regular on a neighbourhood of x. Another way of putting the stronger
condition is: for each x ∈ X, R(R)x = R(Rx). The next example shows that the
stronger condition cannot replace the (NZDC) in Theorem 2.4.

Example 2.5. There is a ring R which satisfies the (NZDC) but not the
stronger condition that R(Rx) = R(R)x, for all x ∈ X(R).

Proof. Consider an example R like that of Example 2.2 except that the local
rings K[X](X)/(X)n and K[X](X−2)/(X − 2)n, with K a field of characteristic 0,
are used. Once again the stalk R∞ is K[X]. If f ∈ K[X] is neither divisible by
X nor by X − 2 then any element of R eventually f is a non-zero divisor on a
neighbourhood of ∞. However, if f(0) = 0 then f(2) is an even integer. Then
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f(X)−1 is divisible neither by X nor by X−2. Moreover, if f(2) = 0 but f(0) 6= 0
then f(0) is an even integer and f(X)− 1 is divisible neither by X nor by X − 2.
Hence, the (NZDC) has been verified; however, an element which is a non-zero
divisor at ∞ need not be a non-zero divisor on a neighbourhood of ∞. �

Indecomposable almost clean rings are characterized in [AA, Theorem 2.3].

Example 2.6. If A is an indecomposable almost clean ring and X is a boolean
space, then the ring R of sections of the simple sheaf (X, A) is almost clean.

Proof. Recall that the simple sheaf ([P, Definition 11.2]) has espace étalé
X × A, where A has the discrete topology. The stalks are copies of A and if, for
r ∈ R, x ∈ X, rx ∈ R(A) then r is a non-zero divisor on a neighbourhood of x.
Hence, the stronger version of (NZDC) holds. �

Example 2.6 yields special cases of the following theorem. It was shown in
[BR, Example 1.10] that if S = R[B(S)] where R is almost clean (i.e., S is an
extension of R by idempotents) then S is not necessarily almost clean. We now
look at special kind of extension by idempotents.

Given a ring R and an extension of boolean algebras B(R) ⊆ B, there is a
method of constructing a generic extension ring RB of R so that B(RB) = B
and if R ⊆ S is any ring extension with B(S) ∼= B then there is a unique ring
homomorphism RB → S whose image is the subring of S generated by R and
B(S). This construction is found in [Bu, Propositions 2.2 and 2.3] and, using
different techniques, in [Ma, Theorem 1].

Theorem 2.7. Let R be a ring and Y a boolean space equipped with a contin-
uous surjection τ : Y → X = X(R). Let the boolean algebra corresponding to Y be
B. Then, if R is almost clean so is the generic extension RB.

Proof. The method of [Bu, Proposition 2.2] is most convenient here although
[Ma, Theorem 1 (3)] can also be used. The ring RB is the ring of sections of the
inverse image sheaf (T , Y ) of the Pierce sheaf (R, X) of R via τ (see, for example,
[G, Chapter 2, §1.12]). This means that the stalks RB are copies of those of R;
more exactly, if τ(y) = x then (RB)y = Rx. Moreover, the topology of T has as
basic open sets those of the following form. We fix a r ∈ R, U an open subset of X
and V an open subset of Y ; then, for y ∈ V ∩ τ−1(U), the element of T lying over
y is rx, where τ(y) = x. Notice that R embeds in RB by using the section with
value rx at y, when τ(y) = x.

The new sheaf is the Pierce sheaf of its ring of sections (the remark preceding
[Bu, Proposition 2.2]). The stalks are also stalks of R and, by Theorem 2.4, these
are almost clean. However, the same theorem says that we must verify for s ∈ RB

and y ∈ Y that s is a non-zero divisor on a neighbourhood of y or that 1 − s
is a non-zero divisor on a neighbourhood of y. We know that if τ(y) = x then
there is r ∈ R so that sy = rx and that s and (the image of) r coincide on a Y
neighbourhood M of y. There are two cases which are treated in the same manner.
Suppose there is an r ∈ R which is a non-zero divisor on an neighbourhood N of
x. Then, s is a non-zero divisor on M ∩ τ−1(N), as required. �

We have seen that “stalks almost clean” is not sufficient to have the ring almost
clean. This does work in a special case.
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Proposition 2.8. Suppose R is such that for each x ∈ X, Rx is almost clean,
Qcl (R) is clean and B(Qcl (R)) = B(R). Then, R is almost clean.

Proof. We need to verify the NZDC. Given r ∈ R, rx ∈ U(Qcl (R)x) or
rx − 1x ∈ U(Qcl (R)x). It will suffice to show, for r ∈ R with rx ∈ U(Qcl (R)x),
that rx is the image of a non-zero divisor from R. We can write rx = ax/bx, for
some a, b ∈ R(R). Hence, for any lifting of rx to r ∈ R, there is e2 = e /∈ x with
rebe = ae. Since a, b ∈ R(R), for y ∈ X, e /∈ y, ry ∈ R(Ry). �

Recall that a ring R is called a p.p. ring if principal ideals are projective. This
is equivalent to saying that the annihilator of each element is generated by an
idempotent. (The terms “weak Baer” and “Rickart” are also used.) Any p.p. ring
is almost clean. This is deduced in [M1, Proposition 16] from a result of Endo.
In this context the conclusion also follows immediately from Theorem 2.4 and the
Pierce sheaf characterization of p.p. rings in [B, Lemma 3.1 (ii)] which says that
the Pierce stalks are domains and the support of an element is clopen.

The first of the next pair of examples illustrates that the condition on the
supports in Theorem 2.4(2) is necessary. Recall from [NR, Theorem 2.2] that the
Pierce stalks of a ring R are all domains if and only if for each r ∈ R, ann(r) is
generated by its idempotents. These rings are also called almost PP-rings. As we
will see, this condition does not suffice to imply R almost clean. (However, cf.
Proposition 3.5.)

Examples 2.9. (i) There is a ring R whose Pierce stalks are all domains but
which is not almost clean. Moreover, all the stalks but one are fields and Qcl (R) =
R. (ii) There is an example of an almost clean ring R whose stalks are all domains
such that Qcl (R) is clean but not a regular ring.

Proof. (i) We write N as a disjoint union of infinitely many infinite subsets
Nk, k ∈ N, where each Nk is well-ordered {nk1, nk2, . . .}. The ring S is defined as
a product

∏
i∈N Fi, where, for i ∈ N, Fi = Z/(pj), when i = nkj , for some k ∈ N

and j ∈ N and pj is the j th prime. We define a subring R of S as the set of
those sequences (z1, z2, . . .) such that, for some z ∈ Z, some m ∈ N and all i ≥ m,
zi = z. Since {i ≥ m} meets infinitely many elements of each Nk, the integer z in
an element of R is uniquely determined and we call it the constant part of r.

The space X = SpecB(R) is the one-point compactification N ∪ {∞} and the
Pierce stalks of R are the fields Fi, i ∈ N and R∞ = Z.

Notice that the only non-zero divisors are those elements non-zero in each
component and, hence, in particular, with constant part 1 or −1. Moreover, an
idempotent must have constant part 0 or 1. If r has constant part z such that
z 6= −1, 0, 1 and z − 1 6= −1, 0, 1 then neither r nor r − e, for e ∈ B(R), can be a
non-zero divisor.

The claim about Qcl (R) follows since non-zero divisors have constant part 1
and are already units in R.

(ii) Consider the product Π =
∏

n∈N Rn such that when n is odd, Rn = Z/(pn)
where pn is the nth prime, and when n is even, Rn = Z/(3). Let R be the subring
of Π of sequences of the form (z1, z2, . . .) where, for some z ∈ Z and m ∈ N, for
all i ≥ m, zi = z. As in previous examples, the Pierce stalks are the fields Rn

and R∞ = Z. If the constant part of r ∈ R is not divisible by 3 then r is a unit
except in finitely many components and r can be written u + e, where u ∈ R is a
non-zero divisor and e ∈ B(R). When the constant part is divisible by 3, r − 1 is
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a unit except in finitely many components and hence, for some e ∈ B(R), r − e is
a non-zero divisor.

Non-zero divisors in R have constant part not divisible by 3. It follows that
S = Qcl (R) is the ring of sequences from Π which are eventually “constant” of the
form a/b, where 3 - b (meaning that the terms are eventually of the form āb̄−1).
The Pierce stalks of S are Rn, for n ∈ N and S∞ = Z(3). Since S∞ is not a field,
Qcl (R) is not regular. �

The second of the above examples suggests that “gap” between having stalks
domains and p.p. should be looked at. The referee has pointed out that the
following is found in [Al2]. The short proof is included for the readers’ convenience.

Proposition 2.10. Let R be a ring. (i) If the Pierce stalks of R are domains
then B(Qcl (R)) = B(R) and the Pierce stalks of Qcl (R) are domains. (ii) If the
Pierce stalks of R are domains and Qcl (R) is regular then R is p.p.

Proof. (i) We first show that the stalks of Qcl (R) are domains. Let u/v ∈
Qcl (R), u, v ∈ R, v ∈ R(R). It must be shown that annQcl (R)(u/v) is generated by
idempotents. However, annQcl (R)(u/v) = (annR(u))Qcl (R), which is generated by
the idempotents of annR(u). Now let e ∈ B(Qcl (R)) where e = u/v. As we have
seen, annQcl (R)(e) = (1− e)Qcl (R) = (annR(u))Qcl (R). In particular, there exists
f ∈ B(R) with fe = 0 and 1 − e = (1 − e)f . Hence, 1 − e = f ∈ B(R). Finally,
e = 1− f .

(ii) If Qcl (R) is regular, then the annihilator of an element of Qcl (R) is gener-
ated by a single idempotent. Hence, by (i), for r ∈ R, annR(r) is also generated by
a single idempotent and, thus, R is a p.p. ring. �

3. pm rings and pm+ rings.

3.1. On pm rings. In this section it will be shown that for pm rings, the
classes of clean rings, almost clean rings and weakly clean rings coincide.

Remark 3.1. A ring R is a pm ring if and only if for each x ∈ X(R), Rx is
a pm ring. Moreover, if S is an extension of a pm ring by idempotents then S is a
pm ring.

Proof. This is clear from looking at the primes ideals in R and the factor
rings Rx. The second statement follows from the first by Corollary 1.6 since a
homomorphic image of a pm ring is a pm ring. �

Proposition 3.2. If R is a weakly clean pm ring then it is clean.

Proof. Note that a homomorphic image of a pm ring is a pm ring. A ring T
is clean if and only if it is pm and MaxT is zero-dimensional ([J, Theorem V 3.9]).
Now consider an indecomposable weakly clean ring S which is not clean. Then,
[AA, Theorem 1.3] says that S has exactly two maximal ideals. However, if S is
the non-clean Pierce stalk (see Proposition 2.1) of a weakly clean pm ring then
it is pm and MaxS is discrete – hence, zero-dimensional – making S clean, a
contradiction. �

Corollary 3.3. For any space X, if C(X) is weakly clean, it is clean.

The pm property is a very powerful one in this context. We know that for
C(X) ([M1, Theorem 13]) almost clean implies clean. However, this holds in a
more general setting. The following also generalizes [V, Theorem 5.6].
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Theorem 3.4. Let R be a pm ring. If R is almost clean it is clean.

Proof. Assume R is almost clean. We know from Theorem 2.4 that the stalks
of R are almost clean and they are also pm. It suffices to show that an indecom-
posable almost clean pm ring is local. Now assume that R is indecomposable. By
[AA, Theorem 2.3] we know that the sum of two ideals consisting of zero divisors
is not all of R.

Suppose p1 6= p2 are minimal primes of R. For i = 1, 2 let mi be the unique
maximal ideal containing pi. Since p1, p2 ⊆ Z(R), p1+p2 is a proper ideal contained
in some maximal ideal m3. We get that m1 = m2 = m3. Hence, all the minimal
primes are contained in the same maximal ideal. Since any prime ideal contains a
minimal prime ideal, we see that there is only one maximal ideal, as required. �

The following is found in [Al1, Theorem 2.3]; however, the methods developed
above allow for a quick proof.

Proposition 3.5. Let R be a pm ring whose stalks are domains. Then, R is
clean.

Proof. Since each stalk is a domain and a pm ring, it must be local (the zero
ideal is in a unique maximal ideal). Hence, R is clean. �

3.2. On pm+ rings. Rings of continuous functions have a stronger property
than “pm”; in fact in a ring C(X) where X is a topological space, the prime ideals
containing a given prime ideal form a chain. By contrast, any local domain is a
pm ring but would have this stronger property only if all its prime ideals formed a
chain, as, for example, in a valuation domain. The rings satisfying the equivalent
conditions of [C, Theorem III.4] are pm+ -rings; one of these conditions is that
every indecomposable module is cyclic. There does not seem to be a standard
name for this stronger property.

Definition 3.6. A ring R such that for each p ∈ Spec R, the prime ideals
containing p form a chain is said to be a pm+ ring.

We will see that a ring R is a pm+ ring if and only if its Pierce stalks are
pm+ rings; hence, Corollary 1.6 says that an extension of a pm+ ring by idempo-
tents is a pm+ ring. Various characterizations, including an element-wise one, are
presented. The criterion for a pm ring [Ca1, Theorem 4.1] is used in localizations.
We first note a simple lemma.

Lemma 3.7. Suppose R is a pm+ ring, I an ideal of R and S ⊆ R a multi-
plicatively closed set with 0 /∈ S. Then, R/I and RS−1 are pm+ rings.

Proof. We see that Spec R/I may be identified with a subspace of Spec R
which preserves inclusions. Hence, R/I is a pm+ ring. Using this fact, we may
assume that R → RS−1 is one-to-one. Then, Spec RS−1 → Spec R is again injective
and preserves inclusions. Hence, also, RS−1 is a pm+ ring. �

Proposition 3.8. The following are equivalent for a ring R.
(1) R is a pm+ ring.
(2) For each multiplicatively closed set S ⊆ R, 0 /∈ S, RS−1 is a pm ring.
(3) For each multiplicatively closed set S ⊆ R, 0 /∈ S, if a, b ∈ R and s =

a + b ∈ S there there are u ∈ S and c, d ∈ R with (u− ac)(u− bd) = 0.
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(4) If a, b ∈ R and s = a + b is not nilpotent there are k ∈ N, c, d ∈ R with
(sk − ac)(sk − bd) = 0.

(5) For each x ∈ X(R), Rx is a pm+ ring.

Proof. (1) ⇒ (2). This is from Lemma 3.7.
(2) ⇒ (3). We use the criterion [Ca1, Theorem 4.1]. If s = a + b ∈ S then, in

the pm ring RS−1, as−1 + bs−1 = 1; hence, there are ct−1, dt−1 ∈ RS−1 (using a
common denominator) with (1− as−1ct−1)(1− bs−1dt−1) = 0. Then, since st ∈ S,
there is v ∈ S with (st− ac)(st− bd)v = 0. We get (stv − acv)(stv − bdv) = 0.

(3) ⇒ (4). The statement (4) is a special case of (3) using S = {sm | m ∈ N}.
(4) ⇒ (1). We assume (4) and suppose q, p, p′ ∈ Spec R with q ⊆ p and q ⊆ p′

such that p and p′ are not comparable. We pick a ∈ p \ p′ and b ∈ p′ \ p and set
s = a + b. If s were nilpotent then s ∈ q, showing that b ∈ p, a contradiction.
Then, (4) is applied to S = {sm | m ∈ N} to get k ∈ N and c, d ∈ R with
(sk − ac)(sk − bd) = 0. One of the factors is in q; suppose sk − ac ∈ q. Now a ∈ p
implies sk ∈ p and, thus, s ∈ p. This is impossible because it would imply b ∈ p.
The contradiction shows that two unrelated prime ideals cannot contain a common
prime ideal. It follows that R is a pm+ ring.

(5) ⇔ (1). If R is a pm+ ring so is Rx for each x ∈ X(R) since Rx is a
homomorphic image of R. In the other direction will be shown that (5) implies
(4). We assume a, b ∈ R and that s = a + b is not nilpotent. This means that for
some x ∈ X(R), sx is not nilpotent. In any case, if, for x ∈ X(R), sx is nilpotent,
say with s

k(x)
x = 0x then (sk(x) − ask(x))x(sk(x) − bsk(x))x = 0x. Otherwise, there

are k(x) ∈ N, c(x), d(x) ∈ R with (sk(x) − ac(x))x(sk(x) − bd(x))x = 0x. Hence, for
each x ∈ X(R) there is a clopen neighbourhood Nx of x, k(x) ∈ N, c(x), d(x) ∈ R
such that for all y ∈ Nx, (sk(x) − ac(x))y(sk(x) − bd(x))y = 0y. The usual Pierce
method for building elements of R can now be applied to find k ∈ N, c, d ∈ R such
that (sk − ac)(sk − bd) = 0, proving (4). �

Statements (1) and (4) of Proposition 3.8 and Corollary 1.6 combine to show
that if S is an extension of a pm+ ring R by idempotents, then S is a pm+ ring.

Corollary 3.9. Let X be a strongly 0-dimensional space. For every f ∈
C(X), C∗(X)[f ] is clean. Hence, every ring between C∗(X) and C(X) is clean.

Proof. The referee pointed out that C∗(X)[f ] = C∗(X)S−1 for a suitable
multiplicatively closed set S; indeed, S = {1/(1 + f2)n | n ∈ N} works. Since
C∗(X) ∼= C(βX), C∗(X) is a pm+ ring and C∗(X)[f ] is a pm ring by Proposi-
tion 3.8(2). Since C(X) is clean, each g ∈ C∗(X)[f ] can be written g = v + e,
e ∈ B(C(X)), v ∈ U(C(X)). However, e ∈ C∗(X) and, hence, v ∈ C∗(X)[f ]. Be-
cause v ∈ R(C∗(X)[f ]) it follows that C∗(X)[f ] is almost clean. Then, C∗(X)[f ]
is clean by Theorem 3.4. �

As an application of Lemma 3.7 we have a strengthening of the result ([BR,
Proposition 2.1] and [KLM, Proposition 5.19]) which says that if C(X) is clean so
is Qcl (X). We need that a cozero-set in a strongly 0-dimensional space is strongly
0-dimensional. This is shown in the proof of [KLM, Proposition 5.19].

Theorem 3.10. Let X be a strongly 0-dimensional space. Then, for any mul-
tiplicatively closed S ⊆ C(X), 0 /∈ S, C(X)S−1 is a clean ring.
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Proof. It will suffice to show that for any 0 6= f ∈ C(X) the ring A =
C(X)[f−1] is clean. We may assume that f is not a unit in C(X); in that case
V = coz f is a proper cozero-set. As quoted above, V is strongly 0-dimensional
and, hence, C(V ) is also a clean ring. Moreover, A embeds naturally in C(V ).

We first assume that f is bounded and show that the idempotents of C(V ) are in
A. Let e2 = e ∈ C(V ). Since f is bounded, ef |V extends to some g ∈ C(X). Hence,
e = g/f ∈ A. For an arbitrary h/fn ∈ A, h/fn = u + e for some u ∈ U(C(V ))
and e ∈ B(C(V )). Again, since e ∈ A, u ∈ A, as well. Then, u ∈ R(A). This
shows that A is an almost clean ring. It is also a pm ring (Lemma 3.7) and then,
by Theorem 3.4, A is clean.

We now drop the assumption that f is bounded and set g = f/(1 + f2).
Because 1/(1 + f2) ∈ C(X), it follows that C(X)[f−1] = C(X)[g−1]. This shows
that C(X)[f−1] is clean, since g is bounded. �

It is not, however, the case that, when X is strongly 0-dimensional, every ring
between C(X) and Qcl (X) is clean. Recall that a space is perfectly normal if every
open set in it is a cozero-set. The class of perfectly normal spaces properly contains
that of metric spaces.

Proposition 3.11. Let X be a perfectly normal which has an infinite conver-
gent sequence. Then, there is f ∈ Qcl (X) such that C(X)[f ] is not clean. This
applies, in particular, to the strongly 0-dimensional space X = Q.

Proof. Let {xn}n∈N be a sequence of distinct points in X converging to a ∈ X
and let Y = X \ {a}. Since X is perfectly normal, the dense open subset Y is a
cozero-set. Since S ∪ {a} is compact, S is closed in Y . It follows that S is C∗-
embedded in the perfectly normal space Y ([GJ, 3D]). We assign values to the
elements of S in such a way that each of 0 and 1/m, m ∈ N, occurs infinitely many
times, and let f be a continuous bounded extension to Y . Then, f is not a unit
since it sometimes has value 0. Note that for each m ∈ N, there is a subsequence
Sm of S, converging to a ∈ X, on which f is constantly 1/m.

Recall that C(Y ) may be viewed as a subring of Qcl (X) ([FGL, 2.6 Theo-
rem (2)]). The ring we propose is A = C(X)[f ] ⊆ C(Y ). Suppose that f = u + e
where u ∈ U(A) and e ∈ B(A). The function e can only have values 0 and 1.
Moreover, e(xn) = 0 when f(xn) = 1 and e(xn) = 1 when f(xn) = 0. Hence, e
does not extend to an element of C(X). Because u is invertible in A there is an
equation

(∗) (f − e)(g0 + g1f + · · ·+ gnfn) = 1,

with g0, . . . , gn ∈ C(X). Let the second factor in (∗) be denoted w. For fixed
m ∈ N, w extends continuously to Sm ∪ {a} since the gi ∈ C(X) and f is constant
on Sm. However, for xk ∈ Sm, w(xk) = m if e(xk) = 0 and w(xk) = m/(1 − m)
if e(xk) = 1. Hence, e is eventually 0 on Sm or is eventually 1. Suppose, for
convenience that e is eventually 0 on Sm for infinitely many m ∈ N and consider
the real polynomial F (z) = z(g0(a) + g1(a)z + · · · + gn(a)zn) − 1. For infinitely
many m ∈ N, F (1/m) = 0, which is absurd. Hence, there can be no expression
f = u + e. When e is eventually 1, similar reasoning applies but with a different
polynomial. �
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A key argument used in Corollary 3.9 and in Theorem 3.10 has other applica-
tions. There are many ways of embedding a ring into a clean ring. See Construc-
tion 4.6 and the remarks preceding it.

Theorem 3.12. Every ring R has an extension by idempotents which is almost
clean. Moreover, every pm ring R has an extension by idempotents which is clean.
However, if R is not a pm ring, no integral extension (in particular, no extension
by idempotents) of R can be a pm ring.

Proof. Let T be an extension of R which is a clean ring and let S be the
subring of T generated by R and B(T ). For any s ∈ S, there are u ∈ U(T ) and
e ∈ B(T ) such that s = u + e. Since e ∈ S, u ∈ S as well, and u ∈ R(S), proving
the first statement. If, in addition, R is a pm ring, then so is S by Remark 3.1.
Hence, Theorem 3.4 shows that S is clean.

For the last part, suppose R is not a pm ring and that some p ∈ Spec R is in
two distinct maximal ideals, m and n. If S is an integral extension of R then there
are q ∈ Spec S and m′, n′ ∈ MaxS containing q with m′ ∩ R = m, n′ ∩ R = n and
q ∩R = p ([Mat, Theorem 9.4]). Hence, S is not a pm ring. �

4. Uniquely clean rings and J-clean rings.

Categorical language in this section will follow that of Mac Lane’s book [ML].

4.1. F-semiperfect rings whose idempotents are central. At the start of
this section we temporarily drop the assumption that our rings are commutative;
in this setting B(R) stands for the boolean algebra of central idempotents. In
[NZ], the authors give a thorough description of uniquely clean rings, including
the noncommutative case. The methods suggest a generalization which will turn
out to have categorical properties in the commutative case. Before going on to our
generalization it is useful to put the rings to be discussed into context.

The same class of (noncommutative) rings has appeared under two different
names. The first is that of the F-semiperfect rings of Oberst and Schneider, i.e.,
rings such that every finitely presented module (left or right) has a projective cover
(see [OS]). The second is the class of D-rings introduced by Contessa ([Ca2])
and further studied by Contessa and Lesieur ([CL]): A ring R is a left D-ring
is for all r ∈ R there are e2 = e ∈ R and an a ∈ R such that e = ar and
r − re ∈ J(R). A right D-ring is defined similarly ([CL, Definition 11.1]). Then
[CL, Théorème II.1.3] shows that left D-rings, right D-rings and F-semiperfect rings
coincide. Other equivalent conditions and properties of these rings can be found
in [CL]. Not all regular rings are clean and, hence, not all F-semiperfect rings are
clean.

We shall study F-semiperfect rings whose idempotents are central. Recall that
a ring R is abelian regular (or strongly regular) if for each r ∈ R there is s ∈ R with
r2s = r. In an abelian regular ring all idempotents are central. Some parts of the
proof of the next result are adapted from that of [NZ, Theorem 20].

Theorem 4.1. Let R be any ring. The following statements are equivalent.
(1) R/J(R) is abelian regular and idempotents lift uniquely modulo J(R).
(2) R/J(R) is regular, idempotents lift modulo J(R), and all idempotents of R

are central.
(2 ′) R is F-semiperfect and all idempotents of R are central.



14 W.D. BURGESS AND R. RAPHAEL

(3) R is a clean ring with idempotents central and for all x ∈ X(R), J(Rx) =
J(R)x.

(4) For each r ∈ R, there is e ∈ B(R) such that re + (1 − e) ∈ U(R) and
r(1− e) ∈ J(R).

Proof. Throughout, “modulo J(R)” will be indicated by a bar and X =
X(R).

(2) ⇔ (2′). One of the characterizations of an F-semiperfect ring (sometimes
its definition) is that R/J(R) is regular and idempotents lift modulo the radical.

(1) ⇒ (2). Once we have shown that idempotents of R are central, the fact
that idempotents lift modulo J(R) will yield that R is abelian regular. Following
[NZ], if e2 = e ∈ R then for r ∈ R, e + (re− ere) is an idempotent with the same
image as e. Hence, by the uniqueness, re = ere and, similarly, er = ere.

(2) ⇒ (1). We only need show the uniqueness. Suppose e, f ∈ B(R) with
ē = f̄ . Thus, e − f ∈ J(R) and then 1 − (e − ef) ∈ U(R). It follows that e = ef
and, similarly, f = ef .

(2) ⇒ (3). We have that R is abelian regular and idempotents lift. Thus, R
is a clean ring ([HN, Proposition 6]). By [BS, Proposition 1.2], since idempotents
are central, each Rx has a unique maximal left ideal. Given r ∈ R there is s ∈ R
such that r̄2s̄ = r̄. Then, the idempotent r̄s̄ lifts to some e ∈ B(R). When
ex = 1x then rxsx − 1x ∈ J(Rx) which implies that rxsx ∈ U(Rx) and, hence, that
rx ∈ U(Rx). When ex = 0x, rxsx ∈ J(Rx) and, hence, r2

xsx ∈ J(Rx); moreover,
r2
xsx − rx ∈ J(Rx) as well. It follows that rx ∈ J(Rx). Then, rx ∈ U(Rx) for

x ∈ Supp(e) and rx ∈ J(Rx) for x ∈ Supp(1− e). Thus, r(1− e) ∈ J(R) and if, for
some y ∈ X, ry ∈ J(Ry), we have that ry = (r(1− e))y ∈ J(R)y.

(3) ⇒ (4). We have that each stalk Rx has a unique maximal left ideal M (x)

([BS, Proposition 1.2]). For r ∈ R, {x ∈ X | rx ∈ U(Rx)} is open in X. The
condition on the radicals implies that {x ∈ X | rx ∈ J(Rx)} is open as well. Since
either rx ∈ U(Rx) or rx ∈ J(Rx), the two open sets are complements of each other.
Hence there is e ∈ B(R) such that for all x ∈ Supp(e), rx ∈ U(R) and for all
x ∈ Supp(1− e), rx ∈ J(Rx). This is the desired idempotent.

(4) ⇒ (2). We first show that R is abelian regular. For r ∈ R we find e ∈ B(R)
as in the statement. Suppose (re + (1− e))v = 1; then, rev = e and r− re ∈ J(R).
Thus, r̄ = r̄ē = r̄2ēv̄, as required. Next, idempotents of R are central; suppose
g = g2. We find e ∈ B(R) where ge + (1 − e) ∈ U(R) and g(1 − e) ∈ J(R). Since
g(1− e) is an idempotent, it is zero and g = ge. The unit ge + (1− e) = g + (1− e)
is also an idempotent, hence, it is 1. Thus, g = e.

Finally, we need to lift idempotents. Suppose r2− r ∈ J(R). We find e ∈ B(R)
as in the statement. The claim is that r̄ = ē. We have (e−er)2 = (e−er)+e(r2−r).
Hence, ē− ēr̄ is an idempotent. We also have r̄ = ēr̄ since r(1− e) ∈ J(R). From
this, ēr̄ + (1̄− ē) = 1̄− (ē− ēr̄) ∈ U(R). Hence, ē− ēr̄ = 0̄ and ē = ēr̄ = r̄. �

We note that the idempotent e in the expression (4) of the theorem is uniquely
determined. Suppose f ∈ B(R), rf + 1− f ∈ U(R), r(1− f) ∈ J(R) and that, for
some x ∈ X(R), ex = 1x and fx = 0x. In this case rx(1x − fx) = rx ∈ J(Rx) while
(re + 1− e)x = rx ∈ U(Rx), which is impossible. Similarly ex = 0x and fx = 1x is
impossible.
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We will see shortly that the rings of Theorem 4.1 include the uniquely clean
rings. The statement “R is F-semiperfect and all idempotents of R are central” is
too long and so we give a shorter name.

Definition 4.2. A ring R satisfying the equivalent conditions of Theorem 4.1
will be call a J-clean ring.

We recall the characterization of uniquely clean rings in [NZ, Theorem 20]: The
following are equivalent for a ring R: (1) R is uniquely clean; (2) R/J(R) is boolean
and idempotents lift uniquely modulo J(R); (3) R/J(R) is boolean, idempotents lift
modulo J(R), and idempotents of R are central; (4) for all a ∈ R there exists a
unique e ∈ B(R) such that e− a ∈ J(R).

Corollary 4.3. The following are equivalent for a ring R: (i) R is uniquely
clean; (ii) R is J-clean and R/J(R) is boolean; (iii) for each x ∈ X(R), Rx is local
(has a unique maximal one-sided ideal) and Rx/J(Rx) ∼= Z/2Z.

Proof. The equivalence of (i) and (ii) is clear using [NZ, Theorem 20]. More-
over, (i) and (ii), using Theorem 4.1 (2), imply that if R is clean and idempotents
are central, then the stalks of R are local in the strong sense of having a unique
maximal one-sided ideal and Theorem 4.1 (3) yields that Rx/J(Rx) ∼= Z/2Z. On
the other hand, (iii) implies that R is clean and each Rx is uniquely clean, as can
be checked either directly or by using [AC, Corollary 22], which works equally well
in the non-commutative case. It is also clear that if all the stalks are uniquely clean
then, so is R because two different expressions of r ∈ R as a clean element would
have to differ in some stalk. �

4.2. Commutative J-clean rings. At this point we revert to the convention
that all rings are assumed to be commutative.

A useful property of a J-clean ring R, in the commutative case, is that X(R)
and MaxR are homeomorphic boolean spaces. Indeed, for the regular ring R/J(R),
Spec R/J(R) coincides with SpecB(R/J(R)) and, since idempotents lift uniquely
modulo J(R), these spaces coincide with SpecB(R); moreover, MaxR coincides
with Max(R/J(R)).

The following lists some examples of J-clean rings.
• All local rings. More generally, for a local ring A and X a boolean space,

the ring of sections of the simple sheaf (X, A).
• All 0-dimensional rings.
• A direct product of J-clean rings.
• An extension of a J-clean ring by idempotents (using Theorem 4.1 (4)).

On the other hand, a semiprimitive ring R (i.e., J(R) = 0) is J-clean if and only if
R is regular. In particular, C(X) is J-clean if and only if X is a P-space.

Recall that a reflective subcategory is closed under limits and, hence, under
equalizers. The subcategory of J-clean rings, which we call J C, is not a reflective
subcategory of the category of (commutative) rings, as we will see. It does, however,
have some closure properties.

Proposition 4.4. (i) The categories of J-clean and of clean rings are closed
under products and homomorphic images. (ii) Let R and S be local rings and
α, β : R → S be homomorphisms. Let E be the equalizer of α and β, then E is
local. However, equalizers in J C are not J-clean or even clean.
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Proof. (i) Both parts for J C follow readily from Theorem 4.1(4) (see also
[Ca2, Proposition 5.3(3)]). (ii) Suppose r ∈ E. If r ∈ U(R) then its inverse is also
in E. Now suppose r is not invertible in R. Then, for all t ∈ E, tr − 1 ∈ U(R) and
its inverse is also is in E. It follows that r ∈ J(E) and E is local. For the second
part of (ii) consider R = Z(3)×Z(5) and S = Q with α given by the projection onto
Z(3) followed by inclusion, while β is the other projection followed by inclusion.
The equalizer is isomorphic to the ring Z(3) ∩ Z(5), which is not clean. �

In the last paragraph of [AC], the authors ask if the subcategory of uniquely
clean rings is closed under homomorphic images. This was answered in the positive
in [NZ, Theorem 22]. The proof of Proposition 4.4 (iii) applies equally to noncom-
mutative J-clean rings and, when specialized to uniquely clean rings, again yields
the same conclusion.

4.3. The functor jc. One of the reasons for giving a special name to the
rings of Theorem 4.1 is that there is a functorial way of associating a J-clean ring
extension to each ring; the functor is not a reflector in the category of rings (it
is not the identity on J C) but has some of the properties of a reflector, including
a universal property. Construction 4.6, below, is reminiscent of the construction
of the universal regular ring (see [H] and [W]) and, indeed, the two are closely
related as will be shown. The key point is that if R is a J-clean ring then, for
r ∈ R, {x ∈ X | rx ∈ U(Rx)} is clopen in X.

Other methods of embedding R into a J-clean ring are studied in [Ca2] and
these will be revisited later. A construction and a result from [Ca2] are useful at
this point ([Ca2, Theorems 5.11 and 6.3]).

Let R be a subring of a direct product P =
∏

α∈A Lα of local rings. Let the
maximal ideal of Lα be mα. For r = (rα) ∈ R, define r∗ ∈ P by (r∗)α = r−1

α if
rα /∈ mα and r∗α = 0 if rα ∈ mα. Then DP (R) is defined to be the subring of P
generated by R and {r∗ | r ∈ R}.

Lemma 4.5. [Ca2, Theorem 6.3]. Let R be a subring of a product P of local
rings. Then, the subring DP (R) of P is a J-clean ring extending R.

Construction 4.6. There is a functor jc : CR → JC such that (1) for each
R ∈ CR, ιR : R → jc(R) is a monomorphism, (2) For a homomorphism φ : R → S
in CR, jc(φ)(J(jc(R))) ⊆ J(jc(S)), and (3) the functor jc followed by reduction
modulo the Jacobson radical is equivalent to the universal regular ring functor T .

Proof. (1) We begin by describing the ring jc(R) for R ∈ CR. The con-
structible (or patch) topology on the set Spec R (see [H, Section 2] and also [W]
or [J, Proposition 4.5]) has as sub-basic open sets those of the form D(a) = {p ∈
Spec R | a /∈ p}, a ∈ R and V (I) = {p ∈ Spec R | I ⊆ p}, I a finitely generated
ideal. The set with the new topology is denoted Specc R and is always a boolean
space ([H, Theorem 1]). This space will serve as the base space of the Pierce sheaf of
jc(R); to distinguish between p ∈ Spec R and the corresponding point in X(jc(R)),
we write x(p) for the latter.

For x(p), p ∈ Spec R, the corresponding stalk jc(R)x(p) will be Rp. The topology
on the espace étalé needs to be specified. A sub-basic open set of Specc R has the
form N(a, I) = D(a)∩V (I), a ∈ R and I a finitely generated ideal; such a set is also
closed. Given N(a, I) and c, d ∈ R, d /∈ p for all p ∈ N(a, I), the set U(a, I, c, d) =
{cd−1 ∈ Rp | p ∈ N(a, I)} is decreed to be open. These sets may be viewed as
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partial sections. A key feature of a Pierce sheaf is that if two (partial) sections
have a non-empty intersection then they coincide over a neighbourhood of the base
space. We verify that property here: suppose U(a1, I1, c1, d1) and U(a2, I2, c2, d2)
are open sets and for some p ∈ N(a1, I1) ∩ N(a2, I2) we have c1d

−1
1 = c2d

−1
2 in

Rp. Then, for some s /∈ p, (c1d2 − c2d1)s = 0 ∈ R and U(a1a2s, I1 + I2, c1, d1) is
an appropriate neighbourhood in the intersection. The ring of sections of this new
sheaf is denoted jc(R). Given cd−1 ∈ Rp, for some p ∈ Spec R, there is a partial
section using U(d,0, c, d) which, because D(d) is clopen, extends to a global section
using, for example, U(1, (d), 0, 1). Hence, the stalk of jc(R) at x(p) is Rp.

We next note that R has a natural embedding into jc(R); for r ∈ R let r̂ be
defined by r̂x(p) = r1−1. This is clearly a section and r̂ = 0 only if r = 0. The
resulting monomorphism is denoted ιR : R → jc(R).

The ring jc(R) is a J-clean ring as may be verified directly. However, it
also follows from Lemma 4.5 by viewing jc(R) as a subring of the product P =∏

p∈Spec R Rp. Then, jc(R) is readily seen to be the J-clean ring DP (R).
Given a homomorphism φ : R → S in CR we need to define jc(φ) : jc(R) →

jc(S). This is done by specifying the value of jc(φ)(σ) at some x(q), q ∈ Spec S.
Suppose that σx(φ−1(q)) = ab−1, then jc(φ)(σ)q = φ(a)φ(b)−1. Since σ has value
ab−1 on a neigbourhood, say N of x(φ−1(q)), jc(φ)(σ) will have value φ(a)φ(b)−1 on
the preimage of N in Specc S. (Recall that the function Spec S → Spec R induced
by φ is also continuous in the constructible topology.) This shows that jc(φ) is a
well-defined ring homomorphism.

(2) As in the construction of jc(φ), for q ∈ Spec S, φ(a)φ(b)−1 ∈ J(Sq) exactly
when a ∈ φ−1(q). Since we are dealing with J-clean rings, this is enough to show
that φ(J(jc(R))) ⊆ J(jc(S)).

(3) The construction of the functor T is very much like that of jc but for p ∈
Spec R, the corresponding stalk of T (R) is Qcl (R/p). However, Qcl (R/p) ∼= Rp/(p)
in a natural way. This, combined with (2), gives all that is required. �

We have already seen in Proposition 4.4 that J C is not a reflective subcategory
of CR and, hence, jc cannot be a reflector. As further evidence, note that jc is not
the identity on J C. Indeed jc(R) ∼= R only when R is 0-dimensional. (When R
is not 0-dimensional jc(R) acquires new maximal ideals; when R is 0-dimensional,
Spec R and Specc R coincide.)

The next simple example illustrates how jc(R) and T (R) are related.

Example 4.7. Let R be the ring of sequences from Q which are eventually
constant in Z(p), for a prime integer p. Then, R is clean but not J-clean, jc(R) =
S×Z(p), where S is the ring of sequences from Q which are eventually constant, and
jc(R)/J(jc(R)) = S × Z/(p) = T (R). Moreover, R → jc(R) is not an epimorphism
in CR.

Proof. Let m = {(q1, q2, . . .) | eventually constant in (p)}, a maximal ideal.
Since {m} = V ((p, p, . . .)), {m} is an isolated point in Specc R and Rm

∼= Z(p).
To prove the last remark, let α, β : jc(R) → Q be given by α((s, t)) = q, where

s ∈ S is eventually q ∈ Q and β((s, t)) = t ∈ Z(p) ⊆ Q. Clearly α 6= β but
α · ι = β · ι. �

In this context we note that if R is local with finitely generated maximal ideal
m, a copy of R will split off from jc(R) because m is an isolated point in Specc R.
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4.4. The universal property of the functor jc. We next show that, for a
ring R, jc(R) satisfies a universal property. The universal property of RD ([Ca2,
Theorem 6.10]) will be subsumed in that for jc(R). We need a preliminary lemma.

Lemma 4.8. Let R be a J-clean ring. For any r ∈ R, {x ∈ X(R) | rx ∈ J(Rx)}
is a clopen set in X = X(R). Moreover, Spec R and Specc R induce the same
topology on the subset MaxR.

Proof. Given r ∈ R there is e ∈ B(R) with u = re + 1 − e ∈ U(R) and
r(1 − e) ∈ J(R). For x ∈ X, ux = rx ∈ U(Rx) if x ∈ Supp(e) while rx ∈ J(Rx) if
x ∈ Supp(1−e). Hence, {x ∈ X | rx ∈ J(Rx)} = Supp(1−e), which is clopen in X.
However, X and MaxR are homeomorphic where MaxR has the Zariski topology.
To finish the proof it needs to be shown that the basic open sets D(r)∩MaxR are
also closed. Indeed, {m ∈ MaxR | r /∈ m} = {m ∈ MaxR | rx /∈ J(Rx), where x =
m ∩X}, which has just been seen to be clopen. �

Theorem 4.9. Let R be a ring and κ : R → S a homomorphism where S is a J-
clean ring. Then, there is a unique homomorphism θ : jc(R) → S whose restriction
to R is κ.

Proof. We define θ(δ), for δ ∈ jc(R), locally and show that it is a well-defined
homomorphism. Let φ : maxS → Spec R be induced by κ: The two topologies
coincide on MaxS (Lemma 4.8) and φ is continuous if its codomain is Spec R and
if it is Specc R. For m ∈ MaxS, we define θ(δ)m ∈ Sm as follows: Let δφ(m) =
cd−1 ∈ Rφ(m), c, d ∈ R, d /∈ φ(m), and put θ(δ)m = κ(c)κ(d)−1.

In order to show that θ(δ) is an element of S it suffices to show that this is true
locally. Now δ coincides with cd−1 on a Specc R-neighbourhood N of φ(m). There
is an s ∈ S whose image in Sm is κ(c)κ(d)−1 and this occurs on a neighbourhood
M of m. It follows that θ(δ) and s coincide on M ∩ φ−1(N).

The proofs that θ is a well-defined homomorphism and the uniqueness are now
straightforward. �

Corollary 4.10. Let R be embedded in a product P =
∏

α∈A Lα of local rings.
Then, the homomorphism θ : jc(R) → DP (R) of Theorem 4.9 is surjective. In fact,
the universal property applied to the J-clean ring P yields θ′ : jc(R) → P with image
DP (R).

Proof. We only need to observe that both jc(R) and DP (R) are generated by
R and the elements s∗, s ∈ R and that θ(s∗) = s∗ ∈ DP (R). (See the paragraph
before Lemma 4.5 for the notation.) The second part follows for the same reason.

�

The statement of [Ca2, Corollary 6.8] that if R is a J-clean ring and P is a
direct product of local rings then DP (R) = R is false without more conditions.
(Consider Z(p) ⊆ Z(p) × Q via the diagonal map.) However, the claim is true for
the canonical construction RD, which is done as follows. For any ring R, R embeds
naturally in M =

∏
m∈Max R Rm; the resulting J-clean ring DM (R) is denoted RD

in [Ca2] and called the canonical D-ring for R (and the D-enveloppe in [CL]).

Proposition 4.11. Let R be a J-clean ring which is embedded via ι : R → P in
a direct product P =

∏
α∈A Lα of local rings with the maximal ideal of Lα denoted

by mα. For each β ∈ A, let nβ = {(lα) ∈ P | lβ ∈ mβ}. Suppose that for each
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α ∈ A, ι−1(nα) ∈ Max(R). Then, R = DP (R). In particular, this occurs when
M =

∏
m∈Max(R) Rm, i.e., R = RD.

Proof. The notation preceding Lemma 4.5 is again used. It needs to be shown
that for each r ∈ R, r∗ ∈ ι(R). There is e ∈ B(R) with u = re + (1 − e) ∈ U(R).
Then, e ∈ m ∈ Max(R) if and only if m ∈ D(r) ⊆ Spec R. It follows that ι(u−1e)α is
ι(r)−1

α exactly when ι−1(nα) ∈ D(r) and is 0 otherwise. In other words, ι(u−1e) =
r∗. �

The construction of RD, however, is not functorial since inverse images of
maximal ideals are not necessarily maximal. We will now compare jc(R) and RD.
In [CL, Théorème I.2.3], it is shown that MaxR embeds naturally in Max RD as
a dense subset. The space MaxRD is described in some specific cases ([CL, 3.
Exemple]). We will supply a description of MaxRD for any ring R.

Let us first recall the identification of MaxR as a subspace of MaxRD ([CL]).
For m ∈ MaxR, m′ = {δ ∈ RD | δm ∈ mRm}. Let M′ = {m′ | m ∈ MaxR}. Then,
M′ is Zariski dense in MaxRD ([CL, Théorème I.2.3]). Moreover, the Zariski
topology on M′, as a subspace of Spec RD, is finer than that on MaxR ([CL,
Théorème I.2.3 (i)]). The homomorphism given by Theorem 4.9 applied to RD will
be denoted θD : jc(R) → RD.

Theorem 4.12. For a ring R, put K = cl Specc R(Max R). The homomorphism
θD : jc(R) → RD is surjective and MaxRD is homeomorphic with K.

Proof. Recall that RD was defined as a subring of M =
∏

m∈Max R Rm and
we define Θ: jc(R) → RD by Θ(δ)m = cd−1 ∈ Rm, where δm = cd−1 ∈ Rm.
When jc(R) is viewed as the subring DP (R) of P =

∏
p∈Specc R Rp, we see that

Θ: DP (R) → DM (R) = RD is a well-defined surjection.
By the uniqueness of θD (Theorem 4.9) it follows that Θ = θD. Now ker θD =

{δ ∈ jc(R) | δm = 0 ∈ Rm for all m ∈ MaxR}. We can thus identify Max RD with
V (ker θD)∩Max jc(R), i.e, V (ker θD)∩Max jc(R) as a subspace of Specc R. We will
show that this is K.

Clearly, if δ ∈ jc(R) is zero on K, it is in ker θD. On the other hand, if p /∈ K
then there is a Specc R-neighbourhood N of p not meeting Max R. Since Specc R
is a boolean space, we may assume that N is a clopen set. However, a clopen set
of Max jc(R) corresponds to an idempotent e ∈ B(jc(R)); i.e, e ∈ q if and only if
q ∈ N . Then, 1− e ∈ ker θD while (1− e)p 6= 0. �

While Theorem 4.12 describes MaxRD in general, it is instructive to look at
an important special case, that of C(X), X a topological space. Recall that an
ideal of C(X) determined by the zero-sets of its elements is called a z-ideal ([GJ,
2.7]). The set of prime z-ideals in C(X) is denoted SpecZ C(X) and, for x ∈ X,
Mx = {f ∈ C(X) | f(x) = 0} is a maximal ideal. We need the following information
about SpecZ C(X) ([S, Theorem 3.2]): SpecZ C(X) is closed in Specc C(X) and
{Mx | x ∈ X} is dense in SpecZ C(X) as a subset of Specc C(X). We have the
following.

Example 4.13. For a topological space X, MaxC(X)D is SpecZ C(X) as a
subspace of Specc C(X).

Each ring C(X) can be embedded in a regular ring called G(X), the small-
est regular ring containing C(X) lying in F (X) =

∏
x∈X R. Its description in
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terms of elements (see [HRW, Theorem 1.1] and the references found there) shows
that G(X) = DF (X)C(X). It is not hard to see, although the topic will not
be pursued here, that G(X) ∼= C(X)D/J(C(X)D). It was already known that
Spec G(X) = Max G(X) = SpecZ C(X), with the constructible topology ([BBR,
Proposition 3.3]).

As a final observation we recall ([Ca2, Theorem 6.10]) that RD also satisfies a
universal property with respect to those DP (R) where R is embedded as a subdirect
product in a product P =

∏
α∈A Lα of local rings. Let f : RD → DP (R) be as

given in this universal property. Then, f ◦ θD : jc(R) → DP (R) coincides with
θ : jc(R) → DP (R) given by Theorem 4.9 since θ is unique and θD is surjective.

References

[AA] M.-S. Ahn and D.D. Anderson, Weakly clean rings and almost clean rings, Rocky Mount.

J. Math. 36 (2006), 783–798.
[Al1] H. Al-Ezeh, Exchange PF-rings and almost PP-rings, Mat. Vesnik 42 (1990), 77–80.

[Al2] H. Al-Ezeh, Some results on almost p.p. rings, Arabian J. Sci. Engrg. 16 (1991), 89–92.
[AC] D.D. Anderson and V.P. Camillo, Commutative rings whose elements are a sum of a unit

and an idempotent, Comm. Algebra 30 (2002), 3327–3336.

[BBR] M. Barr, W.D. Burgess and R. Raphael, Ring epimorphisms and C(X), Th. Appl. Cate-
gories 11 (2003), 283–308.

[B] G.M. Bergman, Hereditary commutative rings and centres of hereditary rings, Proc. Lon-

don Math. Soc. 23 (1971), 214–236.
[Bu] W.D. Burgess, Minimal rings, central idempotents and the Pierce sheaf, Contemp. Math.

171 (1994), 51–67.

[BR] W.D. Burgess and R. Raphael, Clean classical rings of quotients of commutative rings,
with applications to C(X), to appear, J. Algebra Appl.

[BS] W.D. Burgess and W. Stephenson, Rings all of whose Pierce stalks are local, Canad.

Math. Bull. 22 (1979), 159–164.
[Ca1] M. Contessa, On PM-rings, Comm. Algebra 10 (1982), 93–108.

[Ca2] M. Contessa, On certain classes of PM-rings, Comm. Algebra 12 (1984), 1447–1469.
[CL] M. Contessa and L. Lesieur, D-anneaux et anneaux F-semi-parfaits, in Lecture Notes in

Mathematics, 1146 Springer-Verlag, 1985, 306–404.

[C] F. Couchot, Indecomposable modules and Gelfand rings, Comm. Algebra 35 (2007), 231–
241.

[DO] G. De Marco and A. Orsatti, Commutative rings in which every prime ideal is contained

in a unique maximal ideal, Proc. Amer. Math. Soc. 30 (1971), 459–466.
[E] R. Engelking, General Topology (revised and completed edition). Heldermann, Berlin,

1989.

[FGL] N.J. Fine, L. Gillman and J. Lambek, Rings of Quotients of Rings of Functions. Lecture
Notes in Real Algebraic and Analytic Geometry, RAAG, Passau, 2005.

[GJ] L. Gillman and M. Jerison, Rings of Continuous Functions. Grad. Texts in Math. 43,

Springer-Verlag, Berlin, 1976.
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