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ON EMBEDDING RINGS IN CLEAN RINGS

W.D. BURGESS AND R. RAPHAEL

Abstract. A clean ring is one in which every element is a sum
of an idempotent and a unit. It is shown that every ring can be
embedded in a clean ring as an essential ring extension. It is seen
that the centre of a clean ring need not be a clean ring. There is no
“clean hull” of a ring. A family of examples is given where there is
a ring R, not a clean ring, embedded in a commutative clean ring
S so that there is no clean ring T , R ⊆ T ⊆ S, minimal with that
property. It is also shown that a commutative pm ring cannot be
extended to a clean ring by the adjunction of finitely many central
idempotents.

1. Introduction. The notion of a clean ring was introduced by Nichol-
son ([23]) and has been studied extensively since. (See [5] for a sample
of the references.) Clean rings are exchange rings and the two classes
coincide when all idempotents are central ([23, Proposition 1.8]), but
not in general (Camillo and Yu, [6, page 4746]). The theme of this ar-
ticle is to examine the embedding of an arbitrary ring in a clean ring.

Notation and terminology. All rings in what follows are assumed
to be rings with 1. For a ring R, U(R) is the group of units, J(R)
the Jacobson radical, B(R) the set and also boolean algebra of central
idempotents and P(R) the prime radical. A ring R is indecomposable
if B(R) = {0, 1}. A local ring R is one where R/J(R) is a division ring.
If R is a subring of a ring S and T is a subset of S, then the subring
of S generated by R and T is denoted R[T ]. The term “regular ring”
will mean “von Neumann regular ring”. The notation of Lam ([18]) is
usually followed.

Definition 1.1. An element r in a ring R is called clean if it can be
written r = e+u, where e = e2 and u is a unit in R. A ring R is clean
if all its elements are clean.

A ring R is called 2-clean if every element in it can be written as a
sum of an idempotent and two units. Wang and Chen ([26, Theorem 7])
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have shown that every ring can be embedded in a 2-clean ring because
the ring of 2×2 matrices over any ring is 2-clean. It will be shown here
that every ring can also be embedded in a clean ring, although not in
such an explicit fashion as for 2-clean rings.

Indeed, every ring can be embedded in a clean ring as a ring essential
extension (Theorem 2.1). Some more explicit embeddings are then
looked at. In the process, it is observed (Proposition 2.5 (2)) that the
centre of a clean ring is not necessarily clean. A characterization of
clean rings which are algebras over commutative 0-dimensional rings is
found using some central localizations (Proposition 2.8).

It is shown that, in some special cases, when a ring R, which is not
clean is embedded in a clean ring S, there are clean rings between R
and S which are minimal among such (Proposition 3.2). However, even
when these minimal clean extensions in a given extension exist, they
are not unique (except in a very special case, Proposition 3.8)) and,
hence, there is no notion of a clean hull of a ring. Moreover, a natural
family of examples is presented of rings R embedded in clean rings S
for which, while there are clean rings strictly between R and S, there
are none which are minimal with that property (Theorem 3.6); these
include all rings of continuous functions which are not already clean.

Every commutative clean ring is a pm ring (each prime ideal is con-
tained in a unique maximal ideal, Anderson and Camillo, [1, Corol-
lary 4]). Every commutative pm ring can be extended to a clean ring
by the adjunction of central idempotents ([3, Theorem 3.12]). However,
a commutative ring which is not a pm ring cannot be embedded in a
clean ring by an integral extension ([3, Theorem 3.12]). It is shown
(Theorem 4.3) that a commutative pm ring which is not clean cannot
be made into a clean ring by adding finitely many central idempotents.
(Theorem 4.3).

At various points in the sequel the language of the Pierce sheaf of
a ring will be used (see [25] and [16, V 2]). If R is any ring the base
space of the sheaf is Spec B(R), a boolean space (compact, Hausdorff
and totally disconnected). The stalks are the rings Rx = R/Rx, for
x ∈ Spec B(R) and a basis for the topology of the espace étalé is given
by elements of R over clopen (closed and open) subsets of Spec B(R).
Then R is isomorphic to the ring of sections of this sheaf.

On the other hand if R is a sheaf of indecomposable rings over a
boolean space X with ring of sections R, the key point which makes R
the Pierce sheaf of R is that when two local sections coincide at some
x ∈ X, they coincide over a neighbourhood of x ([25, Definitions 3.1
and 4.1]).
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It is important to note that if all the idempotents of a ring R are
central then R is a clean ring if and only if the stalks of its Pierce sheaf
are local ([4, Proposition 1.2] or [16, V., Proposition 2.6]).

2. Various embeddings. The first theorem in this section is based on
results from [5] by V. Camillo, et al. In that paper, a (left) R-module
M is called clean if End(RM) is a clean ring ([5, page 96]).

It is first shown that every ring can be embedded in a clean ring.
Recall that a ring extension R ⊆ S is called an essential ring exten-

sion if, for every ideal 0 6= I ⊆ S, I ∩R 6= 0.

Theorem 2.1. Every ring can be embedded as an essential ring exten-
sion in a clean ring.

Proof. It is first shown that a ring R can be embedded into a clean
ring. Let R be any ring which will be considered, for now, as a Z-R-
bimodule. According to [5, Corollary 3.13], the endomorphism ring of
a pure injective (= algebraically compact) module is clean. If RN is the
full product of countably many copies of R and F is a non-principal
ultrafilter on N, put IF to be the Z-submodule

IF = {(rn) ∈ RN | for some F ∈ F , rn = 0 ∀n ∈ F} .
The subgroup IF is also an ideal of the ring RN. According to [15,
item 3, page 337] (see also Jensen and Zimmermann-Huisgen [17, Corol-
lary E]) S = RN/IF is Z-pure injective. Moreover, R embeds, as a ring,
in the ring S. Since R, and hence, S are rings with 1, right multipli-
cation gives an embedding of S into T = End(ZS), which is a clean
ring.

In the above embedding, let K be an ideal of T maximal with respect
to K ∩R = 0. Then, C = R/K is, as a homomorphic image of a clean
ring, an essential ring extension of R which is clean. �

Corollary 2.2. A simple (prime, semiprime, subdirectly irreducible)
ring can be embedded in a simple (prime, semiprime, subdirectly irre-
ducible, respectively) clean ring.

Proof. Using Theorem 2.1, it only needs to be observed that the
properties listed are all preserved under essential ring extensions. �

Remark 2.3. If R is embedded in a clean ring S then the subring T
of S generated by R and the units of S is also clean. If 2 is invertible
in S then T = S.

Proof. Each t ∈ T can be written t = e + u in S, e = e2 and u a
unit. Then, it follows that e ∈ T as well. If 2 is invertible in S then for
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e = e2 ∈ S, 1 − e/2 has inverse 1 + e showing that e ∈ T and, hence,
T = S. �

The question about embedding in clean rings has now been solved
in a rather abstract way but special kinds of rings have embeddings
which are of a more familiar sort, that is, more closely related to basic
ring theory. There follows a list of some of these.

The commutative case has been dealt with in detail in [3, §4.2 and
4.3]. For any commutative ring R, here supposed not clean, R embeds
in the full product of local ring Π =

∏
P∈SpecRRP since R is a ring of

sections of a sheaf of these local rings. Let Bc(R) be the boolean alge-
bra of idempotents from Π whose supports in SpecR are the subsets
of SpecR which are both closed and open in the constructible (patch)
topology on SpecR. Then, as shown in [3, Construction 4.6], the sub-
ring jc(R) of Π generated by the image of R and Bc(R) is a clean ring.
(In fact, the construction is functorial.)

Proposition 2.4. Let R be commutative ring: (1) R can be embedded
in the commutative clean ring jc(R). (2) R can be embedded in the
endomorphism ring of the injective hull E = E(RR).

Proof. (1) [3, Construction 4.6]. (2) SinceR is commutative, Qmax(R)
is the centre of the endomorphism ring H of E ([18, Proposition 13.24]);
H is a clean ring. �

In the case of R = Z, the ring jc(Z) is the ring of sequences in∏
p primeR(p) which are eventually constant as elements of Q.
It does not seem to have noticed been before that the centre of a

clean ring is not necessarily clean.

Proposition 2.5. (1) A ring which is its own complete ring of quo-
tients is not necessarily clean. (2) The centre of a clean ring is not
necessarily clean.

Proof. (1) Let S be a commutative ring which is not a clean ring
and M the direct sum of a copy of each simple S-module. The trivial
extension R = S ⊕ M is a Kasch ring ([18, Proposition 8.30]) and,
hence, its own complete ring of quotients. It is not a clean ring since
S is a homomorphic image. (2) As already seen (Proposition 2.4) if
R is commutative then Qmax(R) is the centre of a clean ring. Then it
suffices to choose a Kasch ring, as in (1), which is not clean to get an
example. Taking S = Z would suffice. �

If a ring R can be embedded in a regular ring S then it can be
embedded in a clean regular ring, for example by the left or right
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maximal ring of quotients of S. Such rings have been characterized in
[10, Theorem 1.4.4] as follows: R can be embedded in a regular ring
if and only if its additive group R+ has no elements of square order.
This class includes all semiprime rings. However, semiprime rings can
also be seen to be among those rings which can be embedded in a
direct product of full endomorphism rings of vector spaces over fields.
It suffices to embed a semiprime ring R into a direct product of prime
rings R ⊆

∏
α∈ARα and then, via the extended centroid Kα of Rα ([18,

Corollary 14.22]) into End(KαRα). The following is also clear.

Remark 2.6. (1) If a ring R contains a division ring D as a subring
then R embeds in the clean ring End(DR). (2) If R is left (right) non-
singular then its complete left (right) ring of quotients is clean.

There are cases where it is not necessary to use Theorem 2.1 but R
as a Z-module is nevertheless employed.

Proposition 2.7. (1) If the additive group R+ of a ring R is of bounded
order then End(ZR) is clean. (2) If R+ can be written as R+ = D⊕E,
where D is divisible and annZE = 0, then R embeds in S = End(ZR)
and S is clean. (3) If R+ is torsion-free then R embeds in T = R⊗ZQ,
which in turn embeds in the clean ring End(ZT ).

Proof. (1) If 1 is of order n in R+, then R+ is a Z/〈n〉-module and
Z/〈n〉 is a commutative artinian principal ideal ring. Then, [5, Exam-
ples 31.4 (2)] says that S = EndZ/〈n〉(R

+) is a clean ring. However, R
embeds in S via right multiplications.

(2) [15, page 344, item 3] says that R+ is (Σ)-pure injective, and,
hence, S is clean. �

A subdirectly irreducible ring R where R+ is a mixed group is of the
type in Proposition 2.7 (2), by [9, Observation 4.4.3].

It is shown in [5, Examples 3.14(4)] that an extension of a field
by certain central nilpotents is a clean ring. However, such a ring is
commutative and zero-dimensional, i.e., is a π-regular ring; hence, it
is a clean ring. Moreover, the following generalization is true. Recall
that an element r in a ring R is called strongly clean if it can be written
r = e + u, e2 = e, u ∈ U(R) and eu = ue; if all elements of R are
strongly clean, R is called a strongly clean ring.

Proposition 2.8. Let A be a commutative 0-dimensional ring and R
an A-algebra. Then, (i) R is a (strongly) clean ring if and only if for
each m ∈ MaxA, R localized at A \ m is a (strongly) clean ring; and
(ii) if the module AR is locally finitely generated then R is a clean ring.
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Proof. (i) Let R(m) be the localization of R at A \ m. Assume first
that, for each m ∈ MaxA, R(m) is clean. In Goodearl and Warfield, [13,
Proposition 2], it is seen how to lift solutions of finite sets of polynomial
equations in each R(m) to solutions in R. For any r ∈ R, consider the
following set of polynomials: r− y1− y2, y

2
1 − y1, y2y3− 1 and y3y2− 1.

By assumption, this set of polynomials has a solution in each R(m),
giving a global solution r1, r2, r3 ∈ R showing that r is a clean element.

In the other direction it is assumed that R is a clean ring. For
any a ∈ A there is e ∈ B(A) and a′ ∈ A with aa′ − e ∈ P(A) and
a − ae ∈ P(A). Fix m ∈ MaxA and let x = B(A) ∩ m. For e ∈ x,
e(1−e) = 0 shows that e is in the kernelK of the localization R→ R(m),
i.e., xR ⊆ K. Now consider s ∈ A \ m. There are s′ ∈ A, e ∈ B(A)
and n ∈ P(A) such that ss′ = e+ n and se− s ∈ P(A); it follows that
e /∈ x. Since 1 + n is a unit in A, ss′(1 + n)−1 = (e + n)(1 + n)−1.
The equation becomes ss′(1 + n)−1 = 1 (mod xA). Hence, R(m) is a
homomorphic image of R since the inverse of s ∈ A \m is the image of
an element of A modulo K. Hence, R(m) is clean.

The statements for strongly clean rings are proved similarly.
(ii) This will be seen to be a special case of part (i) once it has been

shown that each R(m) is clean. Here R(m) is a locally module finite
algebra over a local one dimensional image of A, say B. Then every el-
ement of R(m)/P(B)R(m) is in a finite dimensional algebra over the field
B/P(B) and, thus, is in a perfect ring. Hence, it is clean ([5, Corol-
lary 4.2 (2)]) and, therefore, R(m)/P(B)R(m) is a clean ring. Moreover,
since P(B)R(m) is a nil ideal idempotents lift over it and, hence, R(m)

is a clean ring (Han and Nicholson, [14, Proposition 6]), as required. �

However, it is not the case that an integral extension of a commuta-
tive clean ring is necessarily a clean ring. If a prime integer p is ramified
in the ring of integers of an algebraic extension field F of Q then the
algebraic closure of Z(p) in F will not be local, and, hence, not a clean
ring.

In Proposition 2.8 (ii), if A is a regular ring then the locally module
finite A-algebra R is, in fact, a strongly clean ring.

3. On minimal clean embeddings.
If R is embedded in a clean ring S, even as an essential ring extension,

it is not necessarily a smallest clean extension of R in S; for example,
Z embedded in Q is essential but there are the local rings of the form
Z〈p〉, for every prime p, strictly between the two. The theme of this
section is to ask when, given an embedding of R, not a clean ring, in a
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clean ring S, there are minimal clean rings between R and S. The first
step is to show that in some special cases such minimal clean extensions
exist.

Recall that a local ring is any ring R such that R/J(R) is a division
ring. It is now seen that there are cases where minimal clean extensions
exist.

Proposition 3.1. Let R be a ring which is embedded in a local ring S.
Then the set of clean rings between R and S has minimal elements.

Proof. It may be assumed that R is not a clean ring. First note that
a clean subring T of S is necessarily local. Indeed, if a ∈ T is not a unit
then, because there are no non-trivial idempotents in T , for any t ∈ T ,
ta and at are also non-units. It follows that 1− a is a unit in T ; hence,
a ∈ J(R). Next, if {Tα}, α ∈ A is a descending chain of clean (local)
rings between R and S, it is readily seen that

⋂
α∈A Tα is also local. �

Recall that a commutative ring is a pp-ring if every principal ideal
is projective. These have been characterized by Bergman ([2, Corol-
lary 3.2]) as commutative rings R where Q = Qcl (R) is regular and
B(R) = B(Q).

Proposition 3.2. Let R be a commutative ring and suppose that S =
Qcl (R) is a clean ring and that B(S) = B(R). Then, the set of clean
rings T , R ⊆ T ⊆ S, has minimal elements. This applies, in particular,
when R is a pp-ring and, more generally, if R has Pierce stalks domains
and Qcl (R) is a clean ring.

Proof. Suppose {Tα}α∈A is a descending chain of clean rings between
R and S. For x ∈ Spec B(S), each (Tα)x is an indecomposable clean
ring, and, hence, a local ring; it follows that it is a localization of Rx

at some prime ideal (Pα)x, because Sx ⊆ Qcl (Rx). Since for β > α,
(Tβ)x ⊇ (Tα)x, it follows that (Pβ)x ⊆ (Pα)x. For each x, let Px =⋃
α∈A(Pα)x. Let T =

⋂
α∈A Tα. The claim is that T is clean.

Look at the stalk Tx; it needs to be shown that Tx is local. Let
a ∈ T be such that ax is a unit in Tx. Then, ax is not in any (Pα)x.
There is e /∈ x such that b = ae + (1 − e) is a unit in T (recall that
B(T ) = B(S)). Hence, by /∈ Py for any y ∈ Spec B(T ). Every unit in
Tx comes from a unit in T .

Next, if a ∈ T is such that ax /∈ Px. Then, ax is invertible in each
(Tα)x and its inverse is, thus, in each (Tα)x. Hence, ax is invertible in
Tx. It follows that Tx is local with unique maximal ideal Px. Then, the
set of clean rings between R and S, ordered by reverse inclusion has
minimal elements, by Zorn’s Lemma.
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The last statement follows from [3, Proposition 2.10 (1)], which says
that if the Pierce stalks of R are domains then B(Qcl (R)) = B(R). �

The requirement in the last statement of Proposition 3.2 that Qcl (R)
be clean cannot be dropped as [3, Example 2.9 (1)] shows: it is a ring
R = Qcl (R) which is not clean but whose stalks are domains.

Corollary 3.3. Let R be embedded in a commutative clean ring S
where B(S) = B(R) and Qcl (R) ⊆ S. Then, the set of clean rings
between R and S has minimal elements.

Proof. The first thing to note is that if T is a clean ring R ⊆ T ⊆ S,
then Qcl (R) ∩ T is clean. Indeed, if q ∈ Qcl (R) ∩ T then q = e + u
where e ∈ B(S) and u is a unit in T . Hence, u ∈ Qcl (R)∩T . Moreover,
u is a non zero-divisor in Qcl (R) and, hence, has an inverse in both
rings. Thus u is a unit in the intersection. It follows, in particular,
that Qcl (R) is clean.

If, for some well-ordered set A, {Tα}α∈A is a descending chain of clean
rings between R and S, then {Qcl (R)∩Tα}α∈A is a descending chain of
clean rings in Qcl (R). Now Proposition 3.2 applies to this chain giving
a clean ring which is a lower bound for the original chain. �

If R is any commutative ring which is embedded in a commutative
regular ring S then the corollary applies to R[B(S)] and S.

Recall that a pm ring R is such that for every prime ideal p of R
there is a unique maximal ideal m with p ⊆ m. Moreover, a ring R
such that every r ∈ R can be expressed r = e + s, e2 = e and s a non
zero-divisor, is called an almost clean ring. Every commutative clean
ring is a pm ring ([1, Corollary 4]).

The rings R in Proposition 3.2, it should be noted, are not pm rings.

Proposition 3.4. Let R be a commutative pm ring. If R is embedded
in a commutative clean ring S then the subring T of S generated by R
and B(S) is clean.

Proof. According to [3, Theorem 2.4], a pm ring which is almost
clean is clean and, moreover, an extension of a pm ring by idempotents
is again a pm ring ([3, Corollary 1.6]). Hence, it suffices to show that T
is an almost clean ring. This is immediate: if t ∈ T then t =

∑n
i=1 riei,

where each ri ∈ R and {e1, . . . , en} is a complete orthogonal set of
idempotents from B(T ) = B(S). Write ri = fi + ui, i = 1, . . . n,
f 2
i = fi and ui a unit in S. Then, t =

∑n
i=1 fiei +

∑n
i=1 uiei; the first

term is an idempotent and the second, which is in T , is a unit in S
and, hence, a non zero-divisor in T . �
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Notice, in the proposition, that the Pierce stalks of the ring R[B(S)]
are local homomorphic images of R.

The next result is to show that if R is a commutative pm ring which
is not clean is embedded in a commutative clean ring S, there is no
clean ring T , R ⊆ T ⊆ S which is minimal with that property.

The following topological lemma, kindly supplied to us by R.G.
Woods, will be used. The proof will appear in an appendix.

Lemma 3.5. Let X be a compact Hausdorff space which is not a
boolean space. Suppose Y is a boolean space and that there is a con-
tinuous surjection σ : Y → X. Then, there are y1 6= y2 in Y with
σ(y1) = σ(y2) and (i) the quotient space Z = Y/{y1, y2} is a boolean
space, (ii) σ factors through Z, σ = τ ′ ◦ τ , and (iii) τ ′ is not a homeo-
morphism.

The key point in the proof is that if, in X, two elements are sent to
the same image under σ, they can be identified and the new quotient
space remains a boolean space.

Properties of rings of continuous functions on Tychonoff spaces sug-
gested the following result.

Theorem 3.6. Let R be a commutative pm ring which is not a clean
ring. If S is a commutative clean ring R ⊆ S, then there is a clean
ring T strictly between R and S.

Proof. If S 6= R[B(S)], then, by Theorem 3.4, the theorem is proved.
Otherwise, it may be assumed that S = R[B(S)]. By Lu and Yu,
[19, Corollary 2.7], MaxR is not zero-dimensional, i.e., the compact
Hausdorff space MaxR is not a boolean space. However, MaxS and
Spec B(S) are homeomorphic and are boolean spaces. There is a con-
tinuous surjection MaxS → MaxR. Indeed, let φ : MaxS → SpecR
be the function given by intersection and ΘR : SpecR → MaxR the
continuous surjection available in pm rings (De Marco and Orsatti [8,
Theorem 1.2]) where ΘR(p) is the unique maximal ideal containing p.
For every minimal prime ideal p of R, pS is a proper ideal. Hence,
for every minimal prime ideal p of R, the image of φ contains a prime
ideal containing p. Thus, ψ = ΘR ◦ φ is the desired continuous sur-
jection. Since MaxS is a boolean space and MaxR is compact and
Hausdorff but not a boolean space, ψ cannot be one-to-one. According
to Lemma 3.5, ψ factors ψ = τ ◦ σ,

MaxS
σ→ Y

τ→ MaxR ,

where Y is a boolean space, σ is a surjection and τ is not one-to-one.
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It is now temporarily assumed that S is semiprime. The plan is to
construct a Pierce sheaf over Y of a clean ring T strictly between R
and S. Suppose that when using Lemma 3.5, m1 and m2 are distinct
elements of MaxS with the same image n under ψ and that these have
been identified in forming Y . The Pierce stalks of S corresponding to
m1 and m2 are denoted Su1 and Su2 while the corresponding point of Y
is called y. The rings Sui , i = 1, 2, are local homomorphic images of R,
say, R/Ii. The ideals Ii are semiprime, by the assumption, and the only
maximal ideal containing each is n. According to [8, Theorem 1.2], the
intersection of all the prime ideals contained in n, On, is contained in
only one maximal ideal, namely n. Hence, I1 ∩ I2 is a semiprime ideal
contained in only one maximal ideal. Thus, R/(I1 ∩ I2) is local.

The sheaf construction can now proceed. For z ∈ Y , z 6= y, z can
be identified with a stalk of S which can be called Sz and Tz = Sz; the
stalk over y will be Ty = R/(I1 ∩ I2). Notice that a clopen (closed and
open) set in Y lifts to a clopen set of Spec B(S) which either contains
or excludes both u1 and u2. A topology will be introduced in the
disjoint union of the stalks, T , and it will need to be verified that the
new structure satisfies the conditions of a reduced ringed space ([25,
Definitions 3.1 and 4.1]). Basic neighbourhoods in T are defined as
follows: each Tz is a local ring of the form R/I(z) and, for a fixed
z ∈ Y consider a point r+ I(z). Let N be a clopen set of Y and define
{r + I(v) | v ∈ N} to be an open set in T . The key thing to verify is
that if r + I(z) = s + I(z) for r, s ∈ R and some z ∈ Y , there needs
to be a neighbourhood N of z over which the equality holds. If z 6= y,
there is a clopen set N in Spec B(S), which may be taken to exclude u1

and u2 such that r + I(v) = s+ I(v), for all v ∈ N . Since N may also
be viewed as a clopen set in Y , this case has been dealt with. When
r + I(y) = s+ I(y) then r − s ∈ I(y) = I1 ∩ I2; then, there are clopen
neighbourhoods Ni, i = 1, 2, in MaxS, so that r + I(v) = s + I(v)
for all v ∈ N1 and for all v ∈ N2. Then, N1 ∪ N2 becomes, via σ, a
neighbourhood N of y in Y . This completes the verification.

The ring of sections of this sheaf, call it T , is a clean ring because
its stalks are local. Since

⋂
z∈Y I(z) = 0, T extends R and lies in S

since any element of T yields a section in the sheaf for S by replacing
r + I(y) with r + I1 and r + I2. Finally, T is strictly between R and
S because T is clean while R is not, and any idempotent of S whose
support contains exactly one of u1 or u2 cannot be in T .

The assumption that S be semiprime is now dropped. Consider the
rings R̄ = R/P(R) and S̄ = S/P(S). Clearly R̄ is a pm ring which
is not clean and S̄ is a semiprime clean ring. By the above reasoning,
there is a clean ring T̄ strictly between R̄ and S̄. Set T = {t ∈ S |
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t + P(S) ∈ T̄}. Since T/P(T ) = T̄ , T is a clean ring which is strictly
between R and S. �

Corollary 3.7. If R is a commutative pm ring, which is not a clean
ring, embedded in a commutative clean ring S, then there is no clean
ring between R and S which is minimal with the property of being a
clean ring and lying between R and S.

The corollary applies, in particular, to any ring of continuous real val-
ued function C(X), where X is a Tychonoff space which is not strongly
zero-dimensional (i.e., βX is not a boolean space, McGovern,[20, The-
orem 13]) embedded in its complete ring of quotients. When X is a
metric space which is not strongly zero-dimensional, Qcl (C(X)) is a
regular ring and, by Corollary 3.7, there are no minimal clean rings
between C(X) and Qcl (C(X)); this is in contrast to Corollary 3.3.

If X is a compact Hausdorff space which is not a boolean space, the
ring C(X) is not clean; when C(X) is embedded in a commutative clean
ring (e.g. Q(X)) then there is a continuous surjection Y = MaxS →
X. This gives rise to an embedding C(X) ⊆ C(Y ), C(Y ) is a clean
ring. Lemma 3.5 can then be used to get countable chains of boolean
spaces connected by continuous surjections Y → Y1 → Y2 → · · · → X
and then chains of clean extension rings of C(X), C(X) ⊆ · · ·C(Y2) ⊆
C(Y1) ⊆ C(Y ).

There is a special kind of clean ring called uniquely clean where each
element is expressible as a sum of an idempotent and a unit but in
exactly one way. These are characterized (Nicholson and Zhu [24, The-
orem 20]) as rings R where R/J(R) is a boolean ring and idempotents
lift modulo J(R). The behaviour here is different from what has gone
before.

Proposition 3.8. Let R be a ring embedded in a uniquely clean ring
S. Then, there is a unique minimal clean ring between R and S, and
all the clean rings between R and S are uniquely clean.

Proof. That all the clean rings between R and S are uniquely clean
is obvious. If T is the intersection of all clean rings between R and S,
for t ∈ T , t = e+ u ∈ S, e = e2 and u a unit, has the same expression
in all the rings of the intersection. �

By [24, Corollary 10 and Proposition 13], if R is a uniquely clean ring
then R[[X]] is uniquely clean but R[X] is not. Proposition 3.8 applies
to this situation. When R = Z2, Proposition 3.7 can also be used and,
in fact, the unique minimal clean ring between Z2[X] and Z2[[X]] is
Z2[X](X). It can be seen that, even with respect to homomorphisms to
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uniquely clean rings, that Z2[X] in Z2[X](X) does not satisfy a universal
property.

The following simple remark fits in with theme of this section.

Remark 3.9. Let R be a clean ring embedded in a ring S. Then there
are clean rings between R and S maximal with the property of being a
clean ring.

Proof. It only needs to be observed that the union of a chain of clean
rings is again a clean ring. �

4. More on clean extensions of commutative pm rings.
The embedding of a commutative ring R in a commutative clean

ring S cannot be such that SR is finitely generated unless R is a pm
ring, indeed, by [3, Proposition 3.11], no integral extension of R can be
clean when R is not a pm ring. However, when R is a commutative pm
ring there is always an integral extension which is a clean ring, even
one generated by idempotents (Proposition 3.4). The next step will be
to show that it is not possible to go from a pm ring R which is not
clean to a clean ring by the adjunction of a finite number of central
idempotents.

Lemma 4.1. Let X 6= ∅ be a compact Hausdorff space. If X is the
union of a finite number of subspaces which are boolean spaces then X
contains a non-empty clopen subspace which is boolean.

Proof. Let the boolean subspaces be V1, . . . , Vn. If any one is all
of X, there is nothing to prove. Otherwise, renumbering if necessary,
assume that W = V1 ∪ · · · ∪ Vk 6= X but V1 ∪ · · · ∪ Vk = X. Then,
X \W is open both in X and in the subspace Vk. Therefore, there is
∅ 6= U ⊆ X \W which is clopen in Vk. Since it is compact, it is closed
in X and also open in X. �

Lemma 4.2. Let R be a commutative pm ring and S = R[e1, . . . , en]
an extension of R generated by a finite set of central idempotents. If S
is a clean ring then R has a non-trivial idempotent f such that Rf is
a clean ring.

Proof. For convenience of notation, the proof will be done for n = 2.
It first must be noted how maximal ideals behave in the two rings.
First, S = Se1e2 + Se1(1 − e2) + S(1 − e1)e2 + S(1 − e1)(1 − e2) =
Re1e2+Re1(1−e2)+R(1−e1)e2+R(1−e1)(1−e2). (In the general case
there will be 2 · n! terms.) Since the extension is integral, contraction
φ : MaxS → MaxR is a surjection. Give n ∈ MaxS, either ei ∈ n or
1 − ei ∈ n, i = 1, 2. Hence, of the four terms listed above, three must
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be in n, say, Re1e2 + Re1(1− e2) + R(1− e1)e2 ⊆ n. It follows readily
that there is a unique m ∈ MaxR such that n = Re1e2 +Re1(1− e2) +
R(1 − e1)e2 + m(1 − e1)(1 − e2), and, similarly, for the other possible
combinations.

It is seen that MaxS splits into four disjoint subspaces, depending
on which of e1, e2 lies in a maximal ideal. These can be identified
with W1 = MaxRe1e2, W2 = MaxRe1(1 − e2), W3 = MaxR(1 −
e1)e2 and W4 = MaxR(1 − e1)(1 − e2), respectively, and are, hence,
disjoint boolean subspaces of MaxS. Moreover, the description of the
maximal ideals of S shows that φ restricted to each Wi is injective. Let
φ(Wi) = Vi ⊆ MaxR. Since Wi is compact and MaxR is Hausdorff, Vi
is compact and as a result, φ|Wi

: Wi → Vi is a homeomorphism.

Now Lemma 4.1 applies to the Vi in MaxR showing that there exists
∅ 6= U ⊆ MaxR which is a boolean subspace. In a pm ring there is
a continuous surjection ΘR : SpecR→ MaxR ([8, Theorem 1.2]) and,
hence, Θ−1

R (U) is a clopen set of SpecR which corresponds to some
f ∈ B(R). It is readily seen that Rf , as a ring, is pm and MaxRf = U .
Hence, Rf is a clean ring ([19, Theorem 2.6]). �

Theorem 4.3. Let R be a commutative pm ring which is not a clean
ring and S an extension ring of the form S = R[e1, . . . , en] for some
e1, . . . , en ∈ B(S). Then, S is not a clean ring.

Proof. By Lemma 4.2 it would suffice if the proof could be reduced
to the case where B(R) is trivial. Since R is clean if and only if each
of its Pierce stalks is clean (i.e., local), there is some x ∈ Spec B(R)
where Rx = R/Rx is not clean. However, B(Rx) is trivial. Now con-
sider T = S/Sx; this is not a Pierce stalk of S but is a factor ring
which is clean if S is clean. Now write T = Rx[e1, . . . , en], where ei is
the image of ei in T , i = 1, . . . , n. Note that Rx embeds in T since,
for r ∈ R, if r ∈ Sx, r can be written (again simplifying to the case
of n = 2) r = r1e1e2 + r2e1(1 − e2) + r3(1 − e1)e2 + r4(1 − e1)(1 − e2)
with ri ∈ Rx. It follows that there exist fi ∈ x such that ri = rifi,
i = 1, . . . , 4. The supremum f of these idempotents is also in x. Hence,
ri = rif ∈ Rx, i = 1, . . . , 4, yielding r = rf ∈ Rx. Therefore, the ker-
nel of Rx → Rx[ē] = T is trivial. Lemma 4.2 now says that T is not
clean, hence, that S is not clean. �

The finite integral extension in Theorem 4.3 is of a special kind. It is
not clear whether other sorts of finite integral extensions can lead to a
clean ring. Various reductions are possible and it may be assumed that
R is indecomposable and that R[a] is a clean ring for a single integral
element a. The problem is posed formally.
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Question 4.4. Let R be a commutative pm ring which is not a clean
ring. Can there exist an extension ring S which is a clean ring and the
module RS is finitely generated?

The following example, a variant of one kindly supplied by G.M.
Bergman, does not answer the question but it does show how adding
one idempotent or an integral unit to an indecomposable pm ring can
produce uncountably many new idempotents.

Example 4.5. Let C = C([0, 1]) and R the subring of Π =
∏

NC de-
fined by {(cn) ∈ Π | c2n(1/2) = c2n+1(1/3) and c2n+1(1/3) = c2n+2(1/4)}.
Then, R is an indecomposable pm ring. If e ∈ Π is such that e2n = 1
and e2n+1 = 0 for n ∈ N and u ∈ Π is such that u2n = 1 and
u2n+1 = −1 then R[e] = R[u] = Π.

Proof. First note that R is indecomposable. Any idempotent f must
have components 0 or 1 for each n ∈ N. If f is non-trivial it cannot
be in R. Next, assuming for the moment that R[e] = Π, R must be a
pm ring since, by [3, Theorem 1.2], an integral extension of a ring not
a pm ring cannot be a pm ring and, moreover, a product of pm rings,
such as Π, is a pm ring ([7, Theorem 3.3]). The subset Re contains all
elements of Π with support in the even integers and, similarly, R(1−e)
has all those with support in the odds. Hence, R[e] = Π. Finally,
1
2
(u+ 1) = e. �

5. Appendix – proof of Lemma 3.4 ([27]). Let X be a com-
pact Hausdorff space which is not a boolean space and suppose Y is
a boolean space and that there is a continuous surjection σ : Y → X.
The following facts will be used. (1) If W is a locally compact zero-
dimensional space (there is a basis of clopen sets), then the one-point
compactification ωW is a boolean space. (2) A continuous bijection
from one compact Hausdorff space to another is a homeomorphism.
(3) If Y is a boolean space and F ⊆ Y is a finite subset, the quo-
tient space Y/F is again a boolean space, in fact it is homeomorphic
to ω(Y \ F ).

With these facts in hand, if σ : Y → X is a continuous surjection
where Y is a boolean space and X is a compact Hausdorff space which
is not boolean, then σ cannot be one-to-one and there is some x ∈ X
where |σ−1(x)| > 1. Take y1 6= y2 in σ−1(x) and form, as above, the
quotient space formed by identifying y1 and y2 and call the new boolean
space Z with z ∈ Z the common image of y1 and y2. By the property

of a quotient space, σ factors through Z, say Y
τ→ Z

τ ′
→ X. Since Z is

a boolean space and X is not, τ ′ cannot be one-to-one. �
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