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Recent mathematical modelling has advocated for rapid “test-and-treat” programs for HIV in the developing world, where HIV-
positive individuals are identified and immediately begin a course of antiretroviral treatment, regardless of the length of time they
have been infected. However, the foundations of this modelling ignored the effects of drug resistance on the epidemic. It also
disregarded the heterogeneity of behaviour changes that may occur, as a result of education that some individuals may receive
upon testing and treatment. We formulate an HIV/AIDS model to theoretically investigate how testing, educating HIV-positive
cases, treatment, and drug resistance affect the HIV epidemic. We consider a variety of circumstances: both when education is
included and not included, when testing and treatment are linked or are separate, when education is only partly effective, and when
treatment leads to drug resistance. We show that education, if it is properly harnessed, can be a force strong enough to overcome
the effects of antiretroviral drug resistance; however, in the absence of education, “test and treat” is likely to make the epidemic
worse.

1. Introduction

The HIV/AIDS epidemic is the greatest public-health crisis
in modern history [1]. Currently, 33 million people are
infected with HIV or AIDS, 68% of whom are in developing
countries [2]. In 2013, 1.5 million people died of AIDS-related
causes [3]. HIV is particularly prevalent in developing and
low-income countries, who have few resources to combat
the disease. Only 10% of global healthcare research goes
to developing countries, where 90% of the world’s poorest
populations live [4]. HIV stigmatization, discrimination, and
inadequate education pose additional social challenges that
are hindering countries from advancing in HIV prevention
[5].

A primary weapon in the fight against HIV is antiretrovi-
ral (ARV) treatment [6]. ARVs have the ability to significantly
prolong the life of an infected individual but must be taken
according to strict drug regimens for the remainder of their
lives [7]. Failure to properly adhere to such medication is
responsible for the development of drug resistance, which

can render ARVs less effective [8]. Furthermore, resistant
strains can subsequently be transmitted to newly infected
individuals, who will not respond to treatment [9]. A variety
of mathematical models are in agreement that the preva-
lence of drug resistance will increase in resource-constrained
countries as a result of preexposure prophylaxis [10–12],
although other studies have suggested that the development
of resistancemay be offset by the number of infections averted
in the first place [13].

The recent “test-and-treat” proposal aims to scale up
existing treatment in developing countries by way of large-
scale testing of individuals and then rapid treatment of
infected individuals [14]. However, this proposal was based
on a deeply flawedmathematical model, one that did not take
ARV drug resistance into account and which conflated mul-
tiple compartments [15]. Subsequent modelling by Granich
and colleagues continues to ignore the effect of resistance [16].
Newmodelling is urgently needed to examine a broader range
of options for the test-and-treat program.
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Education is a key tool in disease management that
is often overlooked [17]. It requires investment in people,
rather than investment in biomedical interventions, but it
has the potential to lead to enormous benefits for relatively
low cost. Indeed, behavioural interventions have been solely
responsible for the near-eradication of guinea worm disease
[18]. When people living with HIV navigate the structural
challenges of their ecosocial context environment, social
capital may be an essential element for the attainment of
optimal health [19]. A review of 83 studies of the impact of
education on sexual risk behaviours, pregnancy, and STI rates
illustrated that 42% found that the programs significantly
delayed the initiation of sex among one or more groups for
at least six months, 29% reduced the frequency of sex, 35%
decreased the number of sexual partners, and 48% increased
condom use [20]. Home-based counselling has been shown
to be associated with an uptake in testing [21, 22].

Conversely, a lack of information can have a severe impact
on worsening the disease. For example, 60% of gay men
attending an STD clinic in urban South Africa were unaware
that anal sex was a risk factor for HIV [23], while a lack
of knowledge about HIV/AIDS, its transmission, and health
risks has been correlated with an increase in unprotected sex
[24].

However, education needs to be culturally specific, to
avoid the pitfall of the developed world dictating to low-
income countries [25]. The Global Campaign for Education
has estimated that 7 million cases of HIV/AIDS could
be avoided in the next decade if every child received a
basic education [26]. Educational initiatives include basic
information about HIV risk factors, lifestyle counselling
for infected individuals, reduction in risky behaviour, and
information on prevention [20]. Tying education to both
testing and treatment would have immense benefit for people
in developing countries.

Previous mathematical models have used determinis-
tic compartmental models to assess sexual behaviour and
behaviour change [27], including issues of multiple ongoing
partners [28], postdiagnosis behaviour [29], migration pat-
terns of infected individuals [30], and circumcision [31] and
in response to the introduction of a potential vaccine [32].

In this paper, we develop a model to study HIV dynam-
ics in a variety of circumstances: both when education is
included and not included, when testing and treatment are
linked or are separate, when education is only partly effective,
and when treatment leads to drug resistance. The main goal
is to evaluate these programs and to find the parameters that
play a major role in controlling the disease.

2. The Model

We define an HIV-positive educated individual to be one
who reduces her probability of transmission, relative to
noneducated individuals, due to awareness of the disease’s
effects. A drug-resistant individual is one forwhom treatment
has occurred but has failed, resulting in a higher probability
of transmission than treated individuals; educated drug-
resistant individuals will have a lower transmission probabil-
ity than noneducated drug-resistant individuals.

The model classifies the sexually active population into
eight classes: susceptible (𝑆), HIV positive with unknown
status (𝐼), HIV positive with known status and uneducated
(𝐼
𝑛
), HIV positive with known status and educated (𝐼

𝑒
),

infected uneducated under treatment (𝐼
𝑛𝑡
), infected educated

under treatment (𝐼
𝑒𝑡
), uneducated with drug resistance (𝐼

𝑛𝑟
),

and educated with drug resistance (𝐼
𝑒𝑟
). Thus, the total

sexually interacting adult population is given by𝑁(𝑡) = 𝑆(𝑡)+

𝐼(𝑡) + ∑
𝑖∈𝐹

𝐼
𝑖
(𝑡), where 𝐹 = {𝑛, 𝑒, 𝑛𝑡, 𝑒𝑡, 𝑒𝑟, 𝑛𝑟}. It is assumed

that susceptible individuals are recruited into the population
at a rate Λ and there is a constant natural death rate 𝜇 in
all classes. Susceptible individuals gain infection following
contact with HIV-infected individuals at a rate 𝜆 given by

𝜆 (𝑡) =
𝛽 (𝐼 (𝑡) + ∑

𝑖∈𝐹
𝜂
𝑖
𝐼
𝑖
(𝑡))

𝑁 (𝑡)
, (1)

where 𝛽 = 𝑞𝑐, the product of probability of transmission
and the number of sexual partners; 𝜂

𝑖
are the modification

parameters, which ensure that individuals in different cases
have different infectivity based on their status; 𝜂

𝑛𝑡
and 𝜂
𝑒𝑡
are

small due to treatment [33].
We follow the assumption in Bhunu et al. [34] that

𝜂
𝑛

> 1 and 𝜂
𝑒

< 1. Specifically, this means that risk
behaviour increases if an individual is uneducated and tests
HIV positive, while risk behaviour decreases if an individual
is educated and HIV positive. The former condition occurs
in the truly uneducated, who may see their HIV-positive
status as a death sentence and thus do not care who they
infect. Unprotected sex has been correlated with having less
knowledge about HIV/AIDS, its transmission, and health
risks [24, 35–37]. The latter assumes that “education” consists
of messaging that is at least partly successful, in terms of
lowering risky contact. For the same reason, 𝜂

𝑛𝑡
> 𝜂
𝑒𝑡
.

We ignore the contribution of AIDS patients in the trans-
mission since their death rate is high and their capability of
making new sex partners is low. Also, we assume that infected
individuals discover their status at rate 𝜎

𝑘
, a proportion 𝑝 of

whom is educated immediately.
Treatment is provided at rates 𝜎

𝑡
and 𝜎

𝑒𝑡
, depending on

whether the infected individuals are educated or not. Infected
individuals may stop treatment at rates 𝑟

𝑐
or 𝑟
𝑒𝑐
. Uneducated

treated individuals may become drug resistant at rate 𝜎
𝑟
,

while educated treated individuals become drug resistant
at rate 𝜎

𝑟𝑒
; we assume that access to education results in

better adherence to medication and less resistance, so that
𝜎
𝑟𝑒

< 𝜎
𝑟
. Subsequent education is provided at a rate 𝜌

𝑒

before treatment, while treated individuals receive education
at rate 𝜌

𝑡𝑒
. Treatment decreases the progression to AIDS from

the rate 𝛾 to the rate 𝛾
𝑡
. Thus, the dynamics of the testing,

educating, and treating programs is given by the following
system of ODEs:

𝑆


(𝑡) = Λ− (𝜆 + 𝜇) 𝑆,

𝐼


(𝑡) = 𝜆𝑆 − (𝜇 + 𝛾 +𝜎
𝑘
) 𝐼,

𝐼


𝑛
(𝑡) = (1−𝑝) 𝜎

𝑘
𝐼 + 𝑟
𝑐
𝐼
𝑛𝑡
− (𝜇 + 𝛾+𝜎

𝑡
+𝜌
𝑒
) 𝐼
𝑛
,
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Figure 1: The full model: test and treat with education and drug resistance. Sexually active people are either susceptible or infected. Infected
individuals are classified depending on knowing their status, being educated, being treated, and being drug resistant or not. We assume that
the rate of appearance of new sexually active people is constant.

𝐼


𝑒
(𝑡) = 𝑝𝜎

𝑘
𝐼 + 𝜌
𝑒
𝐼
𝑛
+ 𝑟
𝑒𝑐
𝐼
𝑒𝑡
− (𝜇 + 𝛾+𝜎

𝑒𝑡
) 𝐼
𝑒
,

𝐼


𝑛𝑡
(𝑡) = 𝜎

𝑡
𝐼
𝑛
− (𝜇 + 𝛾

𝑡
+𝜎
𝑟
+ 𝑟
𝑐
+𝜌
𝑡𝑒
) 𝐼
𝑛𝑡
,

𝐼


𝑒𝑡
(𝑡) = 𝜌

𝑡𝑒
𝐼
𝑛𝑡
+𝜎
𝑒𝑡
𝐼
𝑒
− (𝜇 + 𝛾

𝑡
+𝜎
𝑟𝑒
+ 𝑟
𝑒𝑐
) 𝐼
𝑒𝑡
,

𝐼


𝑛𝑟
(𝑡) = 𝜎

𝑟
𝐼
𝑛𝑡
− (𝜇 + 𝛾+ 𝜌

𝑡𝑒
) 𝐼
𝑛𝑟
,

𝐼


𝑒𝑟
(𝑡) = 𝜎

𝑟𝑒
𝐼
𝑒𝑡
+𝜌
𝑡𝑒
𝐼
𝑛𝑟
− (𝜇 + 𝛾) 𝐼

𝑒𝑟
,

(2)

with parameters described in Table 1.Themodel is illustrated
in Figure 1.

3. Submodels

Since the model is complicated, we decided to break it
into simplified, yet significant, special cases describing the
following programs: testing and obligatory education, testing
only, testing with limited education, test and treat without
education, and test and treat with obligatory education.These
submodels deal with a variety of limiting cases.

3.1. Testing and Obligatory Education. In this submodel, in
which no treatment is adopted, we assume that testing is
available for the whole population and free education is

provided immediately, consisting of important information
about HIV such as high-risk behaviour, transmission modes,
and methods of risk reduction for those who test positive.

It should be noted that this is a limiting case and that,
obviously, testing every single person is unrealistic. However,
we examine this case partly because it is the goal of the “test-
and-treat” program, partly because limiting cases give us
insights into the extremities of the model and partly because
new at-home self-testing packages have recently been made
available cheaply [38], thus increasing the likelihood thatHIV
testing may vastly increase in the future.

3.1.1. The Model. If 𝑝 = 1, then 𝐼
𝑛
= 𝐼
𝑛𝑡

= 𝐼
𝑛𝑟

= 0. Moreover,
if 𝜎
𝑒𝑡
= 0, then 𝐼

𝑒𝑡
= 𝐼
𝑒𝑟

= 0. As a result, (2) is reduced to

𝑆


(𝑡) = Λ− (𝜆 + 𝜇) 𝑆,

𝐼


(𝑡) = 𝜆𝑆 − (𝜇 + 𝛾 +𝜎
𝑘
) 𝐼,

𝐼


𝑒
(𝑡) = 𝜎

𝑘
𝐼 − (𝜇 + 𝛾) 𝐼

𝑒
,

(3)

with 𝜆 = 𝛽[𝐼 + 𝜂
𝑒
𝐼
𝑒
]/𝑁 and 𝑁 = 𝑆 + 𝐼 + 𝐼

𝑒
. The model is

illustrated in Figure 2(a).

3.1.2. The Equilibria. Note that, with 𝐼 = 𝐼
𝑒
= 0, (3) has the

disease-free equilibrium (DFE) (𝑆∗, 𝐼∗, 𝐼∗
𝑒
) = (Λ/𝜇, 0, 0).
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Table 1: Parameter definitions.

Variable Definition Sample value Range Units Reference
𝑆(𝑡) Susceptible population at time 𝑡 (state variable) — People —

𝐼(𝑡)
Infected population at time 𝑡 who do not know their
status (state variable) — People —

𝐼
𝑛
(𝑡)

Uneducated infected population at time 𝑡 who know
their status (state variable) — People —

𝐼
𝑒
(𝑡)

Infected, educated population at time 𝑡 who know their
status (state variable) — People —

𝐼
𝑛𝑡
(𝑡) Infected, uneducated, and treated population at time 𝑡 (state variable) — People —

𝐼
𝑒𝑡
(𝑡) Infected, educated, and treated population at time 𝑡 (state variable) — People —

𝐼
𝑛𝑟
(𝑡)

Infected, uneducated, and drug-resistant population at
time 𝑡 (state variable) — People —

𝐼
𝑒𝑟
(𝑡)

Infected, educated, and drug-resistant population at
time 𝑡 (state variable) — People —

Λ Recruitment rate 29 25–35 Year−1 [34]
𝛽 Transmission rate 0.5 0.05–0.95 Year−1 [34]
𝜎
𝑘 Rate of knowing one’s status 0.55 0.1–1 Year−1 Assumed

𝑝
The proportion of HIV-positive individuals who are
educated immediately upon knowing their status 0.75 0-1 — Assumed

𝜎
𝑡 The rate of providing treatment for uneducated people 0.1125 0.1–4 Year−1 [34]

𝜎
𝑒𝑡 The rate of providing treatment for educated people 0.1125 0.1–4 Year−1 Assumed

𝜎
𝑟

The rate at which uneducated people become drug
resistant 0.1 × 𝜎

𝑒𝑡
— Year−1 Assumed

𝜎
𝑟𝑒

The rate at which educated people become drug
resistant 0.5 × 𝜎

𝑟
— Year−1 Assumed

𝜂
𝑛

Modifying transmission parameter for uneducated
people 1.685 1–2.37 — [9]

𝜂
𝑒 Modifying transmission parameter for educated people 0.343 0.186–1 — [9]

𝜂
𝑛𝑡

Modifying transmission parameter for uneducated and
treated people 0.18 0.174–0.186 — [9]

𝜂
𝑒𝑡

Modifying transmission parameter for educated and
treated people 0.092 0.01–0.174 — [9]

𝑟
𝑐

The rate at which uneducated people stop their
treatment 0.125 0.1–0.15 Year−1 Assumed

𝑟
𝑒𝑐 The rate at which educated people stop their treatment 0.0505 0.1–0.15 Year−1 Assumed

𝜌
𝑒

The rate of providing late education for nontreated
HIV-positive individuals 1 0–2 Year−1 Assumed

𝜌
𝑒𝑡

The rate of providing late education during or after
treatment 1 0–2 Year−1 Assumed

𝜇 Natural mortality rate 0.02 0.015–0.025 Year−1 [34]

𝛾
Rate of progression to AIDS for nontreated or
drug-resistant individuals 0.1 0.05–0.15 Year−1 [34]

𝛾
𝑡 Rate of progression to AIDS for treated individuals 0.0875 0.05–0.125 Year−1 Assumed

Setting the right-hand side of (3) to zero and solving for
𝑆, 𝐼 and 𝐼

𝑒
, we have the endemic equilibrium (EE)

𝑆
∗

=
Λ

𝜆∗ + 𝜇
,

𝐼
∗

=
Λ𝜆
∗

(𝜆∗ + 𝜇) (𝜇 + 𝛾 + 𝜎
𝑘
)
,

𝐼
∗

𝑒
=

𝜎
𝑘
Λ𝜆
∗

(𝜆∗ + 𝜇) (𝜇 + 𝛾 + 𝜎
𝑘
) (𝜇 + 𝛾)

,

(4)

with

𝜆
∗

=
𝛽 (𝜇 + 𝛾 + 𝜂

𝑒
𝜎
𝑘
) − (𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
)

(𝜇 + 𝛾 + 𝜎
𝑘
)

. (5)

3.1.3. Local and Global Stability. For the DFE, we have the
Jacobian matrix
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Figure 2: The five submodels. (a) Testing with obligatory education. (b) Testing only. (c) Test and treat with limited education. (d) Test and
treat with drug resistance. (e) Test and treat with drug resistance and obligatory education.

𝐽 =
[
[

[

−𝜇 −𝛽 −𝜂
𝑒
𝛽

0 𝛽 − (𝜇 + 𝛾 + 𝜎
𝑘
) 𝜂

𝑒
𝛽

0 𝜎
𝑘

− (𝜇 + 𝛾)

]
]

]

, (6)

which has the characteristic polynomial (𝑠 is the variable),

(𝑠 + 𝜇) (𝑠
2
+ 𝑎1𝑠 + 𝑎0) = 0, (7)

where

𝑎1 = 2𝜇+ 2𝛾 + 𝜎
𝑘
−𝛽,

𝑎0 = (𝜇 + 𝛾) (𝜇 + 𝛾 +𝜎
𝑘
) − 𝛽 (𝜇 + 𝛾 + 𝜂

𝑒
𝜎
𝑘
) .

(8)

When 𝑎0 = 0, we have 𝑎1 > 0. As a result, all the eigenvalues
of 𝐽 are negative under the condition 𝑎0 > 0, which is

equivalent to

𝑅0𝑒 ≡
𝛽 (𝜇 + 𝛾 + 𝜂

𝑒
𝜎
𝑘
)

(𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎
𝑘
)
< 1. (9)

Here, 𝑅0𝑒 is the basic reproduction number [39].
Thus we have proved the following theorem.

Theorem 1. For 𝑅0𝑒 < 1, the DFE is locally asymptotically
stable, and for 𝑅0𝑒 > 1, the DFE is unstable.

Note that 𝑅0𝑒 < 1 implies 𝜆∗ < 0. As a result, we have the
following corollary.

Corollary 2. (1) If 𝑅0𝑒 < 1, then the DFE is the only
equilibrium. (2) For 𝑅0𝑒 > 1, then the DFE and the EE coexist.

In the following theorem, wewill prove global stability for
the DFE.
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Theorem 3. The DFE is a globally asymptotically stable equi-
librium of model system (3) provided 𝑅0𝑒 < 1.

Proof. WeutilizeTheorem 2 in [40]. Consider𝐹(𝑋, 0) = [𝐾−

𝜇𝑋],

𝐴 = [
𝛽 − (𝜇 + 𝛾 + 𝜎

𝑘
) 𝜂

𝑒
𝛽

𝜎
𝑘

− (𝜇 + 𝛾)
] ,

𝐺 (𝑋, 𝑌) = [

[

𝛽 (𝐼 + 𝜂
𝑒
𝐼
𝑒
) (1 −

𝑆

𝑁
)

0
]

]

≥ 0,

(10)

for all (𝑋, 𝑌) ∈ {(𝑆, 𝐼, 𝐼
𝑒
) ∈ R : 𝑁 ≤ Λ/𝜇}. As a result,

the conditions of Theorem 2 [40] are satisfied, and the result
follows.

It follows that 𝑅0 is a transcritical bifurcation and is thus
a useful threshold parameter. See [41] for more discussion.

We will now study the stability of the EE. We utilize
Theorem 4 in [40]. Note that, for

𝛽 =
(𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
)

(𝜇 + 𝛾 + 𝜂
𝑒
𝜎
𝑘
)

≡ 𝛽
𝑐
, (11)

the Jacobian matrix for the DFE has zero as an eigenvalue,
with left eigenvector

𝑢1 = −
𝛽

𝜇
[
(𝜇 + 𝛾)

𝜎
𝑘

+ 𝜂
𝑒
] 𝑢3,

𝑢2 =
(𝜇 + 𝛾)

𝜎
𝑘

𝑢3,

(12)

and 𝑢3 > 0 free. Also, it has right eigenvector

V1 = 0,

V2 =
(𝜇 + 𝛾)

𝜂
𝑒
𝛽

V3
(13)

and V3 > 0 free. Moreover,

𝑏 ≡

𝑛

∑

𝑘,𝑖=1
V
𝑘
𝑢
𝑖

𝜕
2
𝑓
𝑘

𝜕
𝑥𝑖
𝜕
𝛽

(𝐸0, 𝛽0) = V2 (𝑢2 + 𝜂
𝑒
𝑢3) > 0, (14)

where 𝐸0 is the DFE. This implies that (i) or (iv) in Theorem
4 [40] are applicable. However, for 𝛽 < 𝛽

𝑐
, 𝐸0 is locally

asymptotically stable andwehave no other positive equilibria.
As a result, (iv) is the only applicable case. This means that,
when 𝛽 changes from 𝛽 < 𝛽

𝑐
to 𝛽 > 𝛽

𝑐
, 𝐸0 changes

from stable to unstable and the EE changes from negative to
positive and locally asymptotically stable.

Thus we have proved the following.

Theorem 4. For 𝑅0𝑒 > 1 but close to 1, the unique EE is locally
asymptotically stable.

Remark 5. Note that 𝜕𝑅0𝑒/𝜕𝜎𝑘 < 0 because 𝜂
𝑒

< 1,
which means that if obligatory education is provided, then
rapid testing will reduce 𝑅0𝑒 and thus potentially control the
disease.

We have found the DFE and EE for a simple system
representing testing and obligatory education. The local and
global stability for the DFE and local stability for the EE have
been proven. Moreover, the value of the basic reproduction
number and the critical rate of transmission are calculated.

As a result, testing and obligatory education is a way of
reducing the spread of the disease, so long as effective edu-
cation is provided to everyone who tests positive. However,
obligatory education is not realistic andmay be expensive.We
thus relax the obligatory education requirement in the next
two sections, in order to explore this further.

3.2. Testing Only. In this submodel, we examine a possible
program that provides testing for the whole population with
the aim of more knowledge about the prevalence of HIV, but
without any treatment or education for HIV-positive cases.

If 𝑝 = 0, then 𝐼
𝑒
= 𝐼
𝑒𝑡
= 𝐼
𝑒𝑟

= 0. Moreover, if 𝜎
𝑡
= 0, then

(2) becomes

𝑆


(𝑡) = Λ− (𝜆 + 𝜇) 𝑆,

𝐼


(𝑡) = 𝜆𝑆 − (𝜇 + 𝛾 +𝜎
𝑘
) 𝐼,

𝐼


𝑛
(𝑡) = 𝜎

𝑘
𝐼 − (𝜇 + 𝛾) 𝐼

𝑛
,

(15)

with

𝜆 =
𝛽 [𝐼 + 𝜂

𝑛
𝐼
𝑛
]

𝑁

(16)

and𝑁 = 𝑆 + 𝐼 + 𝐼
𝑛
. This model is illustrated in Figure 2(b).

Similar to the previous case, the equilibria are given by
(4), but with

𝜆
∗

=
𝛽 (𝜇 + 𝛾 + 𝜂

𝑛
𝜎
𝑘
) − (𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
)

(𝜇 + 𝛾 + 𝜎
𝑘
)

. (17)

Also, we have the same results for stability but with
the basic reproduction number and the critical rate of
transmission given by

𝑅0𝑛 =
𝛽 (𝜇 + 𝛾 + 𝜂

𝑛
𝜎
𝑘
)

(𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎
𝑘
)
,

𝛽
𝑐
=

(𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎
𝑘
)

(𝜇 + 𝛾 + 𝜂
𝑛
𝜎
𝑘
)

.

(18)

Remark 6. Note that 𝜕𝑅0𝑛/𝜕𝜎𝑘 ≥ 0 because 𝜂
𝑛

> 1. This
means that if testing is provided without education, then
rapid testing and knowing one’s status will not control the
disease. Comparing this to Remark 5, it is clear that any
testing program should be supported with education.

We have found the DFE and EE for a simple model
representing the testing-only program and an eradication
threshold 𝑅0𝑛. The local and global stability for the DFE and
local stability for the EE are similar to the previous section.
However, if testing is provided without education, then rapid
testing and knowledge of one’s HIV status will not control
the disease. It follows that testing without education is likely
to increase the prevalence of the disease; thus any testing
program should be supported with education.
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3.3. Testing with Education versus Testing without Education.
Mathematically, the only difference between Sections 3.1
and 3.2 is that the risk behaviour parameter 𝜂

𝑒
< 1 is

replaced by 𝜂
𝑛

> 1 to show the difference in behaviour
between educated and uneducated HIV-positive cases.While
testing and providing education is a scenario that reduces
HIV prevalence, the testing-only programmay increase risky
behaviour for HIV-positive cases, which will increase HIV
prevalence.

3.4. Testing with Limited Education. In this submodel, we
examine a program that provides testing for everyone, but
education of positive cases is not available for everybody due
to cost or infrastructure limitations.

3.4.1. The Model. Assume 𝑝 ∈ [0, 1] and 𝜎
𝑡
= 𝜎
𝑒𝑡

= 0. Then
𝐼
𝑛𝑡

= 𝐼
𝑒𝑡
= 𝐼
𝑛𝑟

= 𝐼
𝑒𝑟

= 0, so (2) becomes

𝑆


(𝑡) = Λ− (𝜆 + 𝜇) 𝑆,

𝐼


(𝑡) = 𝜆𝑆 − (𝜇 + 𝛾 +𝜎
𝑘
) 𝐼,

𝐼


𝑛
(𝑡) = (1−𝑝) 𝜎

𝑘
𝐼 − (𝜇 + 𝛾 + 𝜌

𝑒
) 𝐼
𝑛
,

𝐼


𝑒
(𝑡) = 𝑝𝜎

𝑘
𝐼 + 𝜌
𝑒
𝐼
𝑛
− (𝜇 + 𝛾) 𝐼

𝑒
,

(19)

with 𝜆 = 𝛽[𝐼 + 𝜂
𝑛
𝐼
𝑛
+ 𝜂
𝑒
𝐼
𝑒
]/𝑁 and 𝑁 = 𝑆 + 𝐼 + 𝐼

𝑛
+ 𝐼
𝑒
. See

Figure 2(c).
Wewill calculate the equilibria for this system and analyze

their stability. Also, we will express the basic reproduction
number for this system in terms of the basic reproduction
numbers of the testing-only program and the testing with
obligatory education program.

3.4.2. The Equilibria. Similar to Section 3.1.2, we have

𝑆
∗

=
Λ

𝜆∗ + 𝜇
, (20)

𝐼
∗

=
Λ𝜆
∗

(𝜆∗ + 𝜇) (𝜇 + 𝛾 + 𝜎
𝑘
)
, (21)

𝐼
∗

𝑛
=

(1 − 𝑝) 𝜎
𝑘
Λ𝜆
∗

(𝜆∗ + 𝜇) (𝜇 + 𝛾 + 𝜎
𝑘
) (𝜇 + 𝛾 + 𝜌

𝑒
)
, (22)

𝐼
∗

𝑒
=

𝑝𝜎
𝑘
Λ𝜆
∗

(𝜇 + 𝛾 + 𝜌
𝑒
) + 𝜌
𝑒
(1 − 𝑝) 𝜎

𝑘
Λ𝜆
∗

(𝜆∗ + 𝜇) (𝜇 + 𝛾 + 𝜎
𝑘
) (𝜇 + 𝛾 + 𝜌

𝑒
) (𝜇 + 𝛾)

, (23)

𝜆
∗

=
𝛽 (𝜇 + 𝛾 + 𝜌

𝑒
) (𝜇 + 𝛾 + 𝑝𝜂

𝑒
𝜎
𝑘
) + 𝜂
𝑛
𝛽 (1 − 𝑝) 𝜎

𝑘
(𝜇 + 𝛾) + 𝜌

𝑒
(1 − 𝑝) 𝜎

𝑘

(𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎
𝑘
) + (1 − 𝑝) 𝜎

𝑘
(𝜇 + 𝛾) + 𝑝𝜎

𝑘
(𝜇 + 𝛾 + 𝜌

𝑒
)

−
(𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
) (𝜇 + 𝛾 + 𝜌

𝑒
)

(𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎
𝑘
) + (1 − 𝑝) 𝜎

𝑘
(𝜇 + 𝛾) + 𝑝𝜎

𝑘
(𝜇 + 𝛾 + 𝜌

𝑒
)
.

(24)

Note that (20)–(23) include the DFE (𝑆
∗

, 𝐼
∗

, 𝐼
∗

𝑒
) = (Λ/𝜇,

0, 0, 0) when 𝜆
∗

≤ 0 and the endemic equilibrium when
𝜆
∗

> 0.

3.4.3. Local and Global Stability. Similar to Section 3.1.3, the
DFE has the Jacobian matrix

𝐽

=

[
[
[
[
[
[
[
[

[

−𝜇 −𝛽 −𝜂
𝑛
𝛽 −𝜂

𝑒
𝛽

0 𝛽 − (𝜇 + 𝛾 + 𝜎
𝑘
) 𝜂

𝑛
𝛽 𝜂

𝑒
𝛽

0 (1 − 𝑝) 𝜎
𝑘

− (𝜇 + 𝛾 + 𝜌
𝑒
) 0

0 𝑝𝜎
𝑘

𝜌
𝑒

− (𝜇 + 𝛾)

]
]
]
]
]
]
]
]

]

.

(25)

The linear stability of the DFE is obtained using the next-
generation matrix [42]. Define the nonnegative matrix

𝐹 ≡
[
[
[

[

𝛽 𝜂
𝑛
𝛽 𝜂
𝑒
𝛽

0 0 0

0 0 0

]
]
]

]

(26)

and the nonsingular matrix

𝑉 ≡
[
[
[

[

𝜇 + 𝛾 + 𝜎
𝑘

0 0

− (1 − 𝑝) 𝜎
𝑘

𝜇 + 𝛾 + 𝜌
𝑒

0

−𝑝𝜎
𝑘

−𝜌
𝑒

𝜇 + 𝛾

]
]
]

]

. (27)
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The reproduction number is

𝑅0𝑛𝑒 = 𝜌 (𝐹𝑉
−1
) =

𝛽 (𝜇 + 𝛾 + 𝜌
𝑒
) (𝜇 + 𝛾) + 𝜂

𝑛
𝛽 (1 − 𝑝) 𝜎

𝑘
(𝜇 + 𝛾) + 𝜂

𝑒
𝛽𝜎
𝑘
((1 − 𝑝) 𝜌

𝑒
+ 𝑝 (𝜇 + 𝛾 + 𝜌

𝑒
))

(𝜇 + 𝛾 + 𝜌
𝑒
) (𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
)

. (28)

As a result, we have the following theorem.

Theorem 7. For 𝑅0𝑛𝑒 < 1, the DFE is locally asymptotically
stable and for 𝑅0𝑛𝑒 > 1 the DFE is unstable.

Note that 𝜆∗ < 0 when 𝑅0𝑛𝑒 < 1, so we have the following
corollary.

Corollary 8. (1) If 𝑅0𝑒 < 1, then the DFE is the only
equilibrium. (2) If 𝑅0𝑒 > 1, then the DFE and the EE coexist.

Note that

𝑅0𝑛𝑒 = 𝑝𝑅0𝑒 + (1−𝑝) 𝑅0𝑛

−
(1 − 𝑝) 𝜎

𝑘
𝛽𝜌
𝑒
(𝜂
𝑛
− 𝜂
𝑒
)

(𝜇 + 𝛾 + 𝜌
𝑒
) (𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
)
.

(29)

For 𝑝 = 1, we have 𝑅0𝑛𝑒 = 𝑅0𝑒 and for 𝑝 = 0 and 𝜌
𝑒
= 0 (i.e.,

no education), we have 𝑅0𝑛𝑒 = 𝑅0𝑛. Note also that the third
term in (29) is always negative with absolute value less than
or equal to (1 − 𝑝)𝑅0𝑛. So we have the following corollary.

Corollary 9. If 𝑅0𝑒, 𝑅0𝑛 < 1, then 𝑅0𝑛𝑒 < 1.

For global stability of the DFE, we have the following
theorem.

Theorem 10. The DFE is a globally asymptotically stable
equilibrium of model system (19) provided 𝑅0𝑛𝑒 < 1.

Proof. As in Theorem 3, we utilize Theorem 2 in [40]. Con-
sider 𝐹(𝑋, 0) = [𝐾 − 𝜇𝑋],

𝐴 =

[
[
[
[

[

𝛽 − (𝜇 + 𝛾 + 𝜎
𝑘
) 𝜂

𝑛
𝛽 𝜂

𝑒
𝛽

(1 − 𝑝) 𝜎
𝑘

− (𝜇 + 𝛾 + 𝜌
𝑒
) 0

𝑝𝜎
𝑘

𝜌
𝑒

− (𝜇 + 𝛾)

]
]
]
]

]

,

𝐺 (𝑋, 𝑌) =

[
[
[
[

[

𝛽 (𝐼 + 𝜂
𝑛
𝐼
𝑛
+ 𝜂
𝑒
𝐼
𝑒
) (1 −

𝑆

𝑁
)

0

0

]
]
]
]

]

≥ 0,

(30)

for all (𝑋, 𝑌) ∈ {(𝑆, 𝐼, 𝐼
𝑛
, 𝐼
𝑒
) ∈ R : 𝑁 ≤ Λ/𝜇}. As a result,

the conditions of Theorem 2 [40] are satisfied, and the result
follows.

Now let us study the stability of the EE utilizing
Theorem 4 in [40]. For

𝛽 =
(𝜇 + 𝛾 + 𝜌

𝑒
) (𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
)

(1 − 𝑝) 𝜎
𝑘
𝜎 [𝜂
𝑛
𝛽 (𝜇 + 𝛾) + 𝜂

𝑒
𝛽𝜌
𝑒
] + (𝜇 + 𝛾 + 𝜌

𝑒
) [𝛽 (𝜇 + 𝛾) + 𝜂

𝑒
𝛽𝑝𝜎
𝑘
]
≡ 𝛽
𝑐
, (31)

the Jacobian matrix for the DFE has zero as an eigenvalue,
with left eigenvector

𝑢1

= −
(𝜇 + 𝛾 + 𝜌

𝑒
) (𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
)

𝜇 (1 − 𝑝𝜎
𝑘
) (𝜌
𝑒
+ (𝑝/ (1 − 𝑝)) (𝜇 + 𝛾 + 𝜌

𝑒
))

𝑢4,

𝑢2 =
(𝜇 + 𝛾 + 𝜌

𝑒
) (𝜇 + 𝛾)

(1 − 𝑝𝜎
𝑘
) (𝜌
𝑒
+ (𝑝/ (1 − 𝑝)) (𝜇 + 𝛾 + 𝜌

𝑒
))

𝑢4,

𝑢3 =
(𝜇 + 𝛾)

𝜌
𝑒
+ (𝑝/ (1 − 𝑝)) (𝜇 + 𝛾 + 𝜌

𝑒
)
𝑢4

(32)

and 𝑢4 > 0 free. Also, it has the right eigenvector

V1 = 0,

V2 =
(𝜇 + 𝛾)

𝜂
𝑒
𝛽

V4,

V3 =
𝜂
𝑛
𝛽 (𝜇 + 𝛾) + 𝜂

𝑒
𝛽𝜌
𝑒

𝜂
𝑒
𝛽 (𝜇 + 𝛾 + 𝜌

𝑒
)

V4

(33)

and V4 > 0 free. Moreover,

𝑏 ≡

𝑛

∑

𝑘,𝑖=1
V
𝑘
𝑢
𝑖

𝜕
2
𝑓
𝑘

𝜕
𝑥𝑖
𝜕
𝛽

(𝐸0, 𝛽0) = V2 (𝑢2 + 𝜂
𝑛
𝑢3 + 𝜂

𝑒
𝑢4)

> 0,

(34)

where 𝐸0 is the DFE. So (iv) is the only applicable case in
Theorem 4 in [40].This implies that when𝛽 changes from𝛽 <

𝛽
𝑐
to 𝛽 > 𝛽

𝑐
, 𝐸0 changes from stable to unstable and the EE

changes from negative to positive and locally asymptotically
stable.

We have thus proved the following.

Theorem11. For𝑅0𝑛𝑒 > 1 but close to 1, the unique EE is locally
asymptotically stable.



Journal of Applied Mathematics 9

Remark 12. Note that when 𝑝 is close to one, 𝜕𝑅0𝑛𝑒/𝜕𝜎𝑘 <

0 and 𝜕𝑅0𝑛𝑒/𝜕𝜌𝑒 < 0. This means that any testing should be
providedwith subsequent education to reduce𝑅0𝑛𝑒 and hence
control the disease.

We end this section with the following remark in which a
formula for critical value of early education is given explicitly,
when late education rate is given and fixed.

Remarks. One can prove that 𝑅0𝑛𝑒 < 1 if and only if

𝑝 > 1−
1 − 𝑅0𝑒

𝑅0𝑛 − 𝑅0𝑒 − (𝜎
𝑘
𝛽𝜌
𝑒
(𝜂
𝑛
− 𝜂
𝑒
) / (𝜇 + 𝛾 + 𝜌

𝑒
) (𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
))

. (35)

If 𝜌
𝑒
→ 0, this inequality becomes 𝑝 > 1 − ((1 − 𝑅0𝑒)/(𝑅0𝑛 −

𝑅0𝑒)). This implies a critical value for early education to
control HIV in the absence of treatment. Note also that, if
early education is fixed, then the late education threshold is
given by

𝜌
𝑒
>

(𝜇 + 𝛾)
2
(𝜇 + 𝛾 + 𝜎

𝑘
) [𝑝𝑅0𝑒 + (1 − 𝑝)𝑅0𝑛 − 1]

(1 − 𝑝) 𝜎
𝑘
𝛽 (𝜂
𝑛
− 𝜂
𝑒
) + (𝜇 + 𝛾) (𝜇 + 𝛾 + 𝜎

𝑘
) − (𝑝𝑅0𝑒 + (1 − 𝑝) 𝑅0𝑛)

. (36)

Figure 3 illustrates 𝑅0𝑛𝑒 as a function of two variables, show-
ing that 𝑅0𝑛𝑒 > 1 always for our sample parameter values.
We have also explicitly found critical values for education
parameters, such that any higher education implies disease
control.

We have established local and global stability for the DFE
and local stability for the EE. Moreover, the value of the basic
reproduction number and the critical rate of transmission
are calculated. In addition, the basic reproduction number
is expressed in terms of the basic reproduction numbers of
the two previous programs: testing only and testing with
obligatory education.

We have shown that if sufficient education is provided,
then the disease can be controlled. We found a critical value
of early education to control HIV in the absence of treatment,
although this valuemaynot be reached in practice. As a result,
any testing program accompanied by partial education of
some tested individuals should be supportedwith subsequent
education for individuals who did not receive education at the
time.

3.5. Test and Treat without Education. In this submodel, we
examined the test-and-treat program taking into account the
possibility of the prevalence of drug-resistant cases, but in the
absence of education.This is equivalent to the Granichmodel
[14], but with drug resistance included.

3.5.1. The Model. Setting 𝑝 = 0, system (2) is reduced to

𝑆


(𝑡) = Λ− (𝜆 + 𝜇) 𝑆,

𝐼


(𝑡) = 𝜆𝑆 − (𝜇 + 𝛾 +𝜎
𝑘
) 𝐼,

𝐼


𝑛
(𝑡) = 𝜎

𝑘
𝐼 + 𝑟
𝑐
𝐼
𝑛𝑡
− (𝜇 + 𝛾+𝜎

𝑡
) 𝐼
𝑛
,

𝐼


𝑛𝑡
(𝑡) = 𝜎

𝑡
𝐼
𝑛
− (𝜇 + 𝛾

𝑡
+𝜎
𝑟
+ 𝑟
𝑐
) 𝐼
𝑛𝑡
,

𝐼


𝑛𝑟
(𝑡) = 𝜎

𝑟
𝐼
𝑛𝑡
− (𝜇 + 𝛾) 𝐼

𝑛𝑟
,

(37)

with 𝜆 = 𝛽[𝐼 + 𝜂
𝑛
𝐼
𝑛
+ 𝜂
𝑛𝑡
𝐼
𝑛𝑡
+ 𝜂
𝑛𝑟
𝐼
𝑛𝑟
]/𝑁 and𝑁 = 𝑆 + 𝐼 + 𝐼

𝑛
+

𝐼
𝑛𝑡
+ 𝐼
𝑛𝑟
. See Figure 2(d).

3.5.2. The Equilibria. Setting 𝑓1 = 𝜇 + 𝛾 + 𝜎
𝑘
, 𝑓2 = 𝜇 + 𝛾 + 𝜎

𝑡
,

𝑓3 = 𝜇 + 𝛾
𝑡
+ 𝜎
𝑟
+ 𝑟
𝑐
, and 𝑓4 = 𝜇 + 𝛾, then the equilibria for

system (37) satisfy

𝑆
∗

=
Λ

𝜆∗ + 𝜇
,

𝐼
∗

=
Λ𝜆
∗

(𝜆∗ + 𝜇)𝑓1
,

𝐼
∗

𝑛
=

𝜎
𝑘
Λ𝜆
∗

𝑓3
(𝜆∗ + 𝜇)𝑓1 [𝑓2𝑓3 − 𝑟

𝑐
𝜎
𝑡
]
,

𝐼
∗

𝑛𝑡
=

𝜎
𝑡
𝜎
𝑘
Λ𝜆
∗

(𝜆∗ + 𝜇)𝑓1 [𝑓2𝑓3 − 𝑟
𝑐
𝜎
𝑡
]
,

𝐼
∗

𝑛𝑟
=

𝜎
𝑟
𝜎
𝑡
𝜎
𝑘
Λ𝜆
∗

(𝜆∗ + 𝜇)𝑓1𝑓4 [𝑓2𝑓3 − 𝑟
𝑐
𝜎
𝑡
]
,

(38)

with

𝜆
∗

=
𝛽𝜑
𝑛
− 𝜃
𝑛

𝜓
𝑛

, (39)

where

𝜑
𝑛
= 𝑓4 [𝑓2𝑓3 − 𝑟

𝑐
𝜎
𝑡
+ 𝜂
𝑛
𝜎
𝑘
𝑓3 + 𝜂

𝑛𝑡
𝜎
𝑡
𝜎
𝑘
]

+ 𝜂
𝑛𝑟
𝜎
𝑟
𝜎
𝑡
𝜎
𝑘
,

𝜃
𝑛
= 𝑓4𝑓1 [𝑓2𝑓3 − 𝑟

𝑐
𝜎
𝑡
] ,

𝜓
𝑛
= 𝑓4 [𝑓2𝑓3 − 𝑟

𝑐
𝜎
𝑡
+𝜎
𝑘
𝑓3 +𝜎

𝑡
𝜎
𝑘
] + 𝜎
𝑟
𝜎
𝑡
𝜎
𝑘
.

(40)
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Figure 3: The basic reproduction number for the model of testing with limited education (29) as a function of two variables: the rate of
late education before treatment (𝜌

𝑒
) and proportion of early education (𝑝). It is clear that this program does not eradicate the disease since

𝑅0𝑛𝑒 > 1 always. Thus education alone is insufficient.

3.5.3. Local and Global Stability. For the DFE, we have the
Jacobian matrix

𝐽 =

[
[
[
[
[
[
[
[

[

−𝜇 −𝛽 −𝜂
𝑛
𝛽 −𝜂
𝑛𝑡
𝛽 −𝜂
𝑛𝑟
𝛽

0 𝛽 − 𝑓1 𝜂
𝑛
𝛽 𝜂
𝑛𝑡
𝛽 𝜂
𝑛𝑟
𝛽

0 𝜎
𝑘

−𝑓2 𝑟
𝑐

0
0 0 𝜎

𝑡
−𝑓3 0

0 0 0 𝜎
𝑟

−𝑓4

]
]
]
]
]
]
]
]

]

. (41)

Set

𝐹 ≡

[
[
[
[
[

[

𝛽 𝜂
𝑛
𝛽 𝜂
𝑛𝑡
𝛽 𝜂
𝑛𝑟
𝛽

0 0 0 0
0 0 0 0
0 0 0 0

]
]
]
]
]

]

,

𝑉 ≡

[
[
[
[
[

[

𝑓1 0 0 0
−𝜎
𝑘

𝑓2 −𝑟
𝑐

0
0 −𝜎

𝑛𝑡
𝑓3 0

0 0 −𝜎
𝑟

𝑓4

]
]
]
]
]

]

.

(42)

Then

𝑅0𝑛𝑡 = 𝜌 (𝐹𝑉
−1
)

=
𝛽 (𝑓3𝑓2𝑓4 − 𝑓4𝜎𝑡𝑟𝑐 + 𝜂

𝑛
𝜎
𝑘
𝑓3𝑓4 + 𝜂

𝑡
𝜎
𝑡
𝜎
𝑘
𝑓4 + 𝜂

𝑛𝑟
𝜎
𝑟
𝜎
𝑡
𝜎
𝑘
)

𝑓1𝑓4 (𝑓2𝑓3 − 𝑟
𝑐
𝜎
𝑡
)

,

(43)

the basic reproduction number.
We have proved the following theorem.

Theorem 13. For 𝑅0𝑛𝑡 < 1, the DFE is locally asymptotically
stable. For 𝑅0𝑛𝑡 > 1, the DFE is unstable.

It is clear that 𝑅0𝑛𝑡 < 1 implies 𝜆∗ < 0. So we have the
following corollary.

Corollary 14. (1) If 𝑅0𝑛𝑡 < 1, then the DFE is the only
equilibrium. (2) If 𝑅0𝑛𝑡 > 1, the DFE and the EE coexist.

Now we will prove the global stability for the DFE.

Theorem 15. The DFE is a globally asymptotically stable
equilibrium of model system (50) provided 𝑅0𝑛𝑡 < 1.

Proof. Again, we utilize Theorem 2 in [40]. Consider
𝐹(𝑋, 0) = [𝐾 − 𝜇𝑋],

𝐴 =

[
[
[
[
[

[

𝛽 − (𝜇 + 𝛾 + 𝜎
𝑘
) 𝜂

𝑒
𝛽 𝜂

𝑛𝑡
𝛽 𝜂

𝑛
𝛽

𝜎
𝑘

− (𝜇 + 𝛾 + 𝜎
𝑡
) 𝑟

𝑐
0

0 𝜎
𝑡

− (𝑟
𝑐
+ 𝜎
𝑟
+ 𝜇 + 𝛾

𝑡
) 0

0 0 𝜎
𝑟

− (𝜇 + 𝛾)

]
]
]
]
]

]

,

𝐺 (𝑋, 𝑌) =

[
[
[
[
[
[

[

𝛽 (𝐼 + 𝜂
𝑒
(𝐼
𝑛
+ 𝐼
𝑛𝑟
) + 𝜂
𝑛𝑡
𝐼
𝑛𝑡
) (1 −

𝑆

𝑁
)

0
0
0

]
]
]
]
]
]

]

≥ 0,

(44)
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for all (𝑋, 𝑌) ∈ {(𝑆, 𝐼, 𝐼
𝑒
, 𝐼
𝑒𝑡
, 𝐼
𝑒𝑟
) ∈ R : 𝑁 ≤ Λ/𝜇}. So the

conditions of Theorem 2 [40] are satisfied, and the global
stability follows from this theorem.

For the stability of the EE, the previous technique is used
here (applyingTheorem 4 in [40]).

Note that

𝛽 =
𝜃

𝜑
≡ 𝛽
𝑐

(45)

is equivalent to 𝑅0𝑛𝑡 = 1.The Jacobianmatrix for the DFE has
zero as an eigenvalue, with left eigenvector

𝑢1 = −
𝛽

𝜇
[𝑢2 + 𝜂

𝑛
𝑢3 + 𝜂

𝑛𝑡
𝑢4 + 𝜂

𝑛𝑟
𝑢5] ,

𝑢2 =
𝛽

𝜎
𝑘
𝜎
𝑟
𝜎
𝑡

[𝑓2𝑓3 − 𝑟
𝑐
𝜎
𝑡
] 𝑢5,

𝑢3 =
𝑓3𝑓4
𝜎
𝑟
𝜎
𝑡

𝑢5,

𝑢4 =
𝑓4
𝜎
𝑟

𝑢5

(46)

and 𝑢5 > 0 free. Also, it has right eigenvector

V1 = 0,

V3 = (
𝛽𝜎
𝑡

𝑓2𝑓3 − 𝑟
𝑐
𝜎
𝑡

(
𝜂
𝑛
𝑟
𝑐

𝑓2
+
𝜂
𝑛𝑟
𝜎
𝑟

𝑓4
+ 𝜂
𝑛𝑡
)+

𝜂
𝑛
𝛽

𝑓2
) V2,

V4 =
𝛽𝑓2

𝑓2𝑓3 − 𝑟
𝑐
𝜎
𝑡

(
𝜂
𝑛
𝑟
𝑐

𝑓2
+
𝜂
𝑛𝑟
𝜎
𝑟

𝑓4
+ 𝜂
𝑛𝑡
) V2,

V5 =
𝜂
𝑛𝑟
𝛽V2
𝑓4

V2

(47)

and V2 > 0 free. Moreover,

𝑏 ≡

𝑛

∑

𝑘,𝑖=1
V
𝑘
𝑢
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝛽

(𝐸0, 𝛽𝑐)

= V2 (𝑢2 + 𝜂
𝑒
𝑢3 + 𝜂

𝑛𝑡
𝑢4 + 𝜂

𝑒
𝑢5) > 0,

(48)

where 𝐸0 is the DFE. The positivity of 𝑏 follows because
V2, 𝑢2, 𝑢3, 𝑢4, 𝑢5 > 0. This implies that (i) or (iv) in Theorem
4 [40] is applicable. However, for 𝛽 < 𝛽0, 𝐸0 is locally
asymptotically stable andwehave no other positive equilibria,
which means that (iv) is the only applicable case. This means
that, when 𝛽 changes from 𝛽 < 𝛽0 to 𝛽 > 𝛽0, 𝐸0 changes
from stable to unstable and the EE changes from negative to
positive and locally asymptotically stable.

As a result, we have proved the following theorem.

Theorem 16. For 𝑅0𝑛𝑡 > 1 but close to 1, the unique EE is
locally asymptotically stable.

Remarks. (1) Note that 𝜕𝑅0𝑛𝑡/𝜕𝜎𝑘 > 0 and 𝜕𝑅0𝑛𝑡/𝜕𝜎𝑡 > 0
because 𝜂

𝑛
> 1, which means that test and treat without

education may make the disease worse, as more people know
their status and as more people receive treatment.

(2) Note that Section 3.2 is a special case of this section
when 𝜎

𝑡
= 𝑟
𝑐
= 0. The reason that we examined that case

explicitly is that the result in Section 3.2 was used to rewrite
the basic reproduction number in Section 3.4 (29).

As a result, test and treat without education will exacer-
bate the disease when drug resistance is taken into account.
In the next section, we include education.

3.6. Test and Treat with Drug Resistance and Obligatory
Education. In this submodel, we examined the test-and-treat
program, supported by obligatory education forHIV-positive
cases, while including the effects of drug resistance.

3.6.1. The Model. Setting 𝑝 = 1, but 𝜎
𝑒𝑡

̸= 0, system (2) is
reduced to

𝑆


(𝑡) = Λ− (𝜆 + 𝜇) 𝑆,

𝐼


(𝑡) = 𝜆𝑆 − (𝜇 + 𝛾 +𝜎
𝑘
) 𝐼,

𝐼


𝑒
(𝑡) = 𝜎

𝑘
𝐼 + 𝑟
𝑒𝑐
𝐼
𝑒𝑡
− (𝜇 + 𝛾+𝜎

𝑒𝑡
) 𝐼
𝑒
,

𝐼


𝑒𝑡
(𝑡) = 𝜎

𝑒𝑡
𝐼
𝑒
− (𝜇 + 𝛾

𝑡
+𝜎
𝑟𝑒
+ 𝑟
𝑒𝑐
) 𝐼
𝑒𝑡
,

𝐼


𝑒𝑟
(𝑡) = 𝜎

𝑟𝑒
𝐼
𝑒𝑡
− (𝜇 + 𝛾) 𝐼

𝑒𝑟
,

(49)

with𝜆 = 𝛽[𝐼+𝜂
𝑒
𝐼
𝑒
+𝜂
𝑒𝑡
𝐼
𝑒𝑡
+𝜂
𝑒𝑟
𝐼
𝑒𝑟
]/𝑁 and𝑁 = 𝑆+𝐼+𝐼

𝑒
+𝐼
𝑒𝑡
+𝐼
𝑒𝑟
.

See Figure 2(e).
We will analyse this system in a similar way as the

previous models. Let 𝑔1 = 𝜇 + 𝛾 + 𝜎
𝑘
, 𝑔2 = 𝜇 + 𝛾 + 𝜎

𝑒𝑡
,

𝑔3 = 𝜇 + 𝛾
𝑡
+ 𝜎
𝑟𝑒
+ 𝑟
𝑒𝑐
, and 𝑔4 = 𝜇 + 𝛾.

3.6.2. The Equilibria. For system (49), we have the equilibria

𝑆
∗

=
Λ

𝜆∗ + 𝜇
,

𝐼
∗

=
Λ𝜆
∗

(𝜆∗ + 𝜇) 𝑔1
,

𝐼
∗

𝑒
=

𝜎
𝑘
Λ𝜆
∗

𝑔3
(𝜆∗ + 𝜇) 𝑔1 [𝑔2𝑔3 − 𝑟

𝑒𝑐
𝜎
𝑒𝑡
]
,

𝐼
∗

𝑒𝑡
=

𝜎
𝑒𝑡
𝜎
𝑘
Λ𝜆
∗

(𝜆∗ + 𝜇) 𝑔1 [𝑔2𝑔3 − 𝑟
𝑒𝑐
𝜎
𝑒𝑡
]
,

𝐼
∗

𝑒𝑟
=

𝜎
𝑟𝑒
𝜎
𝑒𝑡
𝜎
𝑘
Λ𝜆
∗

(𝜆∗ + 𝜇) 𝑔1𝑔4 [𝑔2𝑔3 − 𝑟
𝑒𝑐
𝜎
𝑒𝑡
]
,

(50)

with

𝜆
∗

=
𝛽𝜑 − 𝜃

𝜓
, (51)
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where

𝜑 = 𝑔4 [𝑔2𝑔3 − 𝑟
𝑒𝑐
𝜎
𝑒𝑡
+ 𝜂
𝑒
𝜎
𝑘
𝑔3 + 𝜂

𝑒𝑡
𝜎
𝑒𝑡
𝜎
𝑘
]

+ 𝜂
𝑒𝑟
𝜎
𝑟𝑒
𝜎
𝑒𝑡
𝜎
𝑘
,

𝜃 = 𝑔1𝑔4 [𝑔2𝑔3 − 𝑟
𝑒𝑐
𝜎
𝑒𝑡
] ,

𝜓 = 𝑔4 [𝑔2𝑔3 − 𝑟
𝑒𝑐
𝜎
𝑒𝑡
+𝜎
𝑘
𝑔3 +𝜎

𝑒𝑡
𝜎
𝑘
] + 𝜎
𝑟𝑒
𝜎
𝑒𝑡
𝜎
𝑘
.

(52)

This includes the DFE (𝑆
∗

, 𝐼
∗

, 𝐼
∗

𝑒
, 𝐼
∗

𝑒𝑡
, 𝐼
∗

𝑒𝑟
) = (Λ/𝜇, 0, 0, 0, 0)

when 𝜆
∗

≤ 0 and the endemic equilibrium, when 𝜆
∗

> 0.

3.6.3. Local and Global Stability. For the DFE, we have the
Jacobian matrix

𝐽 =

[
[
[
[
[
[
[
[

[

−𝜇 −𝛽 −𝜂
𝑒
𝛽 −𝜂
𝑒𝑡
𝛽 −𝜂
𝑒𝑟
𝛽

0 𝛽 − 𝑔1 𝜂
𝑒
𝛽 𝜂
𝑒𝑡
𝛽 𝜂
𝑒𝑟
𝛽

0 𝜎
𝑘

−𝑔2 𝑟
𝑒𝑐

0
0 0 𝜎

𝑒𝑡
−𝑔3 0

0 0 0 𝜎
𝑟𝑒

−𝑔4

]
]
]
]
]
]
]
]

]

. (53)

The linear stability of the DFE follows from the next-
generation matrix with

𝐹 ≡

[
[
[
[
[

[

𝛽 𝜂
𝑒
𝛽 𝜂
𝑒𝑡
𝛽 𝜂
𝑒𝑟
𝛽

0 0 0 0
0 0 0 0
0 0 0 0

]
]
]
]
]

]

,

𝑉 ≡

[
[
[
[
[

[

𝑔1 0 0 0
−𝜎
𝑘

𝑔2 −𝑟
𝑒𝑐

0
0 −𝜎

𝑒𝑡
𝑔3 0

0 0 −𝜎
𝑟𝑒

𝑔4

]
]
]
]
]

]

,

(54)

𝑅0𝑒𝑡 = 𝜌 (𝐹𝑉
−1
)

=
𝛽 (𝑔2𝑔3𝑔4 − 𝑔4𝜎𝑒𝑡𝑟𝑒𝑐 + 𝜂

𝑒
𝜎
𝑘
𝑔3𝑔4 + 𝜂

𝑒𝑡
𝜎
𝑒𝑡
𝜎
𝑘
𝑔4 + 𝜂

𝑒𝑟
𝜎
𝑟𝑒
𝜎
𝑒𝑡
𝜎
𝑘
)

𝑔1𝑔4 (𝑔2𝑔3 − 𝜎
𝑒𝑡
𝑟
𝑒𝑐
)

.

(55)

We have proved the following theorem.

Theorem 17. For 𝑅0𝑒𝑡 < 1, the DFE is locally asymptotically
stable. For 𝑅0𝑒𝑡 > 1, the DFE is unstable.

It is clear that 𝑅0𝑒𝑡 < 1 implies 𝜆∗ < 0. So we have the
following corollary.

Corollary 18. (1) If 𝑅0𝑒𝑡 < 1, then the DFE is the only
equilibrium. (2) If 𝑅0𝑒𝑡 > 1, the DFE and the EE coexist.

The proofs of the following two theorems are similar to
those in Section 3.5.3.

Theorem 19. The DFE is a globally asymptotically stable
equilibrium of model system (50) provided 𝑅0𝑒𝑡 < 1.

Theorem 20. For 𝑅0𝑒𝑡 > 1 but close to 1, the unique EE is
locally asymptotically stable.

Remarks. (1) Note that 𝜕𝑅0𝑒𝑡/𝜕𝜎𝑘 < 0 and 𝜕𝑅0𝑒𝑡/𝜕𝜎𝑒𝑡 < 0
because 𝜂

𝑒
< 1, which means that if obligatory education

is provided, then the test-and-treat program will reduce 𝑅0𝑒𝑡
and theoretically control the disease. For the dependence of
𝑅0𝑒𝑡 on both treatment and drug resistance rates, see Figure 4.

(2) Note that Section 3.1 is a special case of this section.
However, the results from Section 3.1 were used to rewrite the
basic reproduction number in Section 3.4 (29).

4. Full Model Analysis

We now turn to the full model. Using the next-generation
matrix with

𝐹 ≡

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽 𝜂
𝑛
𝛽 𝜂
𝑒
𝛽 𝜂
𝑡
𝛽 𝜂
𝑒𝑡
𝛽 𝜂
𝑒𝑟
𝛽 𝜂
𝑛𝑟
𝛽

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑉

≡

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

ℎ1 0 0 0 0 0 0
− (1 − 𝑝) 𝜎

𝑘
ℎ2 0 −𝑟

𝑐
0 0 0

−𝑝𝜎
𝑘

−𝜌
𝑒

ℎ3 0 −𝑟
𝑒𝑐

0 0
0 −𝜎

𝑡
0 ℎ4 0 0 0

0 0 −𝜎
𝑡𝑒

−𝜌
𝑡𝑒
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]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(56)

we have

𝑅0 = 𝜌 (𝐹𝑉
−1
) =

𝛽Ψ

Φ
, (57)

where

Ψ = ℎ6ℎ7ℎ4ℎ2ℎ5ℎ3 − ℎ6ℎ7ℎ4ℎ2𝜎𝑡𝑒𝑟𝑒𝑐 − ℎ6ℎ7𝜎𝑡𝑟𝑐ℎ5ℎ3

+ ℎ6ℎ7𝜎𝑡𝑟𝑐𝜎𝑡𝑒𝑟𝑒𝑐 + 𝜂
𝑛
𝑞𝜎
𝑘
ℎ4ℎ6ℎ7ℎ5ℎ3

− 𝜂
𝑛
𝑞𝜎
𝑘
ℎ4ℎ6ℎ7𝜎𝑡𝑒𝑟𝑒𝑐 + 𝜂

𝑒
𝜎
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ℎ6ℎ7𝑝ℎ2ℎ4ℎ5

− 𝜂
𝑒
𝜎
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ℎ6ℎ7𝑝𝜎𝑡𝑟𝑐ℎ5 + 𝜂

𝑒
𝜎
𝑘
ℎ6ℎ7𝜌𝑒𝑞ℎ4ℎ5

+ 𝜂
𝑒
𝜎
𝑘
ℎ6ℎ7𝑟𝑒𝑐𝜎𝑡𝑞𝜌𝑡𝑒 + 𝜂

𝑛𝑡
𝜎
𝑡
𝑞𝜎
𝑘
ℎ6ℎ7ℎ5ℎ3

− 𝜂
𝑛𝑡
𝜎
𝑡
𝑞𝜎
𝑘
ℎ6ℎ7𝜎𝑡𝑒𝑟𝑒𝑐 + 𝜂

𝑒𝑡
𝜎
𝑘
ℎ6ℎ7𝜎𝑡𝑒𝑝ℎ2ℎ4
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Figure 4: (a)The basic reproduction number for the test and treat with drug resistance and obligatory education model (55) as a function of
two variables: the rate of becoming drug resistant 𝜎

𝑟
and the rate of providing treatment for educated individuals 𝜎

𝑒𝑡
. (b) The projection of

the surface 𝑅0𝑒𝑡 = 1 on the plane (𝜎
𝑟
, 𝜎
𝑒𝑡
). With sufficient education, the disease can be controlled.
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𝜎
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𝜎
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𝑛𝑟
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𝑘
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𝑛𝑟
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𝑘
𝜎
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ℎ6𝜎𝑡𝑞𝜌𝑡𝑒ℎ3 + 𝜂

𝑛𝑟
𝜎
𝑘
𝜌
𝑡𝑒
𝜎
𝑟
𝜎
𝑡
𝑞ℎ5ℎ3

− 𝜂
𝑛𝑟
𝜎
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𝜎
𝑟
𝜎
𝑡
𝑞𝜎
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𝑟
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,

Φ = ℎ1ℎ6ℎ7 (ℎ4ℎ2ℎ5ℎ3 − ℎ4ℎ2𝜎𝑡𝑒𝑟𝑒𝑐 −𝜎
𝑡
𝑟
𝑐
ℎ5ℎ3

+𝜎
𝑡
𝑟
𝑐
𝜎
𝑡𝑒
𝑟
𝑒𝑐
) .

(58)

Here
ℎ1 = 𝜇+ 𝛾+𝜎

𝑘
,

ℎ2 = 𝜇+ 𝛾+𝜎
𝑡
+𝜌
𝑒
,

ℎ3 = 𝜇+ 𝛾+𝜎
𝑒𝑡
,

ℎ4 = 𝜇+ 𝛾
𝑡
+𝜎
𝑟
+ 𝑟
𝑐
+𝜌
𝑡𝑒
,

ℎ5 = 𝜇+ 𝛾
𝑡
+𝜎
𝑟𝑒
+ 𝑟
𝑒𝑐
,

ℎ6 = 𝜇+ 𝛾+ 𝜌
𝑡𝑒
,

ℎ7 = 𝜇+ 𝛾.

(59)

We thus have the following result.

Theorem 21. For 𝑅0 < 1, the DFE for the full model is locally
asymptotically stable. For 𝑅0 > 1, the DFE is unstable.

The analysis of the full model is limited, due to the
complexity of themodel.While wewere able to determine the
local stability of the DFE, the remaining analysis is restricted
to the submodels we examined above. However, we will
supplement this with numerical simulations.

5. Numerical Simulations

The data used for the simulations are given in Table 1. Note
that the value of the modification parameters is calculated
using the transmission values for different classes given in
Table S2 [9], in which the values represent 𝜂

𝑖
𝛽 for 𝑖 =

𝑛, 𝑒, 𝑛𝑡, 𝑒𝑡. We calculated the mean value of 𝛽
𝑚

= 0.086. We
then used the endpoints of the ranges given for 𝛽 in Table S2
[9] and solved 𝜂𝛽

𝑚
= 𝛽.The values for 𝜂 are used as endpoints

to construct ranges for 𝜂
𝑖
for 𝑖 = 𝑛, 𝑒, 𝑛𝑡, 𝑒𝑡. Finally, 𝜎

𝑟
= 1/𝐿,

where 𝐿 is the time spent under treatment before becoming
drug resistant, with a range 6.5–8.6 in Table S11 [9].

We start by investigating the sensitivity analysis of 𝑅0𝑛𝑒 to
parameters.This covers the various testing cases, with varying
degrees of education, but without treatment.

5.1. Sensitivity Analysis. Due to the degree of uncertainty
in the parameter values, we examined a range of parameter
values to investigate the dependence of 𝑅0𝑛𝑒 on parameter
variation for testing with partial education. We use Latin
hypercube sampling and partial rank correlation coefficients
(PRCCs) to identify which parameters 𝑅0𝑛𝑒 is most sensitive
to [43]. Latin hypercube sampling is a statistical sampling
method that evaluates sensitivity of an outcome variable to all
input variables. PRCCs measure the relative degree of sensi-
tivity to each parameter, regardless of whether the parameter
has a positive or negative influence on the outcome variable.
Figure 5(a) plots PRCCs for each input parameter for the
testing with limited education model. This demonstrates that
𝑅0𝑛𝑒 is most sensitive to variations in transmissibility, 𝛽,
the degree of modification for transmission among educated
individuals, 𝜂

𝑒
, and the rate of progress to AIDS, 𝛾. Note that

the sensitivity analysis is for the case of testing with limited
education, not the full model.

Thus the disease is reliably controlled only for sufficiently
small transmissibility, low modification of transmission for
educated, and a high rate of progress to AIDS. It should
be noted that variations in 𝛽 and 𝜂

𝑒
will change 𝑅0𝑛𝑒 from
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Figure 5: Sensitivity analysis for the testing with limited education model. (a) Partial rank correlation coefficients indicate that
transmissibility, the modification parameter for educated individuals and the rate of progress to AIDS have the greatest effect on 𝑅0𝑛𝑒.
Parameters with PRCC > 0 will increase 𝑅0𝑛𝑒 when they are increased, while parameters with PRCC < 0 will decrease 𝑅0𝑛𝑒 when they
are increased. (b)–(d) Monte Carlo simulations for 1000 runs drawn from parameter ranges using Latin Hypercube Sampling. If 𝛽 or 𝜂

𝑒

is sufficiently small, then the disease can be controlled.

values greater than one to small values, resulting in significant
dependence of𝑅0𝑛𝑒 on these parameters in Figure 5. Note that
𝛽hasmore effect on the outcome in practice, butwe have little
control over the transmissibility. However, with education,
the coefficient 𝜂

𝑒
can be decreased.

It should be noted that this sensitivity analysis restricts 𝑝
to the range 0.85–1, which means that we are starting with
a population for whom a large proportion receive education
immediately after knowing their status. If 𝑝 is reduced
significantly below this, then eradication is not possible.

5.2. The Impact of Education on Testing with Limited Educa-
tion. In the testing with limited education model (19), we
considered three scenarios.

(1) Early versus late education: we compare the effect
of early education (𝑝 = 0.75, 𝜌

𝑒
= 0.25) and late

education (𝑝 = 0.25, 𝜌
𝑒
= 0.75) by comparing the

percentage of infected in all classes after 10 years. See
Figure 6(a). We used the formula % = 𝑒

−𝑟𝐿 to change
percentages to rates, where 𝐿 is the average period
of time spent in the class to be educated [9]. The

impact of education is essentially unchanged whether
it occurs early or late.

(2) The impact of education on average testing: we exam-
ined the effect of education by comparing the infected
classes in the model (19) with education (𝑝 = 0.75,
𝜌
𝑒

= 1) and the infected classes without education
(𝑝 = 0, 𝜌

𝑒
= 0) after 10 years with average testing

(𝜎
𝑘
= 0.55 as in the table). See Figure 6(b). It is clear

that education reduces the percentage of infected in
all classes.

(3) The impact of education on rapid testing: we exam-
ined the effect of education by comparing the infected
classes in the model (19) with education (𝑝 = 0.75,
𝜌
𝑒

= 1) and the infected classes without education
(𝑝 = 0, 𝜌

𝑒
= 0) after 10 years for rapid testing (𝜎

𝑘
= 1).

See Figure 6(c). It is clear that education reduces the
percentage of infected in all classes.

5.3. The Impact of Education on Different Test-and-Treat
Scenarios. In the full model (2), we considered the following
scenarios.
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Figure 6:The effects of education on the number of infected individuals (total population started with is 1450) after 10 years. (a) Comparison
between percentage of infected in different classes when early education (𝑝 = 0.75, 𝜌

𝑒
= 0.25) and late education (𝑝 = 0.25, 𝜌

𝑒
= 0.75) are

considered in the limited-education model (19). (b) Comparison between percentage of infected individuals in different classes when average
testing is provided (𝜎

𝑘
= 0.55), in the absence of education (𝑝 = 0, 𝜌

𝑒
= 0) and when partial education is provided (𝑝 = 0.75, 𝜌

𝑒
= 1) in

the limited-education model. (c) Comparison between percentage of infected individuals in different classes when rapid testing is adopted
(𝜎
𝑘
= 1), in the absence of education (𝑝 = 0, 𝜌

𝑒
= 0) and when limited education is provided (𝑝 = 0.75, 𝜌

𝑒
= 1) in the limited-education

model. (d) Comparison between percentage of infected in different classes in the absence of education andwhen limited education is provided
(𝑝 = 0.75, 𝜌

𝑒
= 1, and 𝜌

𝑒𝑡
= 1) in the full model. Here low treatment is considered (𝜎

𝑡
= 𝜎
𝑒𝑡
= 0.125).

(1) The impact of education on average testing and late
treatment: in this part, we examined the impact of
education when late treatment is adopted. In the
model (2), we considered 𝜎

𝑡
= 𝜎
𝑒𝑡

= 0.125, assum-
ing that infected individuals spend eight years (on
average) before starting treatment.Thenwe compared
the percentage of people infected after 10 years in the
absence of education and in the cases𝑝 = 0.75, 𝜌

𝑒
= 1,

and 𝜌
𝑒𝑡
= 1.

We also illustrated a time-series solution for model
(2) with and without education. It is clear from
Figure 8 that, without education, rapid testing and
early treatment need at least 20 years more than the
same scenario with education and costs more, due to
the higher number of cases to be treated.

(2) The impact of education on average testing and early
treatment: in this part, we studied the impact of

education when early treatment is adopted. In model
(2), we considered 𝜎

𝑡
= 𝜎
𝑒𝑡

= 4, corresponding to
the infected waiting only three months (on average)
before starting treatment. Then we compared the
percentage of people infected after 30 years in the
absence of education and in the cases𝑝 = 0.75, 𝜌

𝑒
= 1,

and 𝜌
𝑒𝑡

= 1. Figure 7(a) shows the importance of
supporting any treatment program with education to
reduce the number of infected in all classes, especially
in the drug-resistant class.

(3) The impact of education on rapid testing and early
treatment: in this part, we studied the impact of
education when early treatment is adopted, using the
same parameters as in the previous scenario except
that 𝜎

𝑘
= 1, corresponding to knowing one’s status

within a year of infection. The differences between
Figures 7(a) and 7(b) are slight, whereas the effects of
education (white boxes) in each are significant across
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Figure 7: Comparison between percentage of infected (after 30 years, using model (2)) in different classes in the absence of education (solid
boxes) and when the following education parameters are considered: 𝑝 = 0.75, 𝜌

𝑒
= 1, and 𝜌

𝑒𝑡
= 1 (white boxes). (a) Early treatment and

average testing (𝜎
𝑡
= 𝜎
𝑒𝑡

= 4 and 𝜎
𝑘
= 0.55). (b) Early treatment and rapid testing (𝜎

𝑡
= 𝜎
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= 4 and 𝜎
𝑘
= 1). Thus education has a greater

effect on drug resistance than rapid testing.
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Figure 8: Infected non-drug-resistant (solid curves) and drug-resistant (dashed curves) individuals as a function of time, for the full model.
The upper figures are with no education, while the lower figures use education parameters 𝑝 = 0.75, 𝜌

𝑒
= 1, and 𝜌

𝑒𝑡
= 1. On the left, treatment

parameters considered are 𝜎
𝑡
= 𝜎
𝑒𝑡

= 0.125 and 𝜎
𝑘
= 0.55, corresponding to average testing and late treatment. On the right, treatment

parameters considered are 𝜎
𝑡
= 𝜎
𝑒𝑡
= 4 and 𝜎

𝑘
= 1, corresponding to rapid testing and early treatment.Thus, without education, rapid testing

and early treatment are likely to lead to high levels of resistance in the long term.
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all classes, especially in the drug-resistant class. This
suggests that education has a much greater impact on
the outcome than early testing.

It follows that education is important, but also that too
rapid treatment may “burn up” the grace period, leading to
long-term elevated levels of drug resistance.

6. Discussion

As a disease-management tool, education has the potential to
transform societies. If applied correctly, using culturally spe-
cific sensitivity, education may be the dividing line between
disease management and an epidemic that remains out of
control. Here, we measure education’s success by its ability to
reduce the risk of infection. This may be through behaviour
changes such as reduced sexual contact, more protection
options such as condoms or altering other risky behaviour.
There are, of course, many complexities to education and the
means of delivery, but what we see here is the power that it
can have to keep HIV in check, if combined with testing.

Treatment is desirable, but overtreatment is not. Specif-
ically, treating HIV-positive individuals too early provides
little short-term benefit but has the potential to amplify drug
resistance considerably. When the first-line drugs run out,
most individuals in the developing world will be unable
to afford second-line treatments. This is likely to result in
continual use of first-line drugs, even if their net effectmay be
negative. Without careful safeguards, the current “test-and-
treat” program may very well spark an epidemic of drug-
resistant virus that will be impervious to future treatment.
However, we have shown that education, whether provided at
the outset or later, can overcome the effects of drug resistance.

Control of HIV tends to focus on easily measurable
scientific outcomes, such as a successful vaccine,microbicide,
or drug regimen, which are all aspects of physical sciences.
However, the natural sciences have a great deal to offer as
well; targeting human behaviour, while less of a measurable
outcome, can nevertheless reap enormous rewards. Too often
in the scientific literature, HIV is thought of as an abstract
problem to be solved, with little regard to human suffering.
Conversely, by ignoring human behaviour, many theoretical
studies are ignoring a potentially significant variable. As
understood in this context, education and the stochasticity of
behaviour are not so much “soft” elements of natural science
but an important variable missing from many physical
science studies.

Our model has some limitations, which should be
acknowledged. We focused on HIV-positive individuals,
ignoring susceptibles. We conflated different ages and gen-
ders, whichmayhave an impact, especiallywhere education is
concerned (e.g., educationmay reach those within the school
system much more easily than those outside it). Treatment
was also considered uniform for those infected, which is not
true in general and often stratifies with socioeconomic status.
A major challenge for future research is to include education
for the susceptible population, which may be modelled using
numerical simulations. We note, however, that educating
the infected population can theoretically control the disease;

furthermore, with scaled-up testing, reaching such indi-
viduals is feasible, whereas reaching susceptible individuals
may be more complicated. Furthermore, the assumption that
uneducated individuals increase their risk behaviour could be
relaxed in such simulations, allowing risk behaviour to either
increase or decrease stochastically.

Nevertheless, it is clear that HIV/AIDS educational pro-
grams can have a positive impact on the epidemic, especially
when social structure and cultural beliefs of the community
are considered. Educating those infected with HIV/AIDS
may cause behavioural changes and safe sex practices that
reduce HIV/AIDS infections. Additionally, treating HIV-
positive individuals who change their sexual behaviour and
reduce their sexual contacts with other individuals may be
an effective tool to control the epidemic. However, treatment
must be carefully managed to avoid the prevalence of drug-
resistant HIV. Getting tested, knowing one’s HIV status,
controlled treatment, and changing one’s sexual behaviour
are all factors that will contribute to a reduction in HIV
transmission.

In summary, any testing program should be supported
by education. As a strategy, “test and treat” is potentially
worthwhile, if the initial focus is “test,” if “treat” is carefully
managed and if the program can be supplemented with
high-quality, culturally specific education. Furthermore, if
obligatory education is provided, then the test-and-treat
program will theoretically control the disease. As a result, the
best program is test and treat with education, evenwhen drug
resistance is taken into account. It follows that education is
the missing piece from the test-and-treat jigsaw.
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