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Abstract. Self-cycling fermentation is a computer-aided process used for culturing mi-
croorganisms. Applications include sewage treatment and toxic waste cleanup. We con-
sider a model of self-cycling fermentation with nutrient level as the triggering factor. The
model is formulated in terms of impulsive ordinary and partial differential equations and
refined to include the size of the microorganisms. A threshold is determined in terms
of biologically relevant parameters that show that size specific parameters can affect the
outcome. The model predicts that either the system fails and the population of microor-
ganisms essentially washes out or, more favourably, the fermentor cycles indefinitely, with
one impulse per period, maintaining a positive, though oscillatory, number of cells. How-
ever, in any case, the average length and surface area always equilibrate.
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moment of impulse, emptying/refilling fraction, physiological efficiency coefficient.

AMS (MOS) subject classification: 34K45, 34K60, 92D25, 92D40, 62P12

1 Introduction

Nutrient driven self-cycling fermentation can be described as follows. A cul-
ture of microorganisms is introduced into a tank in which it is assumed there
is a single growth limiting nutrient. The cells process the nutrient in order
to grow and reproduce. It is assumed that the tank is well-stirred, so that
cells and nutrient are distributed uniformly throughout the tank. A probe
inserted in the tank measures the nutrient level and relays the information
to a computer. When the nutrient level reaches a predetermined tolerance,
the computer initiates an emptying and refilling process. A set fraction of
the volume of the tank is removed and replaced by an equal volume of fresh
medium. Once the fresh medium has been added to the tank, the cells are
allowed to process the nutrient until the tolerance is reached once more. The
same fraction of the contents is again removed and then replaced with an
equal volume of fresh medium. This process is allowed to continue. The pro-
cess is considered successful if it reaches the threshold within a reasonable
(finite) time, indefinitely.
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The instant at which the threshold is reached and the emptying and
refilling process initiates is referred to as the time of impulsive effect, the
impulse time, the harvesting time, or the moment of impulse. Usually, the
time taken to empty and refill the tank is negligible compared to the time
between impulsive effects. For this reason, we assume that it can be ignored
and model the system using impulsive differential equations.

As the process evolves, it seems possible that even though we are regularly
removing a fraction of the contents of the tank, some cells may avoid removal
and instead grow relatively large. It is interesting to consider what effect
this would have on the process. In order to do this, we refine the impulsive
differential equations model introduced in Smith [6] to include population
density, length, and surface area as well as the number of cells. We follow one
of the approaches of Cushing [3], who studied size structure in the chemostat.

The paper is organized as follows. In section 2, we describe some prelimi-
nary results for the nutrient-driven self-cycling fermentation process, ignoring
size structure. In section 3 we refine the model to include size structure. The
model takes the form of an impulsive differential equation for the resource
coupled with a hyperbolic partial differential equation for the size density
function of the population with appropriate initial and boundary conditions.
In section 4, we reduce the model to a system of four ordinary differential
equations with impulsive effect. We prove that two of the variables always
converge to zero, and then consider the resulting two dimensional model that
results when these two variables are eliminated. We are then able to apply
the results for the non-structured model of self-cycling fermentation. How-
ever, now the model predictions are based on criteria that include parameters
related to size. In section 5, we consider the average surface area and av-
erage length of the population of microorganisms. We illustrate our results
will numerical simulations in section 6, and we conclude with a discussion in
section 7.

2 Preliminary results

First we consider a model that describes the nutrient-driven self-cycling fer-
mentation process. This model was developed in Smith [6] and is an adap-
tation of a model described by Wincure, Cooper, and Rey [5]. In this model
no account is taken of individual variations in size.

Let ¢ denote the time at which the £th moment of impulse occurs, i.e.,
when the nutrient reaches the specified threshold, s. In accordance with the
theory of impulsive differential equations (see Bainov and Simeonov [1], [2]),
we define

Ay=yt —y =yl —yp =ylt}) —y(ty) = lim y(t) — lim y(2).

+ —
t—t} t—t;
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Consider the impulsive system

ds 1 _
T —yf(s)fﬁ s # 5
% = —dx+ f(s)x s # s (2.1)
As = —rs+rs s = 5§
Az = —rz(ty) s = 5§

s(0) > 5, z(0) > 0.

Here, s denotes the concentration of waste (nutrient) in the fermentation
tank, assumed to be toxic to the environment, x the biomass of the population
of microorganisms that consume the nutrient, ¥ the cell yield constant, d the
species specific death rate, s the tolerance of the waste in the environment,
consistent with standards set by an environmental protection agency, s’ the
concentration of the pollutant in the environment added to the tank at the
beginning of each new cycle, and r the emptying/refilling fraction. Tt is
assumedthatJZO, Y >0, ss>5>0,and 0 <r < 1.

The response function is denoted f and satisfies

i. iR R,
ii.  f is continuously differentiable, (2.2)
iii.  f(0) =0, )

iv. f'(s) >0, if s> 0.

B (1—r)s4rs* J p
Sint = Y/§ <1 - m) S.

The following theorem is a special case of a result proved in Smith [6].

Define

Theorem 1 Consider system (2.1). If sine > 0, then there exists a positive
periodic orbit with exactly one impulse per period. This nontrivial periodic
orbit attracts all solutions with initial conditions satisfying s(0) > (1 —r)s+
rst and z(0) > 0. The periodic orbit cycles, between ((1 — r)5 + rs’, l;rsint)
and (8, %Sint)- If sing < 0, then there are at most a finite number of impulses
and im0 () = 0. If sint = 0, then liminf; o z(t) = 0.

Thus, the outcome depends on the sign of sjn¢. See Smith [6] for a dis-
cussion on how to adjust sju¢.

3 Development of the size-structured model

Following the approach in Cushing [3], let p(¢,1) be the density of individuals
of length [ at time ¢, assume that all individuals are the same length, [, at
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birth, and I, < [. Let g(s) denote the uptake rate per unit surface area.
Assume also that g satisfies the conditions in (2.2). Thus, in the case when
s # s, the rate of uptake of nutrient, summing over all individuals of all sizes,
is given by,

d (o]
%= o) [ Peend, s#s (3.1)
dt I

The number of individuals with length a <11 < b, at time ¢, is given by
fab p(t,1)dl. Suppose a fraction k of energy derived from ingested nutrient
is used for growth, and 1 — « is used for reproduction. Energy required for
maintenance is neglected. Let w be the conversion factor relating nutrient
to biomass and w be the conversion factor relating nutrient units to weight
of offspring.

Under these assumptions, one can derive the following model describing
how p changes with time, just as is done in Smith and Waltman [4] in the
setting of the chemostat,

dp K dp -
— 4+ — t))— = —d >, t>0, t#£1g. 3.2
Lt gls(0) b I>hy 150, t£0 (39

As in the model of the chemostat, it is necessary to specify the appropriate

initial conditions (distribution),
s(0) = so> s, (3.3)
0,0 = 2P0, 12k, (3.4)
and boundary conditions describing how offspring of length [, are added to
the population,
3w(1 — e .
p(t,ly) = M/ Pp(t, l)dl, t ty. (3.5)

3
kwly L

At times ¢, when s = s, a fraction r of the contents of the (well-stirred)
tank is replaced by an equal volume of fresh medium. Therefore, there is a
discontinuity in the concentration of nutrient, described by,

As = —rsi+rs, t=t, (3.6)
and a discontinuity in the size distribution p,
Ap = —rp(t;,l), t=tg, foreach [>1. (3.7)
This is basically equivalent to starting over with new initial conditions (dis-
tribution).
When ¢ = g, the boundary condition becomes,
3w(l—k) [ _
i) = 2[R (33)
kwly L

Thus the size structured model is described by the impulsive ordinary
and partial differential equations with the appropriate initial and boundary

conditions (3.1) - (3.8).
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4 Reduction of the model to a two dimensional
system of impulsive differential equations
The total surface area of the population at time ¢, A(t), the total length of

the population at time ¢, L(t) and the total number of individuals at time ¢,
P(t) up to a scaling factor, are given by

1 [ .
Aty = p(t, )2dl,
lb Iy
1 o
wey = L[ s
lb lb

v
—
=N
=

/ p(t, )L
Iy

At each moment of impulse, i.e. when s = s,

1 [ 1 [
AA(ty) = 7/ p(th, O*dl — — plty , [)*dl

lb Iy lb Uy
1 [ .

= 3 Ap(ty, )2dl
lb Uy

- _12/ plty, DIl
lb Uy

= —rA(t;).

Similarly, AL(tx) = —rL(t;) and AP(tx) = —rP(t;).

Using the same argument given in Smith and Waltman [4], the model can
be reduced to the following system of ordinary differential equations with
impulsive effect.

s = —g(s)ifA s # s
A" = —dA+ 1_—Hg(s)A + 2—Kg(s)L s # s
wlb Swa
L' = —dL+ z—lbhg(s)A + ﬁg(a‘)P s # s
P = —dP+ 1= Hg(s)A s # 5 (4.1)
(.dlb
As = —r5+4r7rs s = §
AA = —rA(t;) s = s
AL = —rL(t}) s = §
AP = —rP(t;) s = §

s(0) > 5, A(0) >0, L(0) >0, P(0) >0,

where g(s) and parameters d, r, 5 and s’ are as in model (2.1) and I, &, w
and w are positive (and defined in section 3).
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If we let
A 1—& 1—& 1—x
p= L and H = §—Z 0 0 ,
P 0 % 0
then the impulsive system is

S = —a(s)izA s # 5

Flo= —dp+ g—gbs)Htﬁ s #£ 5

As = —rs+rs s = s
Ap = —T’ﬁ(t;) s = s.

If we make the change of variable ¢ = T%p, where T is a nonsingular
matrix, then

a9 ey :
q = dq + s (T HT)q s # 5 (4.2)

A¢ = —rqlty) s = 5.
Using Lemma 1 (page 845) of Cushing [3], H has a positive eigenvalue
f. From Lemma 9.3.1 (page 216) of Smith and Waltman [4], H has a corre-
- T
sponding eigenvector ¥ = (% (”{i)z , g’fﬁ, 1) , where fi = fi(k,w, ¢).
The characteristic polynomial of H is

l—k ., 2(1— 21— 2
NolTrpe Zlowme, Zlom(eNT (4.3)
w 3wy 9 w @

Corresponding to the eigenvalue ji, H® also has a positive eigenvector 4,
that satisfies @ - ¥ = 1 and has first component

— K 2
2 ()
w1, =

. 9ﬁ3—|—6((1;“&)ﬂ+4% (E)Q.

we @

The remaining eigenvalues of H are v+ iv, where v < 0 and v > 0. There
is a nonsingular matrix 7" such that

g 0 0
T'HT=| 0 ~ v
0 —v v

The first column of T is the eigenvector ¢’ and the first row of T~ is .

1 is the physiological efficiency coefficient of the population, reflecting both
reproductive and growth efficiency.
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In the new variables, we have = (z,y, z)%, where z = ¥-p = % (%")2 A+
?’ﬂTwL—I—P > 0 is a weighted average of A, L and P that serves as a measure of
population size. Note that A = ¢-§'= wiz+cay+c3z, where ¢ = (wy, e3, ¢3)"
is the first column of T~!, containing the first component w; > 0 of the
positive eigenvector . Consequently, from (4.2), the impulsive differential

equations are

s = —g(s)l? (w1z + c2y + e32) s # s
¢ = —dz+ lﬁg(s)x s # s
b

— 8 —

y = —dy+ %(’yy —vz) s # s
2 = —dz+ gl(_s) (vy+~vz) s # s (44)

b

As = —rs5+rst s = §

Axr = —rz(l;) s = 5§

Ay = —ry(t;) s = 5§

Az = —rz(ty) s = s

5(0) > 5, z(0) > 0, y(0) >0, 2(0) > 0,

where the function g(s) and the parameters lp, d, r, 5 and s' are as described
in model (4.1), the parameters w1, & and v are positive, 4 is negative and ¢;
and cq are arbitrary.

Proposition 1 Consider model ({.4). Let u = y + iz. Then u(t) = 0 as
t — o0.

Proof. For s # s, we have

d 2
—ldut| = 2yy/ + 222
= 2y |—dy+ lg(s)y — Kg(s)z + 22 |—dz + Kg(s)y + lg(s)z
ly Iy ly ly
= 2 Lytsw)] 7 + )
_ 7.7 2
= 2 Lotsw)]
< —2djul? (4.5)
since v < 0.

Either (4.5) holds for all ¢ sufficiently large, or there exists a sequence
{tr}sz, with tx — oo as k — oo such that s(¢;) = 5. In the first case,
|u]? = 0 as t — co. Otherwise

d|ul? .
— < =2dul? t# t.
dt = |u| ’ # k
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Since Ay(tr) = y(t :) (tk ) = —ry(ty ), it follows that y(t+) + y(t;)
(2 — r)y(ty;). Thus y*(t7) — y*(t;) = —7“(2 — r)y?(t;). Similarly 22(¢}) —
22(ty) = —r(2—r)22 (). Hence

Alul*(te) = (v*(5) + 2*(t])) — (v (t5) + 22 (1)) = —r(2 = r)[ul*(t;)-

With (4.5), we obtain the impulsive differential inequality

%Iul2 < —2dul? P2
Alul* = —r(2-r)ul? T
We thus have
lul2(t) < JufA(tf)e 24t te <t <tpir
lulP(ty,) < JulP(tf)e 20—t

Now, [ul*(tf) =|ul?(t;) = —r(2=r)|u?(t;), so [ul(t]) = (1) |u*(t; ).

Thus, for tx <t < tg41,
() < (1= ) ful(t e
S (e N () e

(1= ) ul?(t_y e 240 t)

(1= Py Jul(ty )e 20w
(1 = ) |ul (0% e,

IA AN ---

Now, 0 < r < 1. Therefore, as t — oo, k — 0o, lim;_, o |u|?(t) = 0.

O

By Proposition 1, it follows immediately that in model (4.4) we have
limi 00 y(t) = limgseo 2(2) = 0. Therefore, the omega limit set of (4.4) is
contained in the set {(s,z,y,2z) € R} :s > 5,y=12z=0}.

Next, we study the dynamics of (4.4) with initial conditions restricted to
this set, giving the autonomous impulsive system

s = —g(s )2 wl;t: s # 5

r = —dz+ ,ulb Ya(s)x s # s
As = —rs+rs s = 5§ (4.6)
Ar = —rz(t,) s = 5§

5(0) > 5, (0) > 0.

(1—r)54rs® - J
Sintsize = / ( 3/" ST a— ) ds.
s Bw  g(s)lZws

Define




A Size-Structured Fermentation Model 215

In the notation of Theorem 1,

Sint =  Sintsize
pyg(s
fo) = M9
b
I
Y =
lg’wl

By Theorem 1, if sintsize > 0, then there exists a periodic orbit with one
impulse per period, and solutions with s(0) > (1 — r)5 + rs’ and z(0) > 0
approach this periodic orbit as ¢ — co. The periodic orbit cycles between
(1 —7r)5+rs’, l;—rsintsize) and (s, rsmtme) If Sintsize < 0, then z(t) — 0 as
t — 00. If Sintsize = 0, then liminf; o z(¢) = 0.

Thus, in order to control the fermentor, one needs to understand how to
manipulate sipgsize. Define

_ fir(s' —5)
lb“ = 7 r(1=r)54rst ’
df; l9(s)]~'ds
oy [T g(s)] s
Ho = .

r(s* — 5)

It follows that if [, < I, or equivalently if it > fig, then sintsize > 0. That is, if
the size at birth is sufficiently small, or the physiological efficiency coefficient
is sufficiently large, then the population of microorganisms will survive in
the self-cycling fermentation process. Otherwise, sintsize < 0, and so the
population will be eliminated.

5 Average Cell Size

Consider model (4.1). Let A(t) = % and L(t) = Pgi; denote the average
surface area and the average length of the population at time ¢.
Either A, L, and P are continuous for all sufficiently large ¢, or there

exists a sequence {tj}32, with ¢ — oo as k — oc such that s(t, ) = 5.

When t = t;, AA(tg) = ?Eg; Azt ). From model (4.1), it follows that

)’
Atf) = (1= nA(ty), P(tf) = (1-r)P (_) and L(t;) = (1 = r)L(ty).
Therefore, AA(tg) = 0. Similarly AL(tg) =
Differentiating A and L and using (4.1), 1t follows that

dA o 1- 26 = 1 —kK 4

i I, g(s(1)) [ > o= - A ] t # iy

dL _ l—xk; & 1—k - .
= = b Lg(s(t)) [ At — AL] t £ty (5.)
AA = 0 to=

AL = 0 t = .
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Thus, there is no discontinuity, and A and L satisfy the first two equations
for all ¢ > 0. This seems reasonable, since the tank is well-stirred and the
harvesting is applied uniformly.

Define

1—«

T = /Otg(s(r))dr, k>1,

wlb

with the understanding that 7 is evaluated piecewise over the values #g.
Equations (5.1) can thus be transformed into the system of ordinary dif-
ferential equations (without jump discontinuities)

A _ 4y 2 g
dr 3w(l — &) -
di B P o ({)2)
ar = Atagaom A

A(0) > 0, L(0) > 0.

The following theorem is an immediate consequence of results in Smith

and Waltman [4] (Chapter 9).

Theorem 2 For any solution of (4.1) with A(0), L(0), P(0) > 0,

lim (A(t), L(t) = (%,H r >

t—00 3ﬂw

Furthermore, the standard deviation, given by o(t) = I [fi(t) - Ez(t)]lﬂ
lbfi
3pw ”

satisfies limy 0o (1) =

6 Numerical Simulations

Numerical simulations were run on model (4.1), using a Michaelis-Menten

uptake function, g(s) s In this case

= m
by = ﬂmr(g—é) [Km((l—r):‘—krsi) —|—r(5i—3)]_1
fio = % [K In (M#) + (s’ — 5)] :

Simulations were carried out in MATLAB using ODE45 with the appro-
priate events option to calculate the moment of impulsive effect. We set
s = 1.333,5 = 0.1, m = 0.0167, K = 0.007, d = 0.005, r = 0.6, [, = 1,
w = 0.822, k = 0.45 and w = 0.7. This produced corresponding values of
wy = 0.6409 and g = 1.6123. The calculated value of siptsize Was 3.598, po
was 0.377 and [, was 3.314. Note that g > pio and Iy < lp,. The initial
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Figure 1: The dynamics of the nutrient concentration, surface area, length
and total population for model (4.1). The surface area, length and population

approach a periodic orbit.

=

conditions used were s(0) = 0.8, A(0) = 0.3, L(0) = 0.5, P(0) = 0.8. See
Figure 1.

Figure 2 was obtained by dividing the curves A(¢) and L(¢) in Figure 1
by P(t) and thus shows the corresponding average surface area and average
length. These exhibited no discontinuities and the curves equilibrated, as

predicted.

7 Discussion

The size of individuals is an important factor in controlling the outcome of the
self-cycling fermentation process. The approach of Cushing [3], who included
size in his model of the chemostat, was modified to produce a size-structured
model for self-cycling fermentation.

Our model resulted in a system of impulsive ordinary and partial differ-
ential equations. It was possible to reduce this model to one in which we
could apply the results for the nonstructured model of self-cycling fermenta-
tion. Thus, we determined a threshold sjn¢size that depends on the uptake
function g(s) and biologically relevant parameters r, 5, s' as in the unstruc-
tured model (see Smith [6]), as well as the size of the microorganisms at
birth and the physiological efficiency coefficient. If sjnsize > 0 then there
exists a positive periodic orbit with one impulse per cycle and solutions with
initial conditions satisfying s(0) > (1 — r)s + rs* and z(0) > 0 approach the
periodic orbit. The fermentor will cycle indefinitely, periodically releasing
batches of the tank into the environment, with only a small level of waste
product remaining.

If Sintsize < 0 then the cycle time increases. The cleanup process even-
tually runs down and the population of microorganisms washes out. If
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1.6

Average surface area

Average length

500 600 700 800 900 1000

Figure 2: The dynamics of the average surface area of the population and the
average length of the population for model (4.1), demonstrating equilibrating
values and no discontinuities.

Sintsize = 0, then the cycle time increases without bound and the popula-
tion essentially washes out.

If the size at birth is small enough, or the physiological efficiency coeffi-
cient is large enough, then sjntsize Will be positive and hence the population
will survive in the form of an impulsive periodic orbit. This mirrors a re-
sult in Cushing [3]. He showed that survival in the chemostat depended on
the parameters in a similar fashion. However, in that case, the survival is in
terms of a globally asymptotically stable fixed point in the interior, instead of
a periodic orbit. On the other hand, we showed that the average length and
surface area of the microorganisms always equilibrates and that the standard
deviation approaches a constant value. Thus, as for the chemostat, if some
cells in the self-cycling fermentation process grow unnaturally large, they still
form a negligible fraction of the overall population.

As in the original model of Cushing, the most serious deficiency of this
model is the description of the reproduction process. However, the analysis
of a model that treats cell division more realistically and at the same time
treats growth and consumption as discussed here would be very difficult.
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