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1

Preface

The primary purpose of these lecture notes is to use disease modelling as a
framework in which to explore the usefulness that mathematical modelling
can have. These notes are mainly intended for students and researchers in the
biological sciences who may have limited mathematical background, but are
also accessible to a wider audience who may have an interest in mathematical
biology, but not necessarily expertise in either.

This monograph is intended to bridge the gap, at least in part, between
biology and mathematics. While mathematical biology has long been an im-
portant aspect of epidemiology, many students and researchers in the biologi-
cal sciences have stated that they went into biology “to get away from math”.
Increasingly, there has been an awareness that it is no longer possible to be a
biologist and still avoid aspects of mathematical modelling, curve fitting and
understanding what computer transformations are actually doing, rather than
just applying them. This trend will only continue in the future.

This monograph assumes a basic level of calculus, although not necessarily
a level that is at the reader’s fingertips. Thus, most topics are introduced or
refreshed when they occur and several may be found in the appendices. How-
ever, while differential equations and matrices are introduced here, a complete
overview is beyond the scope of these notes.

Each chapter comes complete with computer labs that explore the useful-
ness of Matlab. While it is expected that Matlab is unlikely to be the biolo-
gist’s natural choice of computer program, it was chosen for its accessibility
and ease of adaptation. Recent innovations in the graphical user interface in
Matlab 7 and beyond have made this program an invaluable tool to most
biomathematicians. A working knowledge of the program would assist future
collaborations between biologists and applied mathematicians.

However, it is also understood that the reader may not be interested in
learning much about a program that he or she may never use in practice. Thus,
the labs have been designed so that little memorisation of the program’s ability
is needed; most of the computer codes are provided, so that the emphasis is on
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using the tool, as an interface between the theory and application. Problems
and solutions are worked through in their entirety to get a feel for Matlab
before the actual exercises are embarked upon. The focus is primarily on
applications, rather than theory.

This monograph is structured into three parts: 1) introductory material
that the general reader can access 2) advanced material for the more mathe-
matically inclined and 3) several case studies. The style is an accessible one;
although much of the content is mathematical, there has been extensive proof-
reading by epidemiologists, the exercises worked through by graduate students
and refined for accessibility and educational insight. To aid in this accessibil-
ity, each chapter is preceded by a flowchart that outlines the relevant points
and connections between ideas.

Note also that the spelling throughout conforms to the British, rather than
American, style. And yes, the author’s name does have a question mark in it,
so please don’t send him emails about it.

Chapters 5, 8, 10 and 11 are adapted from LaPeare et al. (1998). Chapters
3 and 4 are adapted from Giordano & Weir (1985). Much of chapter 6 is
adapted from Heffernan et al. (2005). Chapter 15 is adapted from Bainov &
Simeonov (1989, 1993). Chapter 16 is adapted from Schwartz et al. (2005),
Chapter 17 is adapted from Ruan et al. (2008), Chapter 18 is adapted from
Smith? et al. (2012) and Chapter 19 is adapted and updated from Munz et al.
(2009). However, in each case, the chapters have been extensively rewritten in
order to promote the accessibility that is so desperately needed to bring the
disparate fields of mathematics and biology closer together.

1.1 Origins

The material for these notes was originally developed for a workshop on mod-
elling disease ecology with mathematics. The workshop was hosted by Ricardo
Gürtler and held at the Faculty of Exact and Natural Sciences, University of
Buenos Aires, Argentina, July 11–15, 2005.

The development of the workshop was funded by an award from the
NIH/NSF Ecology of Infectious Disease program (Award RO1 TW05836
funded by the Fogarty International Center and the National Institute of En-
vironmental Health Sciences (NIEHS) to Uriel Kitron and Ricardo Gürtler)

This workshop was conducted with support from the NIH/NSF Ecology
of Infectious Disease program (Award RO1 TW05836 funded by the Foga-
rty International Center and the National Institute of Environmental Health
Sciences (NIEHS) to Uriel Kitron and Ricardo Gürtler) and an award from
the U.S. National Aeronautics and Space Administration (NASA) and the
National Institute of Allergy and Infectious Diseases (NIAID), a component
of the National Institutes of Health, U.S. Department of Health and Human
Services to Charlie King, Uriel Kitron and Ricardo Gürtler.
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1.2 What’s new in the second edition

The first edition was a popular textbook with a diverse audience. Although
it is a math textbook, it is written in a friendly and accessible style, with
mathematical details relegated to various appendices, in order that the non-
mathematician be able to access the book.

Consequently, the book has been used as a textbook in a number of courses,
as well as for workshops for non-mathematicians (e.g., the Public Health
Agency of Canada, which is the Canadian government’s disease department).
Students have often reported that they learned everything from it and that it
is their “bible”, often just calling it “the green book” as a shorthand.

One of the most useful aspects has been the inclusion of Matlab codes,
meaning students can get started on programming straight away, using hands-
on learning rather than figuring everything out from scratch. These codes were
workshopped in advance and are thus error-free.

This edition is no small update of the original. More than a third of the
material is new, while every chapter has been re-edited and re-worked, in small
or large ways. Errors have been fixed and new takes on existing material have
been offered after feedback from students. The material has been re-ordered
to begin with data fitting after this structure was found to be an ideal opening
in the associated course. Mathematical details in Chapter 5 have been moved
to an appendix, as this was offputting for introductory readers.

The material has been divided into several parts. The bulk of the original
version constitutes the first part, which is accessible to a general audience.
The second part consists of new chapters on advanced model construction,
detailed discrete-time modelling, a disease with an asymptomatic class and
a chapter on impulsive differential equations. The latter is an exciting new
branch of mathematics that has useful and grabholdable applications for the
non-mathematician, but books on the subject are not very accessible. While
the introductory chapter here gets somewhat dense, it nevertheless contains
motivating examples to explain the process to the general reader.

Several new case studies have been added that illustrate new theoretical
chapters. All chapters come with Matlab codes and exercises, with appendices
where applicable. Some smaller additions include a discussion of the Routh–
Hurwitz criterion in Chapter 7 and a list of the top ten diseases of all time in
Chapter 16. The latter

1.3 The free online edition

This textbook has been made freely available for use by anyone who may
benefit from it. Various typos have been corrected, but if you find others, feel
free to let me know, and I’ll update them.
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In the first part of this book, the more dense mathematics has been rel-
egated to the various appendices. Again, this makes the text more accessi-
ble, without the reader getting bogged down in mathematical details. These
appendices are in no way intended to be a complete overview of their math-
ematical topic; rather, they supplement the relevant chapters and provide
an introduction to the usefulness of certain topics. The interested reader is
encouraged to seek out mathematical textbooks on the relevant subject for
further information. It is hoped that these notes will provide a stimulating
introduction to the power of mathematics to understand the world around us,
while still maintaining that, despite the math-phobia that exists in our so-
ciety, mathematics can nevertheless be as accessible and as enjoyable as any
other science.

1.5 A note about zombies

A final word on the inclusion of a chapter on zombies in this book, which
may raise some eyebrows. Its inclusion here is not simply a reproduction of
an immensely popular article (it was, for a time, the #1 pdf on Google and
was, for 24 hours, the most popular news story in the world), but a reworking
with a revised model and some new conclusions.

Since I first published an academic article on zombies (which went on
to win a Guinness World Record), I have been amazed by the power that
mixing science and media has had in inspiring people. Those who would never
otherwise look twice at an equation read an entire academic article because
they were so transfixed by zombies. Many people had never even heard of the
discipline of disease modelling until the zombie article came out.

By using both real-life problems and also pop culture (such as zombies),
mathematics can be made both fun and accessible to non-mathematicians.
Where physics has a popular following — concepts such as the Higgs Boson,
black holes or quarks excite the popular imagination, even among people
who may never understand the details — mathematics struggles to make its
concepts similarly appealing beyond a niche audience. Zombies break this
trend, allowing people who will never solve an equation to be engaged and
excited by mathematical modelling.
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I make no apologies for this. My efforts to promote mathematics to the
wider world (including both zombies and the first edition of this textbook) won
me a prestigious Partners in Research award as mathematics ambassador, and
they have inspired people to go into disease modelling, raising its awareness as
a discipline. Rather than keeping mathematics in the ivory tower, by taking it
to where people actually are, it’s possible to make the subject engaging, fresh
and amusing. If we can harness this in a broader sense, we stand a chance of
breaking down the barriers that hold mathematics back from being accessible
to all and widely accepted in the greater community. This can only be a good
thing. It is definitely something that is worth striving for.

Stacey Smith?
Ottawa, Canada
October 2023
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Introduction

Infectious diseases have been a part of the human condition since time im-
memorial. Some, such as herpes or chicken pox, usually have mild symptoms
and vanish of their own accord. Others, such as HIV, tuberculosis or malaria,
are responsible for millions of deaths each year. Diseases have been the source
of fear and superstition throughout the ages; sociological upheavals following
the black plague led to the demise of the church as an all-powerful institution,
the destruction of the serf system and subsequent creation of labour move-
ments, and the creating of colonialism. Malaria is likely the greatest killer of
human beings of all time, being thought to have killed one in two humans who
ever lived (see Page 199). The 1918 Spanish influenza pandemic killed 50–100
million people in the space of six months (about 5.5% of the entire world; this
would be equivalent to 350 million deaths today).

Mathematical epidemiology has its roots in 1760, when Daniel Bernoulli
formulated and solved a model for smallpox. In 1906, Hamer used a discrete-
time model of measles to understand recurrent epidemics. In 1911, Sir Ronald
Ross used mathematical models to help demonstrate that malaria was spread
by mosquitos (later winning a Nobel prize for his work). This work was later
followed up by public-health physician William Kermack and biologist Ander-
son McKendrick in 1927, who showed that mortality rates were much more
dependent on the year of birth than the year of death, as previously thought.
This was particularly impressive, since Kermack had been blinded three years
earlier and did all the mathematics in his head.

Since the middle of the twentieth century, mathematical epidemiology has
grown exponentially. The appearance of HIV/AIDS saw a further explosion in
the growth of models, as ways of predicting the spread of the disease became
crucial. Mathematical models were used to design the triple-drug cocktail, re-
sponsible for saving the lives of millions of people. In recent years, mathemat-
ics has been used to determine intervention strategies for the foot and mouth
outbreak in Britain, the SARS epidemic, human papillomavirus vaccination
and West Nile virus. Mathematics can determine the critical proportion of
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individuals who must be vaccinated against a disease, the minimum amount
of drug required to treat an infection, the frequency of use of an insecticide
to control mosquitos or the number of doses of a drug regimen that may be
missed before drug resistance emerges.

Mathematical modelling has become a tool that is now widely used to
study problems and questions in public health. Such models have focussed
on the spread of an infectious agent in a population, the pathogenesis of an
infectious agent in a host and its effect on the immune system, the growth
and spread of tumour cells in a body, and even the economics of vaccine and
drug delivery at the population or individual level. However, public-health
workers rarely have the mathematical skills to develop informative models for
public-health policy.

In recent years, the rise of detailed electronic surveillance of infectious
disease and improvements in computing power, electronic data management,
rapid diagnostic tests, genetic sequence analysis and the ability to share and
deposit data over the internet has given rise to a vastly improved ability to
monitor the spread of diseases. Statistical methods have been integrated into
the modelling process, allowing estimation of key parameters and the testing
of hypotheses using available data.

Mathematical modelling is analogous to map-making. Without a decent
map, even finding our way home is difficult, let alone exploring new avenues.
Like any good map, we aren’t trying to create a perfect replica of reality;
rather, we hope to elucidate key features and ignore what isn’t relevant. Of-
ten, what we leave out is as important as what we include. To solve biological
problems, first we translate the biology into a mathematical model. (Despite
appearances, usually borne out of math phobia, this is often the most challeng-
ing part of the process.) Once we are satisfied with the model, we perform
mathematical analysis. Assuming we do this correctly, we can be confident
that what happens here is a series of entirely logical steps. Our mathematical
conclusion then needs to be translated back to a biological conclusion. Since
the process of mathematical analysis is rigorous, it follows that the strength
of our conclusions are wholly dependent upon the formulation of the mathe-
matical model. See Figure 2.1. Thus it is vital to understand the mechanisms,
as well as the limitations, of this modelling cycle.

More formally, mathematical modelling of infectious disease is a frame-
work designed to convey ideas about the components of host–pathogen in-
teractions. It requires a clear understanding of the interaction between the
infectious agent and the host within an individual, the mode and rate of
transmission between individuals and host-population characteristics, such as
demography and behaviour. Models can be used to determine the dominant
factors that generate observed patterns and phenomena. They can aid data
collection, interpretation and parameter estimation. They can identify pos-
sible approaches for disease control and for assessing the potential impact
of different intervention measures. Importantly, they can do all this without
costly and time-consuming experiments.
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Biological 
problem

Mathematical 
model

Mathematical 
analysis

Mathematical 
conclusion

Biological 
conclusion

Compare 
with data

Fig. 2.1. The mathematical modelling cycle.

This monograph facilitates the learning of mathematical biology for public-
health researchers and mathematical modellers, who may have a range of
skills and knowledge drawn from mathematics, clinical medicine, sociology,
economics, decision-making, risk analysis, psychology, industrial production
capacity and politics. There needs to be a symbiosis between these areas; peo-
ple working in these disciplines need to communicate to each other effectively
so that key questions in health can be addressed.

This monograph specifically introduces mathematical modelling to those
in the public-health sector who have had no formal training in mathematics.
It allows people working in a range of disciplines to understand the strengths
and weaknesses of models. Mathematical models are formulated that repre-
sent current diseases; the tools needed to analyse these models are introduced
as necessary. Through Matlab exercises, numerical simulations are developed
that provide the reader with the ability to formulate control strategies, test
hypothetical interventions and explore disease-management options. The ex-
position of the material is mainly addressed to researchers and graduate stu-
dents interested in the application of mathematics to biological problems.

One of the objectives is to familiarise public-health workers with ques-
tions and outcomes that can be produced by simple mathematical models.
Ultimately, policy-makers need to understand the importance and limitations
of models, in order to be confident in basing decisions on them. Mathemati-
cians need to be able to connect the equations to the biology. And, crucially,
both groups need to be able to talk to each other. Only then will we make
real progress in solving some of the world’s most difficult problems.
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Fitting curves to data

Fitting curves to data is one of the most common things we can do when
analysing our data. There are all manner of ways in which various curves can
be fitted, leading to the question of which is the “best”, under a variety of
circumstances. Curves are fit to data all the time in science, especially using
linear regression. However, as we’ll see, it’s not always as straightforward as
it seems.

By the end of this chapter, you should know how to use Matlab to fit
basic curves, how selecting a model depends on the confidence you have in
your data, some sources of common error and some of the potential pitfalls
associated with computers fitting data blindly.

3.1 Model fitting vs. interpolation

When analysing data, we can use information that data implies to formulate
mathematical models. These models rely on assumptions about the data, or
about the data we have not collected. We may encounter situations in which
there are different assumptions leading to different models. For example, as an
influenza pandemic moves through a population, we could make assumptions
about the heterogeneous mixing of the population being proportional to the
local population density or the urban vs. rural environment, or we could ignore
the heterogeneity of the population altogether.

We may be faced with using collected data to determine unknown param-
eters in our model in a way that selects the curve from each model that “best
fits” the data and then choose whichever resultant model is most appropriate
for the particular situation under investigation.

A different case arises when the problem is so complex as to prevent the for-
mulation of a model explaining the situation. For instance, a three-dimensional
model for the spread of measles might involve partial differential equations
for the movement of infectious droplets in three spatial dimensions, plus one
temporal dimension. This will not only be enormously complicated, but the
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equations may not even be solvable, so there is little hope for constructing a
master model that can be solved and analysed analytically. Or there may be
so many variables that one would not even attempt to construct an explicit
model.

In such cases, experiments may have to be conducted to investigate the
behaviour of the system. Then the experimental data can be used to predict
the outcome, but only within the range of the data points collected.

The preceding discussion identifies three possible tasks when analysing a
collection of data points:

1. Fitting a selected model type or types to the data. For example, applying
a line of best fit to known data points.

2. Choosing the most appropriate model from competing types that have
been fitted. For example, we may need to determine whether the best-
fitting exponential model is a better model than the best-fitting least-
squares model.

3. Making predictions from the collected data. This may involve interpola-
tion (predicting in between known data points) or extrapolation (predict-
ing a point outside the range of collected data).

In Task 1, the precise meaning of “best” model must be identified and the
resulting mathematical problem resolved. In Task 2, a criterion is needed for
computing models of different types. In Task 3, criteria must be established
for determining how to make predictions in between the observed data points
or outside the ranges of what we know.

In Tasks 1 and 2, a relationship of a particular type is strongly suspected,
and the modeller is willing to accept some deviation between the model and
the collected data points in order to have a model that satisfactorily explains
the situation under investigation.

However, in the third task, when interpolating, the modeller is strongly
guided by the data that have been carefully collected and analysed, and a
curve is sought that captures the trend of the data in order to predict in
between the data points. Less reliably, we may want to predict outside the
range of known data points. However, as we’ll see in the lab, curves of best
fit are very good for interpolation but not nearly so good for extrapolation,
so we have to be careful.

In all situations, the modeller may ultimately want to make predictions
from the model. However, the modeller tends to emphasize the proposed mod-
els over the data when model fitting, whereas she places greater confidence
in the collected data when interpolating and attaches less significance to the
form of the model.

For example, suppose we have data from the 1918 influenza pandemic in
Philadelphia shown in Figure 3.1. The x axis represents time in days, and the
y axis represents the number of fatal cases. To make predictions based solely
upon this data, we could use a technique such as spline interpolation (which
we will study in the next chapter) in order to pass a smooth curve through the
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points (see Figure 3.2). In this case, the interpolating curve passes through
the data points and captures the trend of the behaviour over the range of
observations.
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Fig. 3.1. Data from the 1918 influenza pandemic.

However, we know that data isn’t always perfect, so a curve that passes
precisely through every data point may actually be less useful than a curve
that misses them all, but captures the “trend”.

Suppose that, in studying the data, the modeller makes assumptions
leading to the expectation of a quadratic model, or parabola, of the form
y = C1x

2 + C2x + C3. In this case, the data of Figure 3.1 would be used
to determine the arbitrary constants C1, C2 and C3 in order to select the
“best” parabola. See Figure 3.3. The fact that the parabola may deviate from
some or all of the data points would be of no concern. Outside the range of
data points, the curves may vary significantly; e.g., in the vicinity of x5, the
predictions made by the curves in Figures 3.2 and 3.3 are quite different.

Of course, we may find it necessary to both fit a model and to interpolate
in the same problem. The best-fitting model of a given type may prove to
be unwieldy or even impossible for subsequent analysis involving operations
like integration or differentiation. In such situations, the model may have to
be replaced with an interpolating curve (such as a polynomial) that is more
readily differentiated or integrated.

For example, a step function used to model the sudden onset of a pandemic
might be replaced by a trigonometric approximation to facilitate subsequent
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Fig. 3.2. Interpolating the data using a smooth curve.
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Fig. 3.3. Fitting a parabola to the data points.

analysis. In these instances, we want the interpolating curve to closely ap-
proximate the essential characteristics of the function it replaces.
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3.2 Sources of error in the modelling process

When fitting models to data or interpolating, we need to examine the mod-
elling process in order to ascertain where errors can arise. If error considera-
tions are neglected, undue confidence may be placed in intermediate results,
causing faulty decisions in subsequent steps. Our goal is to ensure that all
parts of the modelling process are computationally compatible and to con-
sider the effects of cumulative errors likely to exist from previous steps.

We can classify errors under the following category scheme:

1. Formulation error
2. Truncation error
3. Round-off error
4. Measurement error.

A formulation error is an error resulting from the assumption that certain
variables are negligible or from simplifications arising in describing interrela-
tionships among the variables in the various submodels. For example, if we
ignore the spatial heterogeneity of a population as an influenza pandemic
sweeps through, we may be neglecting important relationships among indi-
viduals that facilitate or prevent the transmission of the disease. Formulation
errors are present in even the best models. As George Box famously said, “All
models are wrong, but some are useful.”

Truncation errors are those errors attributable to the numerical method
used to solve a mathematical problem. For example, we may find it necessary
to approximate ex with a polynomial representation obtained from the power
series

ex = 1 + x+
x2

2
+
x3

6
+
x4

24
+ · · ·

An error will be introduced when the series is truncated (i.e., only a finite
number of terms are included) to produce the polynomial. In fact, every time
your calculator or computer calculates an exponential (or a sine or cosine or a
logarithm), it is using just such a finite polynomial representation, complete
with truncation error.

Round-off error refers to any error caused by using a finite-digit machine
for computation. Since all numbers cannot be represented exactly using only fi-
nite representations, we must always expect round-off errors to be present. For
example, consider a calculator or computer that uses 8-digit arithmetic. Then
the number 1/3 is represented by 0.33333333 so that 3 × 1/3 = 0.99999999,
rather than the actual value 1. The error of 10−8 is due to round-off. The
ideal real number 1/3 is an infinite string of decimal digits 0.33333 . . ., but
any calculator or computer can do arithmetic only with numbers having finite
precision. When many arithmetic operations are performed in succession, each
with its own round-off, the accumulated effect of round-off can significantly
alter the numbers that are supposed to be the answer. Round-off is just one of
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the things we have to live with — and be aware of — when we use computing
machines.

Measurement errors are caused by imprecision in the data collection. This
imprecision may include such diverse things as human errors in recording
or reporting the data or the actual physical limitations of the laboratory
equipment. For example, considerable measurement error would be expected
in the data reflecting the spread of influenza through a population, since we
can’t measure everyone, fatalities caused by influenza are often attributed to
other factors and the speed of spread may outpace the ability to measure
symptoms.

3.3 Visual fitting with the original data

Suppose we want to fit the model y = ax + b to the data shown in Figure
3.4. How might the constants a and b be chosen to determine the line that
“best fits” the data? Generally, when more than two data points exist, all of
them cannot be expected to lie exactly along a straight line, even if such a line
accurately models the relationship between the two variables x and y. That
is, ordinarily there will be some vertical discrepancy (residuals) between some
of the data points and any particular line being considered. We refer to these
vertical discrepancies as absolute deviations.

x
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3
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Fig. 3.4. Each data point is thought of as an interval of confidence.

For the “best fitting” line, we might want to try to minimise the sum of
these absolute deviations leading to the model depicted in Figure 3.5. While
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we may be successful at minimising the sum of the absolute deviations, the
absolute deviation from individual points may be quite large. For example,
while points A, B and C are quite close to the fitted line, point D is some
considerable distance from it. If we have confidence in the accuracy of this
data point, there would be concern for the predictions made from the fitted
line near this point.
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Fig. 3.5. Minimising the sum of the absolute deviations from the fitted line.

As an alternative, suppose a line is selected that minimises the largest
deviation from any point. In this case, we would have the line shown in Figure
3.6. In this case, no point is exactly on the line, but no point is too far from
it either.

Although these visual methods for fitting a line to data points may appear
imprecise, the methods are often quite compatible with the accuracy of the
modelling process itself. The grossness of the assumptions and the imprecision
involved in the data collection may not warrant a more sophisticated analysis.
In such situations, the blind application of more analytical methods may lead
to models far less appropriate than one obtained graphically.

Furthermore, a visual inspection of the model fitted graphically to the data
immediately gives an impression of how good the fit is and where it appears to
fit well. Unfortunately, these important considerations are often overlooked in
problems with large amounts of data analytically fitted via computer codes.
Since the model-fitting portion of the modelling process appears to be more
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Fig. 3.6. Minimising the largest absolute deviation from the fitted line.

precise and analytic than some of the other steps, there is a tendency to place
undue faith in the numerical computations.

3.4 Transforming the data

Most of us are limited visually to fitting only lines. So to graphically fit other
curves as models, we have to transform the data. For example, consider the
data shown in Table 3.1 of new cases of HIV infections detected in 1981. The
data is plotted in Figure 3.7.

Month Jan Feb Mar Apr

New
Cases

51 179 370 1207

Table 3.1. Collected data for new HIV infections in 1981.

We may suspect that the relationship is exponential; i.e., of the form y =
Cex, where x is the time in months since the beginning of the survey and
y is the number of cases. Thus, if we plot y versus ex, we should obtain
approximately a straight line. See Figure 3.8. Since the plotted data points do
lie approximately along a line that projects through the origin, we conclude
that the assumed proportionality is reasonable. From the figure, the slope of
the line is approximated as C = 1207−51

54.6−2.7 ≈ 22.3.
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Fig. 3.7. Plot of collected data for new HIV infections in 1981.

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

ex values

y 
va

lu
es

Fig. 3.8. Plot of y versus ex for the original data.

An alternative technique involves taking the logarithm of each side of the
equation y = Cex to obtain

ln y = ln[Cex]

ln y = lnC + ln ex (since ln(ab) = ln(a) + ln(b))

ln y = lnC + x (remember ln and e are inverses).
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Note that this expression is an equation of a line in the variables ln y and
x. The number lnC is the intercept when x = 0. The transformed data are
shown in Table 3.2 and plotted in a “semi-log” plot, Figure 3.9.

x 1 2 3 4

ln y 3.932 5.167 5.914 7.096

Table 3.2. Transformed data
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Fig. 3.9. Plot of ln y versus x for the transformed data.

From Figure 3.9, we can determine that the intercept lnC is 2.9776, giving
C = e2.9776 ≈ 19.6. So which C is the right one? Answer: probably neither.
Which C do we have more faith in? Answer: definitely the second one! It uses
more data points (using all four to determine the line of best fit and hence
the intercept), whereas the first C only uses two data points to determine the
slope. And we can see from Figure 3.8 that this isn’t going to be the exact
slope of the fitted line anyway. Of course, a smarter approach to this would
be to use linear regression to calculate the slope of the best-fit line.

So does that mean we should always transform our data into something
where we can fit a line, if that’s possible? Well... not necessarily. As we’ll
see in the next section, this too has the potential to mislead. It’s a tough
curve-fitting world out there.
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3.4.1 Regression coefficients can be misleading

A similar transformation can be performed on a variety of other curves to
produce linear relationships among the resulting transformed variables. For
example, if y = xa, then

ln y = ln(xa)

ln y = a lnx (remember ln(bc) = c ln(b))

is a linear relationship in the transformed variables ln y and lnx, giving us a
“log-log” transformation with slope a.

For example, consider the data in Table 3.3, where x represents the number
of avian influenza infections detected and y represents the number of birds
that must be culled to contain the disease.

x 3 7 20 148

y 8 65 549 36300

Table 3.3. Initial infections and cull size for an avian influenza outbreak.

If you use any basic linear regression package (a simple calculator will do),
you’ll find that a line of best fit could be applied, with r = 0.9956. Seems
pretty good, right? But if we plot the data, as in Figure 3.10, you can see that
the fit isn’t nearly so good as we might suspect. (Indeed, the inset shows just
how far off the line is for the first three data points, due to the scaling!) This
is one of the dangers of relying on computers to do the work for us: we can
easily be fooled into believing results that are misleading or outright wrong.

If instead we suspect a relationship of the form y = xa and plot ln y versus
lnx, as in Figure 3.11, then we find r = 0.9995 and the slope of the line of
best fit is 2.1496, suggesting that a ≈ 2.1.

Finally, we can check this curve against the original data, by plotting the
curve y = x2.1 against the original data, as in Figure 3.12. This looks a lot
better than Figure 3.10. It’s at this point, by fitting the curve to the original
data, that we make our decisions about which curve is the best.

Note that the linear regression r values weren’t terribly helpful here. Be
careful: there’s a tendency for scientists to put all their faith in the r value
they’ve calculated (even for very small data sets like the ones we used) and
many are willing to accept r values a lot lower than the ones seen here.

3.4.2 Transformations can also be misleading

At this point, we must make an important observation. Suppose we do invoke
a transformation and plot ln y versus x, as in Figure 3.12 and find the line



24 3 Fitting curves to data

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of cases detected

N
um

be
r 

of
 b

ird
s 

to
 b

e 
cu

lle
d

0 10 20 30
−2000

−1000

0

1000

2000

Fig. 3.10. Plot of y versus x and a line of best fit for the avian influenza data.
Inset: a rescaling around the first three data points.
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Fig. 3.11. Plot of ln y versus lnx and a line of best fit for the avian influenza data.

that successfully minimises the sum of the absolute deviations of the trans-
formed data points. The line then determines lnC, which in turn produces the
proportionality constant C. Although it is not obvious, the resulting model
y = Cex is not the member of the family of exponential curves of the form
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Fig. 3.12. Comparing the exponential curve with the original avian influenza data.
Inset: a rescaling of the first three data points.

kex that minimises the sum of the absolute deviations from the original data
points (when we plot y versus x).

That is, the line may be the best fit in the transformed data, but it doesn’t
follow that the corresponding curve is necessarily the best fit in the original.

When transformations of the form y = lnx are made, the distance concept
is distorted. While a fit that is compatible with the inherent limitations of a
graphical analysis may be obtained, we must be aware of this distortion and,
crucially, verify the model using the graph from which it is intended to make
predictions: namely the y versus x graph in the original data, rather than the
graph of the transformed variables.

For example, consider the data plotted in Figure 3.13, which might repre-
sent biannual outbreaks of influenza. Suppose we have reason to believe the
data are expected to fit a model of the form y = Ce1/x. We want to choose
the “best” C that fits this. Using a logarithmic transformation as before, we
find

ln y = ln
(
Ce1/x

)

ln y = lnC + ln
(
e1/x

)
(since ln(ab) = ln a+ ln b)

ln y =
1

x
+ lnC (since ln and e are inverses).

A plot of the points ln y versus 1/x based on the original data is shown in
Figure 3.14. Note from the figure how the transformation distorts the distances
between the original data points and squeezes them all together. Consequently,
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Fig. 3.13. Biannual outbreaks of influenza.

if a straight line is made to fit the transformed data plotted in Figure 3.14,
the absolute deviations appear relatively small (that is, small on the Figure
3.14 scale rather than on the Figure 3.13 scale).
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Fig. 3.14. The transformed data points and a line of best fit.
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This means that the model is a reasonably good fit for the transformed
data, with lnC ≈ −1.25. It might not look so great to our eye, but the
deviations are quite small, so a computer would tell us it’s a very good fit.
We could then solve for C and assume we’ve got the best C (because we had
the best lnC).

But let’s test this out on the original data. If we plot the fitted model
y = Ce1/x to the data in Figure 3.13, you would see that it fits the data
relatively poorly, as shown in Figure 3.15. There are no biannual peaks to
the fitted line, and, worse, the line would behave quite badly (heading up to
infinity) in the vicinity of 0.

What’s gone wrong here? Answer: The data were never supposed to fit a
model of the form y = Ce1/x. But we wouldn’t know that from the transfor-
mation, which tells us that the fit is actually pretty good.

From this example, we can see that if we are not careful when using trans-
formations, we can be tricked into selecting a relatively poor model. This
realisation becomes especially important when comparing alternative models.
Very serious errors can be introduced when selecting the best model unless
all the comparisons are made with the original data. Otherwise, the choice of
“best” model may be determined by a peculiarity of the transformation rather
than on the merits of the model and how well it fits the original data. While
the danger of making transformations is evident in this example, it is easy to
be fooled if we are not especially observant, since many computer codes fit
models by first making a transformation.
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Fig. 3.15. A plot of the curve y = Ce1/x based on the value lnC ≈ −1.25.



28 3 Fitting curves to data

3.5 Lab work

The problem

In the data in Table 3.4, x is the diameter of a ponderosa pine in inches
measured at chest height and y is a measure of volume: the number of board
feet divided by 10. (Most lumber is sold by the board foot, which is equal to
a board that is one foot long, one foot wide and one inch thick.)

x 17 19 20 22 23 25 28 31 32 33 36 37 38 39 41

y 19 25 32 51 57 71 113 141 123 187 192 205 252 259 294

Table 3.4. Diameter of a ponderosa pine versus volume.

• Use the polyfit command to fit polynomials of degree 1, 2, 3, 4, 6, 9 and
15 to the data. Which of these seem reasonable?

• Use the Basic Data fitting tool to fit same polynomials (except for 15) to
the data. Which seems reasonable now?

• Use Matlab to plot the points and plot the natural cubic spline joining
them.

• Make an appropriate transformation to fit the model y = axb.
• Estimate the parameters a and b of the model.
• Plot your model against the original data. Which of the earlier polynomials

does this most closely approximate?

The solution

First we need to enter the data. We’ll then use polyfit to evaluate a range
of possible best-fit polynomials.

x=[17 19 20 22 23 25 28 31 32 33 36 37 38 39 41];

y=[19 25 32 51 57 71 113 141 123 187 192 205 252 259 294];

n=input('Enter the degree of the polynomial ');

p=polyfit(x,y,n);

f=polyval(p,x);

figure(1)

plot(x,y,'o') %This plots a 'clean' set of data for later use

figure(2)

plot(x,y,'o',x,f,'-')

Matlab is great for fitting data. If you keep Figure 1 open, then choose
“Tools → Basic Fitting”, you have the option of fitting all manner of things
to the data. Try fitting linear, quadratic, cubic etc polynomials to the data.
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How does this look? (You may want to type axis([15 45 0 350]) into the
Matlab command window in order to rescale the axes.)

Fitting low-order polynomials isn’t too bad, but higher-order polynomials
don’t seem to work very well. They’re a reasonable fit to the actual data, but
outside the region we have data for, they’re an extremely bad fit.

While we’re here, let’s choose the “spline interpolant” option (again, you
may want to rescale the axes). This fits a cubic spline to the data. We’ll
learn more about the theory of cubic splines in the next chapter, but basically
they’re a way to fit a smooth curve to the data that actually passes through
all the data points, should we so desire it.

To transform the data, since we have exponents, the obvious transforma-
tion is to take the logarithm of both sides. Thus

ln y = ln(axb)

ln y = ln a+ lnxb

ln y = ln a+ b lnx.

Thus, if we plot ln y versus lnx, then the intercept should be ln a and the
slope should be b.

In Matlab, the function lnx is represented as log(x) (for historical rea-
sons, “log” and “ln” are the same thing in mathematics, although confusingly
they aren’t for most scientists), so you can type plot(log(x),log(y),'o')

directly into the Matlab command window. The 'o' means “plot the data as
circles”. You could also use '*', '+', etc, but Matlab’s default is to join the
data with lines, which we don’t want.

To apply a line of best fit, simply choose “Tools → Basic Fitting” and
choose “linear”. Click the → button and you’ll see the coefficients of the
linear polynomial. Thus,

ln a = −5.7427

⇒ a = e−5.7427 = 0.0032061

b = 3.0919.

We can thus plot our model versus the data by typing the following code
into the command window:

plot(x,y,'o',x,0.0032061.*x.^(3.0919))

Matlab can plot multiple things on top of each other. Every two entries (plus
an optional descriptor) is a data set.

We can also see that the cubic polynomial was the closest to the best fit,
assuming this model is accurate.
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3.5.1 Exercises

Table 3.5 shows the mean number of T. infestans bugs collected per infected
site, after community-wide insecticide spraying in 1992 to eliminate Chagas’
disease in two rural areas in Argentina.

Month Amamá Mercedes/Trinidad

Oct-93 2.7 1
Nov-94 1 5
May-95 2 1
Nov 95 2.8 4.8
May-96 3.4 3.7
Nov-96 3.3 2.8
May-97 8.7 6.2
Nov-97 7.4 11.2
May-98 6.4 5.4
Nov-98 8.4 3.4
May-99 7.9 4.7

Table 3.5. Mean number of bugs per infected site. (Data courtesy Ricardo Gürtler.)

1. Plot the data for each site on two separate figures. (Watch out for the
scaling on the x-axis; the October entry means you’ll have to be careful.)

2. Fit some polynomials to each data set by modifying your polyfit program.
Which polynomial seems the “best” to you?

3. Use the “Basic Fitting” tools to fit your polynomials again. What does
the behaviour around the edges tell you?

4. Fit a cubic spline to the data. Do you think this would be a better fit than
a polynomial?

5. Do you have a reason to suspect the data might need to be transformed?
If so, make an appropriate transformation and determine the parameters.

6. Is there a qualitative difference between the mean number of bugs per
infested site in the two villages?

7. What would you predict would be the mean number of bugs per infected
site in Nov 99?
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Splines

In the previous chapter, we saw that an overreliance on what the computer
tells us can lead to false confidence in our choice of models. Here, we explore
in more detail the precise manner in which the computer fits splines to data.
We use splines as an illustrative example, because they are a type of model
fitting that assumes the data is excellent and it is the duty of the model to
adapt to this data.

By the end of this chapter, you should have some understanding of how
the computer uses splines. It should be emphasised that this chapter focusses
on the theory behind splines, but in practice the computer will do all the
work. However, it’s vital to understand the theory behind what the computer
is doing in order to use it.

4.1 Spline interpolation

We want to construct models that capture the trend of the data, and one
very good way to do this is to use polynomials. Polynomials are especially
appealing because they’re so easy to integrate and differentiate. This allows
us to do further mathematical analysis (which we won’t do here) that can’t
be done if the curves have sharp corners or discontinuities in the slopes.

However, high-order polynomials tend to oscillate near the endpoints of the
data interval, and the coefficients can be quite sensitive to small changes in the
data. Smoothing with a low-order polynomial lessens these effects. However,
unless the data are essentially quadratic or cubic in nature, smoothing with a
low-order polynomial may yield a relatively poor fit somewhere over the range
of the data.

Instead we can use a technique called spline interpolation to fit different
polynomials between successive pairs of data points. This allows us to capture
the trend of the data, regardless of the nature of the underlying relationship,
while simultaneously reducing the tendency toward oscillation and the sensi-
tivity to changes in the data.
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We’ll look at two applications: linear and cubic splines. The former because
it’s so straightforward (and shows up in unexpected places) and the latter
because that’s the usual spline used. A cubic has enough freedom to match
first and second derivatives but is a low-order polynomial, which won’t give
unnecessarily oscillations.

4.2 Linear splines

The simplest method of connecting data points would simply be to “join the
dots”, as in Figure 4.1. When x is in the interval x1 ≤ x < x2, the model that
is used is the linear spline S1(x) passing through the data points (x1, y1) and
(x2, y2):

S1(x) = a1 + b1x for x1 ≤ x < x2. (4.1)

Similarly, when x2 ≤ x ≤ x3, the linear spline S2(x) passing through (x2, y2)
and (x3, y3) is

S2(x) = a2 + b2x for x2 ≤ x ≤ x3. (4.2)

Note that both spline segments meet at the point (x2, y2).
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Fig. 4.1. A linear spline model is a continuous function consisting of line segments.

Methicillin-resistant staphylococcus aureus (MRSA) was detected in the
Los Angeles jails at low levels for a number of years before suddenly increas-
ingly sharply in the following year. The data is shown in Table 4.1, where xi
is the time (in years) and y(xi) is the corresponding number of cases detected.
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xi 1 2 3

y(xi) 5 8 25

Table 4.1. Data for MRSA, which increases sharply one year.

The spline S1(x) must pass through the points (1, 5) and (2, 8). Substitut-
ing into (4.1)–(4.2) gives us

a1 + 1b1 = 5

a1 + 2b1 = 8.

We could write this in matrix form
(

1 1
1 2

) (
a1

b1

)
=

(
5
8

)

and use Matlab to solve... except that we’re not going to quite yet.
Similarly, the spline S2(x) must pass through the points (2, 8) and (3, 25)

yielding

a2 + 2b2 = 8

a2 + 3b2 = 25.

Again, we could write this in matrix form

(
1 2
1 3

)(
a2

b2

)
=

(
8
25

)

and use Matlab to solve... but why solve two equations when we could be
smarter and just solve one?

Let’s write both systems as one big matrix equation:




1 1 0 0
1 2 0 0
0 0 1 2
0 0 1 3







a1

b1
a2

b2


 =




5
8
8
25


 .

Matlab is excellent for solving matrix equations. Indeed, that’s probably
the thing it’s “best” at, if such a term can be applied to a computer program.
Remember that if we have the linear system Ac = b (where A is a matrix and
b and c are vectors), then — so long as det(A) 6= 0, but Matlab will give you
an error anyway if is isn’t — the solution is c = A−1b. The following code will
do all the work for us:

A=[1 1 0 0;

1 2 0 0;
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0 0 1 2;

0 0 1 3];

b=[5;8;8;25];

c=A^(-1)*b

The solution of these linear systems of equations yields a1 = 2, b1 = 3,
a2 = −26 and b2 = 17. Thus, the linear spline model for the data of Table 4.1
is summarised in Table 4.2.

Interval Spline model

1 ≤ x ≤ 2 S1(x) = 2 + 3x
2 < x ≤ 3 S2(x) = −26 + 17x

Table 4.2. A linear spline model.

To illustrate how the linear spline model is used, let’s predict y(1.67) and
y(2.33). Since 1 ≤ 1.67 < 2, we need to use S1(x) for this x value. Hence

S1(1.67) = 2 + 3(1.67)

≈ 7.01.

Likewise, since 2 ≤ 2.33 ≤ 3, we use S2(x) for this x value. Thus

S2(2.33) = −26 + 17(2.33)

≈ 13.61.

While the linear spline method is sufficient for many applications, it fails
to capture the trend of the data. Furthermore, if you examine Figure 4.1,
you see that the linear spline model does not appear “smooth”. That is, in
the interval 1 ≤ x < 2, S1(x) has constant slope 3, whereas in the interval
2 ≤ x ≤ 3, S2(x) has constant slope 17. At x = 2, there is an abrupt change
in the slope of the model from 3 to 17 so that the first derivatives S′1(x) and
S′2(x) fail to agree at x = 2.

4.3 Cubic splines

Consider now Figure 4.2. In a manner analogous to linear splines, we define
a separate spline function for the intervals x1 ≤ x < x2 and x2 ≤ x < x3 as
follows:

S1(x) = a1 + b1x+ c1x
2 + d1x

3 for x1 ≤ x < x2

S2(x) = a2 + b2x+ c2x
2 + d2x

3 for x2 ≤ x ≤ x3.
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Since we will want to refer to the first and second derivatives, let’s find them
as well:

S′1(x) = b1 + 2c1x+ 3d1x
2 for x1 ≤ x < x2

S′′1 (x) = 2c1 + 6d1x for x1 ≤ x < x2

S′2(x) = b2 + 2c2x+ 3d2x
2 for x2 ≤ x ≤ x3

S′2(x) = 2c2 + 6d2x for x2 ≤ x ≤ x3.

The model is presented geometrically in Figure 4.2.
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Fig. 4.2. A cubic spline model is a continuous function with continuous first and
second derivatives consisting of cubic polynomial segments.

Cubic splines offer the possibility of matching up not only slopes, but also
the curvatures at each interior data point. To determine the constants defining
each cubic spline segment, we appeal to the requirement that each spline pass
through the two data points specified by the interval over which the spline is
defined. For the spline model depicted in Figure 4.2, this requirement yields
the equations

y1 = S1(x1) = a1 + b1x1 + c1x
2
1 + d1x

3
1 (4.3)

y2 = S1(x2) = a1 + b1x2 + c1x
2
2 + d1x

3
2 (4.4)

y2 = S2(x2) = a2 + b2x2 + c2x
2
2 + d2x

3
2 (4.5)

y3 = S2(x3) = a2 + b2x3 + c2x
2
3 + d2x

3
3. (4.6)
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Note that there are eight unknowns (a1, b1, c1, d1, a2, b2, c2, d2) and only four
equations. In order to determine the constants, we need the same number of
equations as unknowns, so we need four more equations.

Since smoothness of the spline system is also required, adjacent first deriva-
tives must match at each interior data point (in our case when x = x2). We
thus require

S′1(x2) = S′2(x2)

b1 + 2c1x2 + 3d1x
2
2 = b2 + 2c2x2 + 3d2x

2
2. (4.7)

We can also require that adjacent second derivatives match at each interior
data point:

S′′1 (x2) = S′′2 (x2)

2c1 + 6d1x2 = 2c2 + 6d2x2. (4.8)

We still need two additional independent equations. While conditions on
the derivatives at interior data points have been applied, nothing has been
said about the derivative at the exterior endpoints (x1 and x3 in our case).

If there were more points to be joined, we’d use information on the other
splines to construct further equations for x1 and x3. However, in this case,
these are our endpoints, so we need to decide what to do about nailing them
down.

A condition we’ll impose, called a natural spline, is to require that there be
no change in the first derivative at the exterior endpoints1. Mathematically,
since the first derivative is constant, the second derivative must then be zero
(because the derivative of any constant is zero). Applying this condition at x1

and x3 yields

S′′1 (x1) = 2c1 + 6d1x1 = 0 (4.9)

S′′2 (x3) = 2c2 + 6d2x3 = 0. (4.10)

We now have eight equations (4.3)–(4.10) and eight unknowns, so this
system is solvable.

4.3.1 An example

Let’s construct the natural cubic spline model using the data from Table 4.1.
The procedure readily extends to problems with more data points. (Though
fortunately we can let the computer do the work for us in such cases.)

Requiring the spline segment S1(x) to pass through the two endpoints
(1, 5) and (2, 8) of its interval requires that S1(1) = 5 and S1(2) = 8. Applying
(4.3) and (4.4), we have

1 Other conditions could be imposed here, if we had more information about the
values of the first derivatives at the exterior endpoints, for example. This sort of
cubic spline is called a clamped spline.
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a1 + 1b1 + 12c1 + 13d1 = 5

a1 + 2b1 + 22c1 + 23d1 = 8.

Similarly, S2(x) must pass through the endpoints of the second interval so
that S2(2) = 8 and S2(3) = 25. Applying (4.5) and (4.6), we have

a2 + 2b2 + 22c2 + 23d2 = 8

a2 + 3b2 + 32c2 + 33d2 = 25.

Next, the first derivatives of S1(x) and S2(x) are forced to match at the
interior data point x2 = 2, ie S′1(2) = S′2(2). Applying (4.7), we have

b1 + 2c1(2) + 3d1(2)2 = b2 + 2c2(2) + 3d2(2)2.

Forcing the second derivatives of S1(x) and S2(x) to match at x2 = 2 requires
S′′1 (2) = S′′2 (2). Applying (4.8), we have

2c1 + 6d1(2) = 2c2 + 6d2(2).

Finally, a natural spline is built by requiring that the second derivatives at
the two endpoints be zero; i.e., S′′1 (1) = S′′2 (3) = 0. Applying (4.9) and (4.10),
we have

2c1 + 6d1(1) = 0

2c2 + 6d2(3) = 0.

Thus the procedure has yielded a linear algebraic system of eight equations
in eight unknowns that can be solved uniquely. We could do it by hand, with
a (fair) bit of linear algebra or we could ask Matlab to do it for us. If we
summarize the equations in the form

a1 + b1 + c1 + d1 = 5

a1 + 2b1 + 4c1 + 8d1 = 8

a2 + 2b2 + 4c2 + 8d2 = 8

a2 + 3b2 + 9c2 + 27d2 = 25

b1 + 4c1 + 12d1 − b2 − 4c2 − 12d2 = 0

2c1 + 12d1 − 2c2 − 12d2 = 0

2c1 + 6d1 = 0

2c2 + 18d2 = 0,

then what we really have is the matrix system
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1 1 1 1 0 0 0 0
1 2 4 8 0 0 0 0
0 0 0 0 1 2 4 8
0 0 0 0 1 3 9 27
0 1 4 12 0 −1 −4 −12
0 0 2 12 0 0 −2 −12
0 0 2 6 0 0 0 0
0 0 0 0 0 0 2 18







a1

b1
c1
d1

a2

b2
c2
d2




=




5
8
8
25
0
0
0
0




.

We can calculate the solution in Matlab using the following code.

A=[1 1 1 1 0 0 0 0;

1 2 4 8 0 0 0 0;

0 0 0 0 1 2 4 8;

0 0 0 0 1 3 9 27;

0 1 4 12 0 -1 -4 -12;

0 0 2 12 0 0 -2 -12;

0 0 2 6 0 0 0 0;

0 0 0 0 0 0 2 18];

b=[5;8;8;25;0;0;0;0];

c=A^(-1)*b

The results are summarized in Table 4.3 and illustrated in Figure 4.3.

Interval Spline model

1 ≤ x ≤ 2 S1(x) = 2 + 10x− 10.5x2 + 3.5x3

2 < x ≤ 3 S2(x) = 58 − 74x+ 31.5x2 − 3.5x3

Table 4.3. A natural cubic spline model.

Let’s illustrate the use of the model by again predicting y(1.67) and
y(2.33):

S1(1.67) = 2 + 10(1.67)− 10.5(1.67)2 + 3.5(1.67)3

≈ 5.72

S2(2.33) = 58− 74(2.33) + 31.5(2.33)2 − 3.5(2.33)3

≈ 12.32.

Compare these values with the values predicted by the linear spline. In which
prediction values do you have the most confidence?
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Fig. 4.3. The natural cubic spline model is a smooth curve that is easily integrated
and differentiated.

4.3.2 Generalising

The construction of cubic splines for more data points proceeds in the same
manner. That is, each spline is forced to pass through the endpoints of the
interval over which it is defined, the first and second derivatives of adjacent
splines are forced to match at the interior data points, and the natural (or
possibly clamped) condition is applied at the two exterior data points.

Of course, for computational reasons, it would be necessary to implement
the procedure on a computer. The procedure described here does not give rise
to a computationally or numerically efficient computer algorithm. Matlab has
a built-in spline interpolant, as we saw in the lab. So fitting a cubic spline
to data is actually easy in Matlab if we use the “Tools → Basic Fitting”
command once we’ve plotted our data. Hopefully, this section facilitates your
understanding of the basic concepts underlying cubic spline interpolation,
which is important to understand when using the computer tools.

4.4 Lab work

4.4.1 Exercises

1. Consider the data set

x 0 5 10
y 1 2 7



42 4 Splines

a) Plot the data in Matlab using plot(x,y,'o').

b) Calculate the linear spline coefficients for these data. (Don’t you just
wish Matlab had a linear spline tool?)

c) Plot the linear spline on the same graph.

d) On a separate figure, plot the data using plot(x,y).

e) What’s going on here?

f) Now fit a cubic spline to the data. In which spline do you have more
faith?

2. Consider the data set

x 7 55 401 2985
y 1.3 2 2.7 4

How can we determine the curve of best fit for these data?

a) Plot the data as circles.

b) Apply a line of best fit to the data and calculate the regressional
coefficient r. (You can get Matlab to do this for you using corrcoef,
or you can enter the data on a calculator.) Does this seem like a good
fit?

c) Plot your line of best fit on the same graph as the data. How good is
the fit now?

d) Now add an extra point (22026,5.3). How does this change your line
of best fit?

e) Make an appropriate transformation in order to fit curves of the form
y = C lnx and y = xa. Plot the lines of best fit along with the
transformed data.

f) Find the best C and the best a in each transformation (using all five
points).

g) Calculate r in each case. Is there a clear “winner”?

h) Plot each curve against the original data. Is there a clear winner now?

i) Now fit a cubic spline to the original four data points and also the
revised five data points (on separate graphs). How do they compare?
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5

Simple epidemic models

This chapter deals with the basics of constructing a model. We construct
Ordinary Differential Equation (ODE) models for classic disease models and
show how to alter these models to include other factors, such as vaccination.
We also demonstrate how the “diagram” of the model is often as useful as the
equations and how to get from one to the other.

By the end of this chapter, you should understand how to “read” a model,
how to draw the diagram of a model and how the ODEs and the diagram are
related.

5.1 SIS epidemic

If your town is suffering an epidemic, the chance of your catching the disease is
proportional to the probability that you will meet a carrier of the disease. That
is, the probability of catching the disease is proportional to the probability
that you will be in a given place at a given time multiplied by the probability
that a carrier will also be in that given place at a given time. If we represent
the probability of an encounter simply by the sheer number of susceptible
individuals (S) times the number of infected individuals (I), then we can
represent this mathematically as

dS

dt
∝ −SI (5.1)

dI

dt
∝ SI, (5.2)

where I increases due to the encounters (more people get sick) and S decreases
by the same amount (the susceptible people have now become infected).

Of course, these aren’t really probabilities; for one thing, they’re always
larger than 1. But we can scale them out by replacing the proportionality
with a constant multiple. That is, we replace the “∝” with an “= β”, where



46 5 Simple epidemic models

β is some parameter that reflects how easy the disease is to transmit and
the average person’s ability to resist the disease. Each equation must use the
same β, since βSI represents the same increase in infected people as the loss
of susceptible people.

What’s fundamentally happening here? Answer: people start off suscepti-
ble and then they leave the susceptible class and move into the infected class.
We might represent this visually by Figure 5.1.

S I
!

Fig. 5.1. An SI model.

This is known as an SI model, partly because it only has Susceptible and
Infected classes but also because individuals move from S to I, and that’s it.
The corresponding equations are

dS

dt
= −βSI

dI

dt
= βSI.

We have thus constructed a system of Ordinary Differential Equations (ODEs)
to represent the overall system. Although we adapted these equations from
equations (5.1)–(5.2), can you see how we might get these equations from
Figure 5.1?

Of course, there’s no birth or death rates, no recovery etc. Eventually,
everyone gets infected, and that’s the end of the story. In a moment, we’ll add
in other variations and conditions (such as death or vaccination), but for now
at least try to make sure you can see how the diagram and the equations are
linked.

One thing to note is that there’s no infection if either S = 0 or I = 0 (or
both, of course). That is, if there’s no one infected, then no one can do any
infecting, so there won’t be any transmission of the disease. Likewise, if there
are no susceptibles, then there’s no one to get infected, so no transmission
occurs here either. Another thing to note is that this isn’t the only possible
formulation of the infection term, although it is the simplest; we’ll deal with
others in Chapter 12.

This kind of transmission is called mass-action transmission. It assumes
that populations are well-mixed: that is, every infected individual had an
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equally likely chance of contacting every susceptible individual. So we are ig-
noring spatial heterogeneity in the population. Such an assumption is probably
never true in reality, but it’s more true in some circumstances than others.
An airborne disease like influenza is well-approximated by mass-action trans-
mission, so long as the population isn’t too large. Conversely, an STD like
HIV isn’t suited to this kind of assumption at all (unless you’re at an orgy,
I suppose), so we’d have to think more carefully about how to deal with this
kind of transmission.

ODEs generally deal with compartments, with some kind of flow into the
compartment and some kind of flow out (e.g., lakes joined by rivers). These
compartments need not be physical entities. We generally keep track of cer-
tain objects, keeping track of how much is going in and how much is going
out. ODEs represent the way in which things change. We can model multiple
compartments quite easily as a chain of compartments (e.g., towns joined by
freeways) whose outflow is the inflow of another compartment.

The next epidemic we’ll examine is the SIS epidemic, which stands for
Susceptible → Infected → Susceptible. These epidemics represent diseases
such as the common cold, which generally cause a person to be sick for a time
and then recover but without immunity to the disease. Graphically, this can
be represented in Figure 5.2.

S I

a

b

Fig. 5.2. An SIS model.

Here a is the parameter associated with catching the disease, and b is the
parameter associated with recovery from the disease. Recovery is something
that occurs naturally without the need for an “encounter” of some kind (i.e.,
you don’t need to meet someone well to get better), so the number of indi-
viduals recovering is simply proportional to the number of sick individuals;
hence b represents the average fraction of individuals that are able to recover
at a given time. Our system of ODEs follows quite nicely from Figure 5.2:

dS

dt
= bI − aSI (5.3)

dI

dt
= aSI − bI. (5.4)
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Can you see what’s happening, from these equations? Individuals move
into the Susceptible compartment only when they recover (bI) and move out
when they become infected (−aSI). Individuals move into the Infected com-
partment when they become infected (aSI) and move out when they recover
(−bI).

Let N = S + I be the total population. Note that if we add the equations
together, then dS

dt + dI
dt = dN

dt = 0. Thus, the total population is constant
(since the derivative of a constant is zero).

To analyse these equations, we have two options. We can attempt to solve
them directly and find the time series: the time-course of the disease, where
the time variable is explicit. Or we can make time an implicit variable and
discuss solutions in state space consisting of only S and I. We’ll look at both
methods in the following sections.

5.1.1 Solving directly

Our first instinct is to solve the differential equations. We’ll try that, but it
turns out that our first instinct might be misleading. Most differential equa-
tions can’t be solved explicitly (only numerically). Even for those that can be,
it requires a lot of work for a payoff that might not be as useful as you think.

System (5.3)–(5.4) is solved in Appendix A. As with all the appendices,
follow along if you can, but don’t sweat the details if you can’t. We can find
the entire solution, which is

S(t) = N − (aN − b)I0e(aN−b)t

(aN − b) + aI0[e(aN−b)t − 1]

I(t) =
(aN − b)I0e(aN−b)t

(aN − b) + aI0[e(aN−b)t − 1]
.

Bear in mind that we’re explicitly noting that S and I depend on time... but
of course they do, since they had derivatives in (5.3)–(5.4). Otherwise the
derivative would automatically be zero. This is how you can tell the difference
between variables and parameters: variables are in the left-hand side of the
differential equations and are things that will always vary; we’re not solving
them for a single number but rather for a function. Conversely, parameters
(like a, b, N and I0) are numbers that we happen not to know.

Hooray! We have a solution! It was a lot of work, but we have one. So now
what? Problem solved and we can go home?

Well... maybe. Sure, we have a solution, but we still need to interpret it.
And, let’s be honest, this probably isn’t the most grabholdable thing you’ve
ever seen. It’s possible to see from these equations what’s happening... but
it isn’t exactly easy. And remember, we got lucky this time around; most
differential equations aren’t so easy.

What’s really happening here is that we weren’t asking the right question.
We were asking “What’s the solution to the differential equations?” but what
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we really should have been asking was “What’s going on?” or “What happens
in the long run?” Mathematics is good for answering very specific questions,
but it’s important not to lose sight of the big picture.

We’ll get to these questions in the next subsection, but for now we could
plot the solutions numerically. Except... why did we need to solve the equations
analytically if we could just solve them numerically? (Answer: we didn’t.)

There is one thing to notice from the solutions, however. If you look at the
exponentials that appear in every term, they look like e(aN−b)t. There will be
very different outcomes if aN − b < 0 versus aN − b > 0. In the former case,
the exponentials will go to zero; in the latter, they’ll blow up. It turns out
that either option is okay, but it’s important to know which one we’re dealing
with. So we need to i) notice this in the first place and ii) deal with two cases.

What if aN − b = 0? In theory, no problem: the exponentials will be
constants, and we have the solution. However, in practice, this is a knife-edge
case. Tiny fluctuations in a, N and b could tip the balance one way or the
other, making the results unpredictable. So we’re actually not that interested
in these kinds of knife-edge cases. These sorts of issues are going to pop up in
all kinds of iterations throughout this book.

The solutions are plotted in Figure 5.3. In both graphs, N = 1, I0 = 0.25
and a = 0.6. In the left-hand graph, b = 0.05; in the right-hand graph, b = 0.7.
(In reality, you probably wouldn’t start with a quarter of the population
infected, but we’ve chosen this to clearly illustrate what happens in the second
case.)

Thus we see that sometimes the infected individuals die out and everyone
becomes susceptible again (the right-hand graph). In this case, there’s no epi-
demic, and the disease disappears on its own. However, at other times, the
population reaches an equilbrium (steady state) in both infected and suscep-
tible individuals (the left-hand graph). In this case, the disease has taken hold
within the population and has become endemic.

This is pretty crucial. For one set of parameters, we don’t have to worry
about this disease; even with a million people infected, it’ll die out in time.
For the other, we really care. Even a few infected individuals could lead to a
pandemic. The big question is: how do we know when such a split occurs?

The time series is great, if we can do it, because it gives us the complete
solution, at every point in time. So if we want to know what happens at the
beginning, middle or end of an epidemic, we simply have to pick a time we’re
interested in and plug it in to the equations. But most of the time we’re not
interested in the beginning or middle of an epidemic, just the end. And usually
that means: will the disease die out on its own, or will it become endemic?

Deriving these equations was pretty hard, even for such a simple model.
So maybe we’ve done more work than we needed, if we only want to know
what happens eventually. And, in general, we can’t solve an arbitrary system
of ODEs. So we need another option.
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Fig. 5.3. The time series of the infection with N = 1 and a = 0.6. Left: b = 0.05.
Right: b = 0.7.

5.1.2 Phase portraits

Instead of doing all that math every time, we can take another, less ana-
lytical, approach to find information about our SIS system. Phase portraits
involve only the spatial variables, making time an implicit part of the solution.
This gives us less overall information, but still tells us what happens at the
beginning and end of an epidemic.

Since N = S + I, it follows that I = −S +N , which, when graphed in the
S-I plane, is a straight line. See Figure 5.4. We have thus parameterised our
equations so they are independent of time. The population must travel along
the line — although, since we eliminated time, we have no idea how it does
so.

Next, we look for equilibrium values. Equilibrium values of ODEs occur
when there is no change in the system; thus, when the derivatives are zero;
i.e., dS

dt = 0 and dI
dt = 0. Hence, we set equations (5.3)–(5.4) to zero:

(b− aS)I = 0 (5.5)

(aS − b)I = 0. (5.6)

Since (5.5) and (5.6) are identical equations (one is the negative of the other),
they’ll hold when either i) S = b

a and I = N − b
a (since S + I = N); or ii)

I = 0 and S = N (since S + I = N).
For simplicity, let’s call b

a “p”. Our equilibrium points are thus



5.1 SIS epidemic 51

Susceptibles

In
fe

ct
ed

s

N

N

The line I = − S + N

Fig. 5.4. The linear relationship between S and I.

(S̄, Ī) = (p,N − p)
or (S̄, Ī) = (N, 0) .

In terms of realistic solutions, the equilibrium (N, 0) will always exist, but
the equilibrium (p,N − p) only exists when p < N (if p > N , then the “sec-
ond” equilibrium would have S > N , so this equilibrium it isn’t biologically
realistic). We thus have two cases:

• Case I: p < N .
• Case II: p > N

In Case I, there will be two equilibrium points, whereas in Case II there will
only be one equilibrium in the positive plane (which is all we’re interested in).
See Figure 5.5. Such a time-independent diagram is known as a phase portrait.
(Don’t forget that p = b

a .)
These two cases correspond exactly to the time series from Figure 5.3. In

the case p < N (which was when b = 0.1 in Figure 5.3), there’s an interior
equilibrium, with both susceptibles and infecteds. In the case p > N (which
was when b = 0.7 in Figure 5.3), there’s only one equilibrium, which is when
the infection has died out and only susceptibles remain.

Our major question now is “are these equilibrium points stable?” (You may
be able to guess the answer from the time series!) We can rewrite equations
(5.3)–(5.4) as

dS

dt
= a

(
b

a
− S

)
I

= a(p− S)I
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and

dI

dt
= a

(
S − b

a

)
I

= a(S − p)I.

If S < p, then clearly dS
dt > 0 and dI

dt < 0 (since p − S > 0). Conversely, if

S > p, then dS
dt < 0 and dI

dt > 0 (since p− S < 0).
Thus, in Case I, for the portion of the line to the left of the equilibrium

(p,N − p), S is increasing and I is decreasing. Trajectories must therefore be
moving down the line. For the portion of the line to the right of the equilibrium
(p,N − p), S is decreasing and I is increasing. Trajectories must therefore
be moving up the line. It follows that the equilibrium (p,N − p) is stable
(since trajectories approach it) while the equilibrium (N, 0) is unstable (since
trajectories move away from it).

For Case II, since S < p, along the line S is increasing and I is decreasing.
Thus the equilibrium (0, N) is stable. For an unstable equilibrium, any slight
change will drive the dynamics away from this point and towards the stable
point. (Note that, in Figure 5.3, we “see” the stable equilibrium, but of course
we can’t “see” an unstable one.)
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We can thus redraw the phase portraits with arrows indicating the direc-
tion along the line the population travels in Figure 5.6.
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Fig. 5.6. The stability of the equilibrium points.

Thus, when p > N , the number of infected people will decrease, approach-
ing zero. When p < N , there is a stable equilibrium where there are p sus-
ceptible and N − p infected people. There is also an unstable equilibrium at
(N, 0), where even one infected person leads to an increase in the number of
infected people until the stable equilibrium (p,N − p) is reached.

The take-home message of all this is that the stability depends on p = b
a .

So if the recovery rate b is very high compared to the infection rate a, then
the infecteds recover quickly and the population moves to a population of
susceptibles. If the infection rate a is very high compared to the recovery
rate, then the infection stabilises at an endemic equilibrium.

Phase portraits are the way stability is usually determined, since the analy-
sis is a lot easier and we only need to determine the direction of the arrows, not
the entire solution. You might be familiar with the Lotka–Volterra predator–
prey systems, which involve annual cycling of solutions. Our example here is
analogous, except that we have used very basic assumptions (e.g., no birth or
death rates).
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5.2 SIR epidemics

SIR stands for Susceptible → Infected → Removed. The term “removed” is a
general term that allows for infected individuals to be no longer infected yet
not susceptible either. Practically, this could mean that the person gets better
(either through treatment or natural immunity) or that the person dies (the
ultimate removal). See Figure 5.7.

S I
a b

R

Fig. 5.7. An SIR model.

The equations are

dS

dt
= −aSI

dI

dt
= aSI − bI

dR

dt
= bI,

with N = S + I + R (constant). We assume that the rate of recovery/death
is proportional to the number of sick people.

One modification we might make could be the administration of a vaccine.
Susceptible individuals who are vaccinated would then go directly to the ‘Im-
mune’ category (we can think of “recovered” people as immune). The number
of vaccinations given to people would likely be a certain number of shots per
day or time period. Thus, this term in the differential equations will not in-
volve any of the S, I or R variables; rather, it will just be some parameter c
that represents the number of vaccinations given per time period. See Figure
5.8.

The differential equations are

dS

dt
= −aSI − c

dI

dt
= aSI − bI

dR

dt
= bI + c,

with N = S+I+R as before (the total number of individuals hasn’t changed).
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Fig. 5.8. An SIR model with vaccination.

In this case, many of the susceptibles become immune before they en-
counter the disease, so spatial considerations will come into place as the num-
ber of available susceptibles shrink. It’s a complex relationship, because not
everyone rushes out to get the vaccine. Some people will rely on “herd immu-
nity” to protect them (the fact that if most people around you are vaccinated,
then you’re unlikely to catch the disease). Remember that we assumed our
populations were well-mixed, but this mixing may not be appropriate. If so,
the ODE model wouldn’t apply any more and we’d need to use partial differ-
ential equations (PDEs) to deal with the spatial component. See Chapters 8
and 9 for more on this.

Another modification to the SIR model is to include a mutation. Some
viruses can mutate over a given time T then come back with a vengeance.
This time factor can be built in to allow recovered people a “grace period”
before the disease mutates and they are once again susceptible. See Figure
5.9.
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Fig. 5.9. An SIR model with mutation.

The differential equations are



56 5 Simple epidemic models

dS(t)

dt
= −aS(t)I(t) + eR(t− T )

dI(t)

dt
= aS(t)I(t)− bI(t)

dR(t)

dt
= bI(t)− eR(t− T ),

with N = S + I +R, as before. In this case there is a delay of time T , so we
need to explicitly include time t, unlike the previous two models. Events at
time t depend on what happened at an earlier time t− T . Such equations are
called delay differential equations. See Chapter 17 for a detailed application
of this.

5.3 Lab work

Not every person can fit in one of three convenient categories. Here we explore
an epidemic-type problem that requires more than three compartments.

The problem

Suppose I0 people in a population of N people have been infected with
a lethal disease. Assume also that the death rate of the infected population
I(t) is proportional to its population. A large shipment of medicine will take
9 days to get there. In the meantime, you can only treat 10 people per day
for a total of 9 days. People who receive treatment can no longer be infected
and are not contagious. The rate at which the disease spreads, k, is equal to
6.90675 × 10−5 people−1·day−1 (the units must match the units on the left-
hand side of the differential equation), the death rate of infected individuals
is 0.1 per day and N = 10000 people. At t = 0, I0 = 20. We’ll work through
this in detail, but see if you can guess or approximate the answers to the first
three questions before reading the solution:

• Write down the system of ODEs that describe this system (without the
numbers).

• How many people will survive after 9 days?
• If there was no medicine, how many people would survive after 9 days?
• Obtain a phase portrait of S vs. I for 0 ≤ t ≤ 9, with the rate of treatment

b = 10 people/day.

The solution

We first create our epidemic diagram. Notice that while we still have our S
and I compartments, we no longer have only a third “removed” compartment;
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we have two others, which we will call M (treated people) and D (dead). We
have the “flow parameters” k for S → I, b for I →M and r for I → D.

To become infected requires interaction between S and I. Death is pro-
portional simply to the number of sick people I, and a constant number of
shots are being given, regardless of any other number (assuming I > 0, since
only sick people are treated). See if you can draw the diagram yourself. The
answer is in Figure 5.11 on Page 60, but try and work it out for yourself first.

From this we can read off our ODEs:

dS

dt
= −kSI

dI

dt
= kSI − rI − b

dM

dt
= b

dD

dt
= rI.

We must first define our ODE as a function M-File:

function pdot=epidemf(t,p)

%This is the ODE for the epidemic problem

k=6.90675e-5;

r=0.1;

b=10;

pdot(1,:)=-k.*p(1).*p(2);

pdot(2,:)=k.*p(1).*p(2)-r.*p(2)-b;

pdot(3,:)=b;

pdot(4,:)=r.*p(2);

This program must be saved as “epidemf.m”. You can’t run a function file
on its own; you can only call it within another program that you can actually
run. So we now need a program that makes use of this ODE.

%This is a program to use the epidemic ODE epidemf

clear all

t0=0;

tf=9;

p0=[9980,20,0,0];

tspan=[t0 tf];

[t,p]=ode23(@epidemf,tspan,p0);

plot(t,p)

Here “p0” contains the original number of S, I, M and D people, re-
spectively. After we run this program, we will have the information neces-
sary to determine how many people are still alive at t = 9: S(length(t)) +
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I(length(t)) + M(length(t)) or N − D(length(t)) (since D(length(t)) is the
number of dead people at the final time tf = t(length(t))). While we still
have b set to 10, we might as well plot the phase portrait of S vs. I. In our
program, this corresponds to p(:, 1) vs. p(:, 2), but don’t forget that we put
our horizontal component first within the plot command.

%This is a program to use the epidemic ODE epidemf

clear all

N=10000;

t0=0;

tf=9;

p0=[9980,20,0,0];

tspan=[t0 tf];

[t,p]=ode23(@epidemf,tspan,p0);

Total_still_alive=N-p(length(t),4)

pause

plot(p(:,2),p(:,1))

title('Phase Portrait - Susceptible vs. Infected for b=10')

xlabel('Infected Individuals')

ylabel('Susceptible Individuals')

The term p(:, 4) is our D column and p(length(t), 4) is the value of D at
t = tf . Running our program, we find that 9890.3 people will still be alive
and we get Figure 5.10.

0  100 200 300 400 500 600
9200 

9300 

9400 

9500 

9600 

9700 

9800 

9900 

10000
Phase Portrait − Susceptible vs. Infected for b=10

Infected Individuals

S
us

ce
pt

ib
le

 In
di

vi
du

al
s

Fig. 5.10. Phase portrait for b = 10.
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Setting b = 0 in our function M-File, we rerun the program and find that
9455.8 people will still be alive.

Analysis of the results

Of course, we can’t have 0.3 or 0.8 of a person. In a case like this it is best
to round down no matter what: the decimal place indicates that a person is in
the process of dying, so we might as well ignore them. It is interesting to note
that even though 10×9 = 90 shots were given, the difference in the remaining
population for b = 10 and b = 0 is 435 and not 90. The relationship between
b and the number of people living N −D(length(t)) is not linear.

5.3.1 Exercises

Let’s see what happens with this disease in the long run, with and without
treatment.

1. First, with b = 0, plot S, I, D vs. t over a long period, say t = 200. What
do you think of this disease now?

2. Now do the same with b = 10. Can you explain what goes wrong when
you do this?

3. Try putting in an if p(2)>0 ... else ... end statement and rerun-
ning (you should be able to figure out what goes in the “...”s for your-
self). Now how effective is the campaign to save everyone with treatment?
Can you describe what has happened?

4. Suppose we repeat the same plots with a less infectious disease, say with
k one half of what it was. How would you describe the progress of this
disease, with and without treatment? Is there something qualitatively dif-
ferent happening here?

5. Suppose you have a disease with a latent period of infection. When you’re
exposed to the disease you’re infected, but not infectious. You can be
treated when infectious and become susceptible again, or recover naturally
and have temporary immunity. Once your immunity wears off, you become
susceptible again. Draw an epidemic diagram of this disease and construct
a corresponding system of ODEs.
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6

Calculating R0

This chapter deals with the basic reproductive ratio, one of the fundamen-
tal concepts in mathematical biology. Originally developed for the study of
demographics, it was independently studied for vector-borne diseases such as
malaria and directly-transmitted human infections. It is now widely used in
the study of infectious disease, and more recently in models of in-host popu-
lation dynamics.

We also introduce the Jacobian matrix method, one of the most useful
things you can learn in disease modelling. We discuss how to derive the basic
reproductive ratio from the Jacobian, as well as a few other methods. This is
the most theoretical of all the chapters. Many of the ideas here will be used
again in subsequent chapters.

By the end of this chapter, you should be able to distinguish between
R0 and a threshold parameter, calculate the Jacobian matrix for a system
of ODEs, apply the next-generation matrix and derive a threshold from an
endemic equilibrium.

6.1 Threshold parameters

The basic reproductive ratio, R0, is defined as “the average number of sec-
ondary infections caused by a single infectious individual during their entire
infectious lifetime.” It’s a measure of how quickly a disease spreads in its ini-
tial phase and can predict whether a disease will become endemic or whether
it will die out. There is a threshold when R0 = 1 such that if R0 > 1, then, on
average, each individual is causing more than one infection, so we expect the
disease to take hold within a susceptible community. On the other hand, if
R0 < 1, then each infectious individual is leaving the infectious compartment
with fewer (on average) infections than when they entered.

One thing to notice immediately is that R0 is a parameter involving in-
dividuals, whereas SIS/SIR dynamics deal with compartments (populations).
There’s some complicated matching required here, because it’s not so trivial
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to match individual behaviour with compartments. Or rather, we can match
them, but it’s not a very neat matching, since a variety of different individual
dynamics can lead to the same population model.

When measuring data in the field, we may occasionally have the chance
to measure the average number of secondary infections caused by a single in-
dividual. If so, great. But it’s rare that we get to study a disease in its very
earliest stages of infection; many diseases are often not noticed until they’re
well underway. When this happens, we won’t be able to measure R0 precisely,
because spatial considerations get in the way. A single infectious individual
may be able to infect any susceptible individual, but multiple infectious indi-
viduals may “use up” their infectivity on those already infected. If 90% of a
village is infected, then a single infected individual may have a fairly remote
chance of infecting a susceptible individual, even if R0 > 1, because they may
never come into contact with them.

However, it’s also possible that we may not actually want the true value
of R0. Often what we’d really like to know are two things: 1) Will the disease
become endemic, or will it die out of its own accord? 2) If the disease is
endemic, will our control strategies be sufficient? Both of these questions are
really concerned with the threshold, not the true value of R0. Of course, we
know that R0 is a threshold, but it turns out that there are many surrogate
thresholds that are not R0.

These values will also have the property that if they are less than 1, then
the disease will die out, whereas if they are greater than 1, the disease will take
hold. What they can’t do is allow comparison of different diseases; if SARS has
a threshold value of 6 and HIV has a threshold value of 4, we can’t actually
conclude that SARS is a worse disease than HIV unless the same method was
used to calculate each. It turns out that almost everybody has been confused
about this over the years. If you’ve ever seen an R0 in the literature, take it
with a grain of salt. Unless you know the precise method used to calculate
it (especially if it was derived from a mathematical model), chances are it’s
probably wrong. It will tell you whether your disease is endemic or not, but
it may not be a true indicator of the average number of secondary infections
and it shouldn’t be used to compare different diseases.

6.2 The method of Anderson & May

The most well-known version of R0 comes from Anderson & May (1991), who
basically posit that

R0 = βcD,

where β is the transmissibility, c is the number of contacts andD is the average
time spent infectious (and if the rate of infection is b, then D = 1

b ). It turns
out that this is quite useful and applies quite widely, under a very important
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qualifier: namely, that there is no background death rate. It also applies only to
SIR models (so, for example, no latent period) and assumes homogeneity and
exponentially distributed times. Anderson & May included these assumptions
in their work, but, unfortunately, a lot of people have applied their results to
diseases where the background death rate is important.

For instance, HIV is a disease that eventually kills you if you’re infected
with it, but not for a long time, especially if you’re on antiretroviral drugs. So
if you’re infected with HIV, the chances that you’ll get killed in a car accident
rather than die from AIDS are non-negligible, because you have a small but
nonzero chance of getting killed in a car accident in the intervening ten (or
more) years. So the Anderson & May definition wouldn’t apply here.

A disease like Ebola, on the other hand, occurs on such a short timescale
that the background death rate is negligible. If your village is infected with
Ebola, the disease will rage through and quickly kill everyone it’s going to kill
in a matter of weeks. The chance of you dying from a car accident, influenza or
old age during this time is pretty small. So, in this case, it would be reasonable
to use the Anderson & May definition.

Unfortunately, most diseases operate on a fairly long timescale, so the
Anderson & May definition isn’t as useful as it might seem. However, it re-
inforces the importance of being careful about the assumptions under which
one can apply a particular theory, because there have been a lot of cases of
misapplication of this definition by biologists over the years.

6.3 The Jacobian

For simple two-dimensional systems, we can create a phase portrait, as we
did in Section 5.1.2. For higher dimensional systems, we can’t draw such a
portrait (or we could only draw two of the dimensions), so we need a more
general method. This method involves creating a matrix called the Jacobian
matrix. This is a matrix of partial derivatives, created by differentiating every
equation with respect to every variable. So if there are six equations and six
variables, you’ll get a 6× 6 matrix.

The method of determining stability of equilibrium points for ODEs is
pretty straightforward, in that the same method can be applied to most
systems, so long as there’s an actual equilibrium and the mathematics is
tractable. The steps are:

1. Calculate the equilibrium, usually the disease-free equilibrium (which is
often the easiest, fortunately).

2. Create the Jacobian matrix by differentiating every equation with respect
to every variable.

3. Evaluate this matrix at the equilibrium of interest. (Usually this simplifies
things significantly.)
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4. Find the eigenvalues. (Eigenvalues are numbers that “represent” a matrix;
if we have a matrix A and can find a number λ and a nonzero vector x
such than Ax = λx, then λ is an eigenvalue and x is an eigenvector. See
Appendix C.)

5. If all eigenvalues are negative, the equilibrium is stable. If even one eigen-
value is positive, the equilibrium is unstable. (If there’s a zero eigenvalue,
then we have no conclusion; we need to use higher-order techniques to
deal with this.)

6. If the eigenvalues are complex, then the previous condition applies only
to the real part of the eigenvalues. So if the real parts are all negative, the
equilibrium is stable; if any eigenvalue has positive real part, the equilib-
rium is unstable. (That is, we basically ignore the imaginary part alto-
gether. The contribution of the imaginary part is to induce oscillations.)

7. Use the largest eigenvalue to calculate an R0-like threshold parameter.

The Jacobian matrix is a very useful matrix for analysing stability. It’s a
square matrix, where the first column is the partial derivatives of every equa-
tion with respect the first variable, the second column is the partial derivatives
of every equation with respect to the second variable, and so on.

For example, you might be familiar with the Leslie matrix. The Leslie
model is a discrete-time model of an age-structured population which describes
development, mortality and reproduction of organisms. This model is mostly
used to answer the following two questions: What is the rate of exponential
growth (intrinsic rate of increase)? What is the proportion of each age class
in the stable age distribution?

The three dimensional Leslie model is

x
(k)
1 = F1x

(k−1)
1 + F2x

(k−1)
2 + F3x

(k−1)
3

x
(k)
2 = P1x

(k−1)
1

x
(k)
3 = P2x

(k−1)
2 ,

which can be rewritten as


x

(k)
1

x
(k)
2

x
(k)
3


 =



F1 F2 F3

P1 0 0
0 P2 0






x

(k−1)
1

x
(k−1)
2

x
(k−1)
3


 .

(It can only be done like this because it’s a linear system.) The Leslie matrix
is 


F1 F2 F3

P1 0 0
0 P2 0


 ,

but this would also be the Jacobian matrix for this model, if you took the par-
tial derivatives (ignoring the fact that the Leslie model is a model of difference
equations, while we are dealing with differential equations). The dominant
eigenvalue of the Leslie matrix is the growth rate.
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6.3.1 The SIS model threshold

For the SIS model, we have two equations,

S′ = bI − aSI
I ′ = aSI − bI,

and two variables (S and I). The Jacobian matrix will be

J =



∂S′

∂S

∂S′

∂I
∂I ′

∂S

∂I ′

∂I




=

[
−aI b− aS
aI aS − b

]
.

We’ve already calculated the equilibrium values in the previous chapter. The
disease-free equilibrium is clearly (N, 0). This is because everyone is suscepti-
ble and no one is infected; thus, disease-free.

Evaluating the Jacobian matrix at this equilibrium, we have

J
∣∣
(N,0)

=

[
0 b− aN
0 aN − b

]
.

The eigenvalues for this matrix are

λ = 0, aN − b

(see Appendix C). One of these eigenvalues (λ = 0) is unchanged no matter
what, so the stability will be determined by the sign of the other eigenvalue
(λ = aN − b). Specifically, if aN − b > 0 then there’s a positive eigenvalue,
so the disease-free equilibrium will be unstable. What if aN − b < 0? In this
case, we don’t know the stability of the disease-free equilibrium since one
of the eigenvalues is zero. (The reason for the zero eigenvalue in this simple
example is because the system is overdetermined; it’s really one equation, not
two, but we’ve kept it simple here for illustrative purposes.) However, in this
case, it actually is stable if aN − b < 0, so let’s ignore the zero eigenvalue and
use the nontrivial eigenvalue as our threshold.

Everything is well and good to this point. The next step is the dodgy one.
See if you can spot the flaw. We have stability if

aN − b < 0. (6.1)

Moving the negative to the other side, we’ll have stability if

aN < b.

Dividing both sides by b, we’ll have stability if
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aN

b
< 1.

Thus we could define RSIS
0 to be the threshold

RSIS
0 =

aN

b
,

since if RSIS
0 < 1, then we’ll have stability, whereas if RSIS

0 > 1, then we’ll
have instability. Hence, the disease will die out if RSIS

0 < 1 and will become
endemic if RSIS

0 > 1.
Did you spot the mathematical sleight of hand there? (There are actually

two!) The answer’s in the Appendix D, but try and figure it out for yourself
if you can. (Don’t be discouraged if you can’t; brilliant mathematicians have
been missing this for over a century.)

The numerator is the rate of infection, made up of the per-capita trans-
missibility (a) multiplied by the number of susceptibles (N), while the de-
nominator is the rate of recovery (b). Essentially RSIS

0 will be greater than
one if the rate of infection exceeds the rate of recovery and less than one if
the reverse is true. So this threshold makes some intuitive sense.

More generally though, 1
b is actually the average length of time an indi-

vidual spends infectious, so RSIS
0 is the product of the number of interactions

(N), the transmissibility (a) and the duration of the infectious period 1
b . This

matches the Anderson & May definition, as we have no background death rate
in the SIS model.

6.3.2 The endemic equilibrium for the SIS model

There’s another way to do this, however. (In fact there are many, as we’ll see
shortly.) The other equilibrium is ( ba , N− b

a ). This is the endemic equilibrium,
and, from equation (6.1), we see that the disease-free equilibrium is unstable
whenever the endemic equilibrium exists. So, although we haven’t proven it,
we have good reason to suspect that whenever the endemic equilibrium exists,
it’s probably stable.

Thus we could use the existence of the endemic equilibrium to predict the
long-term outcome of the disease. If the endemic equilibrium doesn’t exist,
then the disease-free equilibrium will be stable, and hence, in the long run,
we won’t have any infection. On the other hand, if the endemic equilibrium
exists, then the disease will persist (in fact, in the long run, it will persist
around this equilibrium).

It follows that the existence of the endemic equilibrium is just as good a
method as the Jacobian method for defining an R0. Since the condition for
the existence of the endemic equilibrium is precisely equation (6.1), we’ll thus
derive exactly the same RSIS

0 as before.
A word of caution, however: for more complicated models, these two meth-

ods might derive different R0 values. Both will work as thresholds, but it’s
not clear which, if either, is necessarily the “true” R0.
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6.3.3 The SIR model threshold

For this last example, we’ll adjust the SIR model slightly to include a constant
birth rate π and a background death rate µ, proportional in each class to the
number of people in that class. In this case, the removed class are the immune,
not the dead (they can’t die twice). The model now becomes

dS

dt
= π − aSI − µS

dI

dt
= aSI − bI − µI

dR

dt
= bI − µR.

The disease-free equilibrium is easily calculated by setting I = 0. It follows
immediately that R = 0 and S = π

µ (why?). The Jacobian matrix is

J =




∂S′

∂S

∂S′

∂I

∂S′

∂R
∂I ′

∂S

∂I ′

∂I

∂I ′

∂R
∂R′

∂S

∂R′

∂I

∂R′

∂R




=



−aI − µ −aS 0
aI aS − b− µ 0
0 b −µ


 .

At the disease-free equilibrium, we have

J

∣∣∣∣
(πµ ,0,0)

=



−µ −aπµ 0

0 aπ
µ − b− µ 0

0 b −µ


 .

To calculate the determinant of a 3× 3 matrix, we apply the formula

det



a b c
d e f
g h j


 = aej + bfg + cdh− ceg − afh− bdj.

(See Appendix C.) Fortunately, all but one of these products will be zero in
our case. To calculate the eigenvalues we thus have



70 6 Calculating R0

det(J − λI) = det





−µ −aπµ 0

0 aπ
µ − b− µ 0

0 b −µ


− λ




1 0 0
0 1 0
0 0 1






= det



−µ− λ −aπµ 0

0 aπ
µ − b− µ− λ 0

0 b −µ− λ




= (µ+ λ)2

(
aπ

µ
− b− µ− λ

)
.

The eigenvalues are thus

λ = −µ,−µ, aπ
µ
− b− µ.

The first two eigenvalues are constants and always negative (for a positive
death rate µ), so they won’t determine our stability. The stability is thus
determined by the third eigenvalue. Moving the negatives to the other side
and dividing, as before, we thus derive our threshold parameter

RSIR
0 =

aπ

µ(b+ µ)
.

The total time spent infectious is now 1
b+µ , since patients will stop be-

ing infectious if they either recover (b) or die (µ). Thus RSIR
0 is once again a

product of the total number of interactions (N = π/µ in this case), the trans-

missibility (a) and the time spent infectious
(

1
b+µ

)
. Although this matches

the Anderson & May definition, this is just coincidence, since we now include
the background death rate.

6.3.4 The endemic equilibrium for the SIR model

After a bit of algebra (try for yourself), we can find the endemic equilibrium:

(S̄, Ī, R̄) =

(
b+ µ

a
,

π

b+ µ
− µ

a
,

bπ

µ(b+ µ)
− b

a

)
.

So, once again, the existence of the endemic equilibrium could also be used
to determine the threshold parameter, since

π

b+ µ
− µ

a
> 0

π

b+ µ
>
µ

a
aπ

µ(b+ µ)
> 1,

which means we would define the same RSIR
0 as before. Note that this won’t

be true in general, as models get more complicated.
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6.4 Other methods for calculating R0

For completeness, other methods for calculating R0 are listed here, along
with an example of their uses in policy. However, if you’re not interested in
the wildly diverse methods for calculating thresholds that appear to be the
basic reproductive ratio (but often aren’t), feel free to skip ahead to Section
6.5 on page 77, except for the next-generation method (which you’ll need for
the exercises). We’ll be encountering one more method for calculating R0 in
the next chapter anyway.

6.4.1 Survival function

The method is, in essence, a first principles definition of R0. It always gives
the correct R0 but can be difficult to apply in practice.

Consider a large population, and let F (a) be the probability that a newly
infected individual remains infectious for at least time a. This is called the
survival probability. Let b(a) denote the average number of newly infected
individuals that an infectious individual will produce per unit time when
infected for total time a. Then R0 is given by:

R0 =

∫ ∞

0

b(a)F (a)da. (6.2)

As this expression yields R0 by definition, this approach will be appropriate
for any model in which closed-form expressions can be given for the underly-
ing survival probability F (a) and the infectivity as a function of time, b(a).
In particular, it is straightforward to handle situations in which infectivity
depends on time since infection or other transmissibilities between states vary
with time. This derivation of R0 is not restricted to systems described by
ODEs.

This method can also be naturally extended to describe models in which a
series of states are involved in the “reproduction” of an infected individual. As
an example of the latter technique, consider epidemic modelling of malaria.
An infected human may pass the infection to a mosquito, which may in turn
infect more humans. This complete cycle must be taken into account in our
derivation of R0, which we might expect to yield the total number of infected
humans produced by one infected human. In general, if only two distinct
infectious states are involved in such an infection cycle, F (a) can be defined
as the probability that an individual in state 1 at time zero produces an
individual who is in state 2 until at least time a. Similarly, b(a) is the average
number of new individuals in state 1 produced by an individual who has been
in state 2 for time a. In modelling malaria, F (a) could be the probability that
a human infected at time zero produces an infected mosquito who remains
alive until at least time a. In more concrete terms, F (a) would be
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F (a) =

∫ a

0

probability(human infected at time 0 exists at time t)

× probability(human infected for total time t infects mosquito)

× probability(infected mosquito lives to be age a− t)dt,

while b(a) would simply be the average number of humans newly infected
by a mosquito which has been infected for time a. (Note that we could also
take the infected mosquito as state 1, deriving an analogous expression which
would yield the same value of R0.)

Uses in Policy: Luz et al. (2003) used R0 to evaluate the risk of dengue
fever outbreaks in Rio de Janeiro, and to assess possible control measures. R0

was calculated from the survival function, assuming two spatial compartments
with high and low vector density, respectively. The goal of this paper was to
assess which of the many unknown parameter values are most important to
the model. Luz et al. concluded that field estimates of mosquito mortality and
the incubation period of dengue in mosquitos are of critical importance.

6.4.2 Next-generation method

The next-generation method (see Diekmann et al. (1990), Diekmann &
Heesterbeek (2000), and van den Driessche & Watmough (2002)) is a general
method of deriving R0 in situations in which the population is divided into dis-
crete, disjoint classes. The next-generation matrix can thus be used for models
with underlying age structure or spatial structure, among other possibilities.
For typical implementations, continuous variables within the population are
approximated by a number of discrete classes. This approximation assumes
that transmissibilities between states are constant.

In the next-generation method, R0 is defined as the largest eigenvalue of
the next-generation matrix. The formation of this matrix involves determining
two compartments, infected and non-infected, from the model.

Let us assume that there are n compartments of which m are infected.
We define the vector x̄ = xi, i = 1, . . . ,m, where xi denotes the number
or proportion of individuals in the ith compartment. Let Fi(x̄) be the rate
of appearance of new infections in compartment i and let Vi(x̄) = V −i (x̄) −
V +
i (x̄), where V +

i is the rate of transfer of individuals into compartment i
by all other means and V −i is the rate of transfer of individuals out of the
ith compartment. The difference Fi(x̄)− Vi(x̄) gives the rate of change of xi.
Note that Fi should include only infections that are newly arising but does
not include terms that describe the transfer of infectious individuals from one
infected compartment to another.

Assuming that Fi and Vi meet the conditions outlined by Diekmann et
al. (1990), Diekmann & Heesterbeek (2000) and van den Driessche & Wat-
mough (2002), we can form the next generation matrix FV −1 from matrices
of partial derivatives of Fi and Vi.

Here, V −1 is the inverse of the matrix V . For a 2× 2 matrix
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A =

(
a b
c d

)
,

the inverse is

A−1 =
1

detA

(
d −b
−c a

)
,

so long as detA 6= 0, obviously. Note that this is only true for 2× 2 matrices;
also, remember that detA = ad− bc.

We have

F =

[
∂Fi(x̄)

∂xj

]
and V =

[
∂Vi(x̄)

∂xj

]
,

where i, j = 1, . . . ,m, and where x̄ is the disease-free equilibrium. The entries
of FV −1 give the rate at which infected individuals in xj produce new infec-
tions in xi, times the average length of time an individual spends in a single
visit to compartment j. R0 is given by the largest eigenvalue of the matrix
FV −1.

For example, consider a model of malaria. Let us describe the rate of
change of the infected human, HI , and mosquito, MI , populations by the
following equations:

ḢI = βMHMIHS − (µH + α+ σ)HI

ṀI = βHMMSHI − µMMI .

Infected humans are produced by the infection of susceptible humans, HS , by
an infected mosquito with efficacy βMH . We assume that they die with natural
death rate µH , die due to infection with rate σ and recover from the infection
with rate α. Infected mosquitos are produced when susceptible mosquitos,
MS , bite infected humans. We assume that this process has efficacy βHM and
assume that infected mosquitos can only leave the infected compartment by
dying naturally with rate µM . For this system, we find that

F =

(
0 βMHHS(0)

βHMMS(0) 0

)
and V =

(
µH + α+ σ 0

0 µM

)
.

Since detV 6= 0, we can determine V −1:

V −1 =
1

µM (µH + α+ σ)

(
µM 0
0 µH + α+ σ

)

=

( 1
µH+α+σ 0

0 1
µM

)
.

We then have
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FV −1 =

(
0 βMHHS(0)

βHMMS(0) 0

) ( 1
µH+α+σ 0

0 1
µM

)

=

(
0 βMHHS(0)

µM
βHMMS(0)
µH+α+σ 0

)

det(FV −1 − λI) = det

(
−λ βMHHS(0)

µM
βHMMS(0)
µH+α+σ −λ

)

= λ2 − βMHβHMHS(0)MS(0)

µM (µH + α+ σ)
.

Thus

R0,M =

√
βMHβHMHS(0)MS(0)

(µH + α+ σ)µM
.

For comparison, we also compute the value of R0 for this system using the
survival function method:

R0,S =
βMHβHMHS(0)MS(0)

(µH + α+ σ)µM

= (R0,M )
2
.

The difference here is a matter of definition: the survival function gives the
total number of infectives in the same class produced by a single infective of
that class, while the next-generation matrix gives the mean number of new
infectives per infective in any class, per generation. Values corresponding to
the latter definition thus depend on the number of infective classes in the
infection cycle.

For example, suppose you have a mosquito-borne disease where humans
infect two mosquitos, while mosquitos infect three humans. For convenience,
label these RH = 2 and RM = 3. Then the number of humans infected from
a primary human (via mosquitos) is R0 = 2× 3 = 6. See Figure 6.1.

However, the next-generation method would calculate R0,N =
√

6, which
is a weighted average (2 <

√
6 < 3) of the number of infectives each individual

produces in the next infection event.
Uses in Policy: Wonham et al. (2004) derived a system of ODEs to describe

the behaviour of West Nile virus. Their model consisted of susceptible, infec-
tious, recovered and dead birds, and larval, susceptible, exposed and infectious
mosquitos. The next-generation method was used to calculate R0 from this
model, in order to evaluate the ability of the virus to invade the system. The
calculated value of R0 was then interpreted biologically as the square root of
the product of (i) the disease R0 from mosquitos to birds and (ii) the R0 from
birds to mosquitos. Each of these R0 values was further analysed as a product
of disease transmission and infectious lifespan in case (i) and the product of
the transmissibility, the number of initially susceptible mosquitos per bird
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H

H H H HH H

M M

RH=2

RM=3

Fig. 6.1. A example of a two-stage basic reproductive ratio.

that survive the exposed period and the infectious lifespan of birds in case
(ii). R0 was then used to establish a threshold mosquito level, above which
the virus will invade a constant population of susceptible mosquitos.

The R0 value derived was then used to evaluate public-health policy mark-
ers. Two such policies were evaluated: mosquito control and bird control. It
was demonstrated that a small increase in mosquito mortality can lead to a
disproportionately large increase in the outbreak threshold. More surprisingly,
however, R0 was used to show that reducing crow densities would have the
opposite effect and actually enhance disease transmission (unless extremely
low densities limited mosquito biting rates). Thus R0 was used to show that
reducing the initial mosquito population below the calculated threshold would
have prevented the West Nile outbreak for New York in 2000. Conversely, bird
control would have had the opposite effect.

It should also be noted that, in the dengue example given in the previous
section, multiple classes of infectives were defined in the model, but the def-
inition of R0 used was the number of infected humans per infected human,
not the square root of this value as would be obtained by the next-generation
operator.

6.4.3 Average age at infection

A related approach, also based on the endemic equilibrium, is that R0 can
be estimated as L/A, where L is the mean lifetime and A is the mean age of
acquiring the disease. In brief, we must assume that all individuals are born
susceptible, that after acquiring the disease they are no longer susceptible,
that the population is at the endemic equilibrium (ie R0 > 1) and that ho-
mogenous mixing, particularly among age groups, occurs. While this strong
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set of assumptions might never be fully realized in a practical setting, the
usefulness of this approach is clear since both L and A are readily measured.

Uses in Policy: This method has been used to calculate pathogens in ca-
nines (Laurenson et al. 1998).

6.4.4 The final-size equation

The final-size equation is applicable to closed populations only, where the
infection leads either to immunity or death. In this situation, the number of
susceptibles can only decrease and the final fraction of susceptibles, s(∞), can
be used to estimate R0:

R0 =
ln s(∞)

s(∞)− 1
.

This estimate holds when the disease itself does not interfere with the contact
process, or when contact intensity is proportional to population density.

Uses in Policy: Using this method, the reproductive number for SARS
was estimated in the absence of interventions and in the presence of control
efforts in order to determine the effectiveness of public health efforts to reduce
transmission (Lipsitch et al., 2003)

6.4.5 Calculation from the intrinsic growth rate

Finally, R0 may be determined from the intrinsic growth rate of the infected
population. This growth rate, often denoted r0, is the rate at which the total
number of infectives, I, grows in a susceptible population, such that dI/dt =
r0I. Note that this is an implicit definition of r0; thus, from a modelling
perspective, using r0 is seldom elegant.

In the simplest possible models, when infectivity is constant throughout
the infectious period, R0 can be estimated as 1+r0L, where L is the expected
duration of the infectious period. (The “one” is necessary in this expression
because R0 reflects the total number of new infections, whereas the overall
growth rate r0 includes the death of the founding individual.) For more com-
plex models, the relation between r0 and R0 can be derived by expressing
both in terms of the model parameters, exploiting that fact that the largest
eigenvalue of the Jacobian, evaluated at the disease-free equilibrium, gives r0.

We also note that r0 itself can be used as a threshold parameter, since
R0 < 1 implies r0 < 0. Thus the condition r0 < 0 is actually equivalent
to the Jacobian method described in Section 6.3. This method proves useful
since r0 can be readily estimated from incidence data in epidemiology or from
viral-load data, for in-host models.

Uses in Policy: Pybus et al. (2001) used this method to evaluate differences
in epidemic behaviour among Hepatitis C subtypes, based on gene-sequence
data.
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6.5 Vectorial capacity

For transmission of diseases by blood-sucking vectors, a related concept is
the Vectorial Capacity (VC), which you may be familiar with. The vectorial
capacity is defined as the rate (usually daily) at which a bloodsucking insect
population generates new inoculations from a currently infectious case. Vecto-
rial capacity is a measure of potential, rather than actual, rate of transmission,
because it includes no parasitological information.

The equation is

V C =
ma2pn

− ln(p)
,

where m is the ratio of vectors to host (N/H), a is the daily biting rate by the
vector on host species, p is the daily survival rate probability for the vector
and n is the extrinsic incubation period of parasite in the vector.

When we add information about the competence of the vector and the
rate of recovery of the vertebrate host, we can express the basic reproductive
ratio in a simple vector transmission model as

R0 =
ma2pnbc

−r ln(p)
,

where b is the fraction of mosquitos that infect a vertebrate host when biting
(susceptibility of humans), c is the fraction of susceptible mosquitos that be-
come infected when biting (susceptibility of mosquitos) and r is the rate of
vertebrate recovery from infectiousness (1/r is the average duration of infec-
tion).

This equation has many simplifying assumptions, including constant pop-
ulation densities and age structures, lack of immunity, lack of parasite-induced
mortality, exclusion of the latency period and heterogeneity in contact rates
between vectors and hosts (non-random biting rates).

The vectorial capacity and other related measures of the potential rate of
transmission are particularly advantageous under two circumstances:

1. When the fraction of vectors that are infected is too small to measure
reliably; this is typical in epidemic (rather than endemic) areas, where
infection rates are often of the order of 0.1% and impossibly large sample
sizes (e.g., more mosquitos than can be dissected) are required to detect
significant changes in such small rates;

2. When an explanation for the variation in infection rate is needed; in this
context, the theory of vectorial capacity clearly explains why the trans-
mission rate is particularly sensitive to changes in the daily survival rate
of vectors. The concept of vectorial capacity does not apply to snails
as intermediate hosts (e.g., schistosomiasis), though snail abundance and
longevity are important epidemiological variables.



78 6 Calculating R0

Uses in Policy: Hagmann et al. (2003) used the low value of R0, estimated
from the vectorial capacity, to justify the possibility of eliminating malaria
from an island in the Gulf of Guinea.

We will discuss vector-borne diseases in more detail in the next chapter.

6.6 Lab work

All these examples are theoretical and do not require Matlab.

6.6.1 Exercises

1. (Next-generation method) Consider an SEIR model

Ṡ = Ω − βSI − µS
Ė = βSI − (µ+ k)E

İ = kE − (γ + µ)I

Ṙ = γI − µR,

(6.3)

where Ω is the birth rate, µ is the per capita natural death rate, β is the
efficacy of infection of susceptible individuals S, k is the rate at which a
latent individual becomes infectious and γ is the per capita recovery rate.

a) Show that

F =

(
0 βΩ/µ
0 0

)
.

Hint: only two compartments are infected.

b) Show that

V =

(
µ+ k 0
−k γ + µ

)
.

c) Find V −1.

d) Finally, show that

R0,N =
kβΩ

(µ+ k)(µ+ γ)µ
. (6.4)

(Note that this is also the value of R0 determined by the survival
function method.)
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2. (Jacobian) Calculate the Jacobian matrix for model (6.3) and find the
eigenvalues for the disease-free equilibrium. Does this match the R0 value
found here? Which method do you like better?

3. (Endemic equilibrium) Consider this model (from Blower et al., 1998) of
herpes simplex virus:

dX

dt
= π −XcβH

N
−Xµ

dQ

dt
= H(σ + q)−Q(µ+ r)

dH

dt
= Xcβ

H

N
−H(µ+ σ + q) + rQ,

where X is the susceptible population, Q represents those infected with
the virus in the non-infectious latent state, H represents those infected
with the virus in infectious state and N = X +Q+H. (Other letters are
positive parameters.)

a) Show that, at equilibrium,

N̄ =
π

µ

X̄ =
π

µ
− µ+ σ + q + r

µ+ r
H̄

Q̄ =
σ + q

µ+ r
H̄,

where H̄ is yet to be determined.

b) Find the disease-free equilibrium.

c) Show that, if H̄ 6= 0, then

H̄ =
π

µ

[
µ+ r

µ+ σ + q + r
− µ

cβ

]
.

d) Show that the endemic equilibrium only exists when

R0,E ≡ cβ
(

r + µ

µ(r + µ+ σ + q)

)
> 1

and does not exist if the reverse inequality holds.
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7

A vector-borne disease with lifelong immunity

As we saw previously, ODE models can vary from the simple to the compli-
cated. Thus far, we have been considering the spread of the disease itself as
an implicit parameter. In an SIR-type model, people become infected as a
result of interacting with already infectious people, but we did not consider
the mechanism of that infection. (Not that we needed to.)

For vector-host systems, the disease is spread by the vector. If you stand
near someone who has a mosquito-borne disease, you’re not at direct risk, un-
less a mosquito transmits it from them to you. That is, a susceptible mosquito
must first take a bloodmeal from an infected human, so that it becomes in-
fected. The now-infected mosquito must then bite a susceptible human, con-
verting them to an infected human. Given the time lags involved, spatial
distance between infected humans is not a good measure of the probability of
infection.

This chapter is structurally identical to the methods from the previous two
chapters but includes more complex dynamics, so the matrices will be bigger
and the math more complicated. By the end of this chapter you should be
able to see how to build a vector–host model.

7.1 Building a vector-borne disease model

For the moment, we’ll consider a vector-borne disease that confers lifelong
immunity, such as yellow fever. Thus, susceptible individuals can get infected,
whereupon they may die due to the disease, but if they survive they are no
longer susceptible. This is, of course, an SIR model, as we saw in previous
chapters. However, what differentiates the model in this chapter is that we
must also include the dynamics of the mosquito infection into the model.

We’ll assume that the parasite has no effect on the mosquito vector. This
may or may not be true, but, given their short lifespan, this seems like a
reasonable assumption. Since the mosquito lifespan is short, we really need to
include the birth rate and the death rate (or else we’d use up all the available
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mosquitos quite quickly). We’ll also add these in for humans. For humans,
there’s an additional death rate while infected — you can die from the disease
— but for mosquitos we can assume that infection doesn’t have a significant
impact on their lifespan. Again, this may or may not be true, but isn’t an
unreasonable assumption.

What does all this mean? It means we have an SIR model for humans
and an SI model for mosquitos... but the two aren’t independent. We need to
consider the dynamics for how a human infects a mosquito and how a mosquito
infects a human. A mosquito becomes infected if a susceptible mosquito meets
an infected human. So our infection term will actually be a cross-infection
term, involving both species. The model is shown in Figure 7.1.
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Fig. 7.1. A vector-host model for a disease with permanent immunity.

The differential equations are thus

dMS

dt
= λM − βMHIMS − µMMS

dMI

dt
= βMHIMS − µMMI

dHS

dt
= λH − βHMIHS − µHHS

dHI

dt
= βHMIHS − µHHI − γHHI − νHHI

dHR

dt
= νHHI − µHHR,

(7.1)

where λi is the birth rate (i = M,H, for mosquitos and humans respectively),
βi is the rate of infection, µi is the background death rate, γH is the death
rate due to the disease and νH is the rate of recovery.
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Note: the units of any differential equation must be the same on both
sides. The first two equations have units of [mosquitos]/[time]. Thus, each
term must ultimately have these units. So λM has units [mosquitos]/[time]
(since it stands alone) and µM has units 1/[time] (since MS obviously has
units [mosquitos]). Thus the term βMHIMS must have overall units of
[mosquitos]/[time]. Since HI has units of [humans] and MS has units of
[mosquitos], this means

[βM ][humans][mosquitos] = [mosquitos]/[time]

[βM ] = 1/([humans][time]).

Similarly, βH has units 1/([mosquitos][time]).
The disease-free equilibrium occurs when there is no disease. Well, obvi-

ously. So that means M̄I = H̄I = 0. Since the derivatives are zero at equilib-

rium (or else it wouldn’t be an equilibrium), this means H̄R = 0, M̄S = λM

µM

and H̄S = λH

µH
. So we’ve found the disease-free equilibrium.

7.2 Finding eigenvalues

Calculating eigenvalues involves the same steps as used previously (namely,
first find the disease-free equilibrium, calculate the Jacobian matrix and evalu-
ate the determinant of the Jacobian at the disease-free equilibrium). However,
this time around, we have a 5× 5 matrix to deal with, which isn’t so simple.

From Appendix E, the determinant of the Jacobian matrix at the disease-
free equilibrium leads to the characteristic equation

−(µM + Λ)(µH + Λ)2
[
(µM + Λ)(µH + γH + νH + Λ)− βMβHM̄SH̄S

]
= 0.

(We use Λ here, since λ is already taken.)
The first three eigenvalues are always negative (Λ = −µM ,−µH and −µH

respectively), so they do not contribute to questions of stability of the disease-
free equilibrium. We can rewrite the part in the square brackets as

Λ2 + (µM + µH + γH + νH)Λ+ µM (µH + γH + νH)− βMβHM̄SH̄S = 0.
(7.2)

This is a quadratic, in the form Λ2 + bΛ + c with b > 0. The sign of c will
determine where the parabola crosses the y-axis, but this means the sign of c
will also determine the stability. Why is this? Figure 7.2 provides the answer.

The parabola must be pointing upwards since the coefficient of the Λ2

term is positive. The vertex (the point where the parabola turns around) is
to the left of the y-axis, since b > 0 1.

1 If f(Λ) = Λ2 +bΛ+c then f ′(Λ) = 2Λ+b. Equating this to zero, gives Λ = −b/2.
When the first derivative is zero, we have a turning point, which is the vertex of
the parabola. So if b > 0, the vertex is negative; i.e., to the left of the y-axis.
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Fig. 7.2. The roots of a quadratic.

The only undecided part is c, the y-intercept. If c > 0, then we have
the first case of Figure 7.2 and we see that both roots are negative. Hence,
since the other three eigenvalues were also negative, the system will be stable
(since all roots are negative). If c < 0, however, then we have the second case
of Figure 7.2 and we see that there is a positive root. It follows that the system
would be unstable in this case, since any positive root means instability.

7.3 Deriving a threshold condition

What we’d really like to do now is to derive an R0-like threshold from equation
(7.2). This is possible, but it involves using the quadratic formula to extract
the actual roots, then rearranging the appropriate root in order to derive an
R0. Which is messy, but just about doable in this case. However, what if we
had a cubic equation? Or a quartic?

Another alternative we explored earlier was to solve for the endemic equi-
librium and derive an R0-like threshold condition from that. Again, this is
possible, but a) messy and b) not really tractable in general. Note that, if we
did, this R0-like condition would almost certainly be different from the one
mentioned in the previous paragraph.

There’s a third possibility, however. We already have a threshold condition:
namely, whether c < 0 or c > 0. We can rearrange this condition to derive
yet another R0-like condition. This one is definitely not the same condition
we would derive from finding the roots of equation (7.2), or from finding the
endemic equilibrium. However, since we don’t know if either of those is the
true R0 anyway, we might as well stick to a threshold condition.

Since c > 0 implies stability, we have
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c = µM (µH + γH + νH)− βMβHM̄SH̄S > 0

µM (µH + γH + νH) > βMβHM̄SH̄S

Rc0 =
βMβHM̄SH̄S

µM (µH + γH + νH)

=
βMβHλMλH

(µM )2µH(µH + γH + νH)
,

since Rc0 < 1 when c > 0.
This threshold condition tells us important information about how to con-

trol the disease. For example, the (µM )2 term in the denominator suggests
that enhancement of vector mortality is highly conducive to eradication. That
is, the average lifespan of a mosquito is 1/µM , so if this is small, then 1/(µM )2

is even smaller. This helps to lower Rc0 considerably.
We could also see the effects on Rc0 if we had disease-modifying drugs

that changed γH or νH , or sprayed an insecticide that changed µM or a
larvacide that altered λM . It’s possible to estimate the effect that such control
measures would have before implementing them. Always bearing in mind that
our mathematical model is an approximation of the real situation.

7.3.1 The Routh–Hurwitz criterion

What if we have a higher-order characteristic equation? Could we use the
same idea? Yes... but with qualification. It’s not sufficient just to have positive
coefficients. Fortunately, there’s a thing called the Routh–Hurwitz criterion to
help out here, which is okay for three dimensions but gets complicated beyond
that.

Consider the polynomial

a3λ
3 + a2λ

2 + a1λ+ a0 = 0. (7.3)

Under what circumstances will the roots of (7.3) have negative real part?
There are two conditions to ensure this:

1. an > 0 for all n
2. a1a2 > a3a0

For characteristic equations, the leading term is always a3 = 1. And we
can use the condition a0 = 0 as our threshold criterion. That means we need
to check the signs of a2, a1 and a1a2 − a0. In fact, since we’re only concerned
with local stability, we can do this with the additional constraint that a0 = 0.
That is, at the threshold, one of the roots is zero, so we’d like to check whether
the other roots all have negative real part. If so, then the zero root determines
stability. We can then rearrange a0 = 0 in the form R0 = 1 and proceed as
usual.

For higher-order polynomials, the requirements are more complicated. So
in disease modelling, the Routh–Hurwitz criterion is generally only used for
third-order polynomials.
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7.4 Total population behaviour

Sometimes we can use the symmetry of the equations to discover information
about the total population behaviour. For example, if we add the mosquito
equations together (the first two equations in model (7.1)), then we have

dMS

dt
+
dMI

dt
= λM − µMMS − µMMI

d

dt
(MS +MI) = λM − µM (MS +MI)

dM

dt
= λM − µMM,

where M = MS +MI , obviously.
What we have here is a single differential equation in one variable (M).

But, better than that, this differential equation is linear. So we can use an
integrating factor (see Appendix F) to solve it. Once again, don’t sweat the
details if it looks too heavy for you, but the take-home message is that we can
solve a simple (i.e., one-dimensional) equation like this to find the long-term
behaviour of the total population:

lim
t→∞

M(t) = M̄S =
λM

µM
.

Thus, the total mosquito population approaches a constant level. In par-
ticular, the mosquitos never die out on their own (although, depending on
the ratio of their birth to death rates, the ultimate mosquito density may
be either high or low). Of course, this only tells us about the total mosquito
population, not the distribution of the disease. For all we know there could
be no disease at all, all mosquitos could be infected, or (more likely) it could
some combination of the two.

What this says ecologically is that the overall population is governed by
its birth and death rates. The only way into the mosquito population is to
be born and the only way out is to die (of natural causes). Everything else is
shuffling about between different states (susceptible or infected).

Can we do the same trick with the humans? Answer: not quite. If we add
the final three equations together, we get

dHS

dt
+
dHI

dt
+
dHR

dt
= λH − µHHS − µHHI − γHHI − µHHR.

The presence of the γHHI term means we can’t do the same trick (since
it’s only present for the infected class, not the other two classes). But let’s
suppose for the moment that γH = 0. That is, there is no death rate due
to the disease. This isn’t totally unlikely, as some diseases are milder than
others. In this case,
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d

dt
(HS +HI +HR) = λH − µH(HS +HI +HR).

Using the same method as before, with integrating factor eµ
Ht, we find that

HS +HI +HR → H̄S =
λH

µH

as t→∞. (You can work through the details of this yourself if you’re feeling
brave enough, as they’re almost exactly the same as the mosquito equations
we just did.) This tells us about the total population levels for the humans,
in the case γH = 0, although again it doesn’t tell us how the different classes
are represented within this total.

What about the case γH 6= 0, though? We don’t have an obvious analytic
route to go down (you may be pleased to hear this!), so we’ll use Matlab to
explore the effects of nonzero γHs in the lab.

7.5 Lab work

The problem

Suppose we have a village of 5000 uninfected humans. There are 1000
susceptible mosquitos and ten mosquitos infected with yellow fever. How will
these infected mosquitos affect the human population?

• Come up with some reasonable parameters for the birth and death rates
and the recovery rate. Consider three cases for the death rate: 1) γH = 0
(no death) 2) γH = 0.1 3) γH = 1.

• Plot the timecourse of the disease, for both mosquitos and humans, using
the different death rates, over 24 hours, a week and 100 days.

• Show a phase-plane analysis of the number of infected mosquitos versus
the number of infected humans.

The solution

We want to simulate our model from the previous section, exploring the
effects of changing γH . We need some parameters to play with. Note that
we’re not slavishly trying to get accurate parameters here, just a guide to see
what sort of behaviour will occur. We can always go back later and change
the parameter values if we have better information. But let’s think things
through, to come up with some semi-reasonable parameter estimates.

The first thing that comes to mind is that mosquitos live for only a matter
of weeks, so our timescale should reflect that accordingly. Let’s suppose that
mosquitos are actively biting for 15 days. We’ll pick an average survival time
of 60 years for humans. However, these two need to have the same units, so
we’ll convert 60 years into 21900 days. Remember that µM and µH aren’t
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survival times, they’re death rates, with units of 1/[time]. Just as frequency
is the reciprocal of the period, so too the death rate is the reciprocal of the
survival time. Thus

µM =
1

15
days−1

µH =
1

60
years−1 =

1

21900
days−1.

What about the birth rate? Remember that λM and λH must have units
[x]/[time], where x is the number of mosquitos or humans. Let’s suppose there
are ten mosquitos born every day and one human born every ten days. So

λM = 10 mosquitos · day−1

λH = 0.1 humans · day−1.

We’ll assume an infection period of a week, so

νH =
1

7
days−1.

Finally, we need to determine the transmissibilities. These are complex
interactions of the number of biting events, the chances of the disease being
passed from one to another, the immunology of humans and mosquitos, and
so on. It’s important to stress that we have different transmission rates for
host-to-vector infection than for vector-to-host infection.

Let’s pick some nice round numbers and suppose that the chance of get-
ting infected if an infected mosquito bites you is ten times the chance of the
mosquito getting infected if it bites an infected human. Thus

βM = 0.01 humans−1 · days−1

βH = 0.1 mosquitos−1 · days−1.

(The numbers are chosen at random to reflect different transmission rates but
ignore lag times.) We need a function file to account for our ODEs:

function pdot=vectorf(t,p)

%This is the ODE for the Yellow fever problem

lambdaM=10;

muM=1/15;

betaM=0.01;

lambdaH=0.1;

muH=1/21900;

betaH=0.1;

gammaH=0;

%gammaH=0.1;
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%gammaH=1;

nuH=1./7;

pdot(1,:)=lambdaM-betaM.*p(4).*p(1)-muM.*p(1);

pdot(2,:)=betaM.*p(4).*p(1)-muM.*p(2);

pdot(3,:)=lambdaH-betaH.*p(2).*p(3)-muH.*p(3);

pdot(4,:)=betaH.*p(2).*p(3)-muH.*p(4)-gammaH.*p(4)-nuH.*p(4);

pdot(5,:)=nuH.*p(4)-muH.*p(5);

Remember to save this as “vectorf.m”. Next, we need an M-file to state
our initial conditions, call the function file and plot the results.

%This is a program to use the vector-host ODE vectorf

clear all

t0=0;

tf=1;

%tf=7;

%tf=100;

p0=[1000,10,5000,0,0];

tspan=[t0 tf];

[t,p]=ode23(@vectorf,tspan,p0);

subplot(1,2,1)

plot(t,p(:,1),t,p(:,2))

title('Mosquitos')

subplot(1,2,2)

plot(t,p(:,3),t,p(:,4),t,p(:,5))

title('Humans')

You can run these multiple times by taking the % signs out.
Finally, we need to plot MI vs HI . You should be able to figure out how to

do that by now (don’t forget to put mosquitos on the x-axis). Use help plot

if you need a hint (or check page 58). It should look like Figure 7.3.

7.5.1 Exercises

1. Can you determine the direction of the trajectories in Figure 7.3?

2. Do the trajectories cycle around this curve, or do they settle down even-
tually?

3. When there is no death rate due to infection (i.e., γH = 0), what eventu-
ally happens to the population? Has the disease been eradicated?

4. Use your data to calculate Rc0, for the case γH = 0. (By now you should
be able to write a short Matlab code to do this.)
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Fig. 7.3. Infected mosquitos vs. infected humans.

5. How does this value compare with your results in this section? Does this
knowledge cause you to revise your opinion about eradication?

6. Plot the time series of the infection. (Hint: you don’t have to rerun any-
thing, you already have the solution.)

7. Use your time series to find the endemic equilibrium values. Are these
what you expected?

8. Name two vector-borne diseases, aside from yellow fever, where immunity
is lifelong.

9. What would be needed for the disease to be maintained in humans? What
about recurrence of the disease after it has died out?
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8

The spread of measles

When dealing with ODEs previously, we have only been interested in systems
that change with respect to one variable, usually time. However, many systems
are much more complicated, changing with respect to both space and time. If
a disease is introduced into a community, the prevalence at some location will
depend both on the location relative to where the initial infection occurred
and on the time elapsed since the infection was introduced. The infection at
that location changes with space and time.

When dealing with changes in more than one variable, we turn to partial
differential equations (PDEs). PDEs allow us to identify the different vari-
ables that a system may be dependent on and set up our model accordingly.
Naturally, these can get quite complicated. To keep things simple, we’ll con-
centrate on one-dimensional spatial problems — although these are really two
dimensional problems, because they also involve time.

By the end of this chapter, you should be able to see how PDEs can tell
us about movements through space and time.

8.1 The Conservation Law

The law of Conservation of Mass says that mass can neither be created nor
destroyed. One of the implications of this law is that in modelling the spread of
molecules (like infected measles droplets, as we’ll see shortly), we must create
models which do not allow for the spontaneous creation or disappearance of
any of our droplets. The mathematical form of this law can be used as the
first step in creating models to account for the movement of such droplets.

Consider a stretch of space ∆x long (labelled from x to x + ∆x) along
which infected measles droplets are flowing (we restrict ourselves to one spatial
dimension here, because the math gets complicated; remember that we already
have two dimensions, since we have both a spatial dimension and time).

We will represent the density of infected measles droplets at a particular
time and space as U(x, t), with units of droplets/length. The flow of the
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droplets F (in units of droplets/time) will be related in some manner to the
density of the droplets. That is, F = F [U(x, t)]. Figure 8.1 illustrates this
system, with the inward and outward flow.

F[U(x,t)] F[U(x+! x,t)]

x x+! x

Fig. 8.1. The total flow of droplets in a segment of space of length ∆x.

From Figure 8.1, we can see that the total flow on this interval is the
inward flow minus the outward flow, or F [U(x, t)] − F [U(x + ∆x, t)]. The
total flow represents the change in total number of droplets with respect to
time. There is another way to calculate the total flow, however. Reconsider
Figure 8.1, looking at a small length of space dx wide, as in Figure 8.2.

F[U(x,t)] F[U(x+! x,t)]

x x+! xdx

Fig. 8.2. The flow of droplets within a small length of space.

Just as the mass of an object is calculated by summing the density of
small sections of it, the total number of droplets in this stretch of space can
be calculated by summing the density of these small portions over the total
interval. A near-infinite sum of tiny partitions can be approximated by an
integral over the entire interval from x to x + ∆x. (Everyone always forgets
that an integral is just an infinite sum of tiny pieces.)

Thus, the number of droplets is

∫ x+∆x

x

U(x, t)dx.

If this is the total number of droplets, then the total flow is the change in this
number with respect to time. Thus, the total flow is



8.1 The Conservation Law 95

d

dt

∫ x+∆x

x

U(x, t)dx.

Equating our two expressions for total flow gives us

d

dt

∫ x+∆x

x

U(x, t)dx = F [U(x, t)]− F [U(x+∆x, t)].

We can bring the d
dt term into the integral on the left, but if we do so it will

become a partial derivative, namely ∂
∂t , since U changes with respect to x as

well as t. Partial derivatives are used when the outcome depends on several
variables but only one of these is differentiated.

We’ll also write the right-hand side in a slightly different manner:

∫ x+∆x

x

∂U(x, t)

∂t
dx = −{F [U(x+∆x, t)]− F [U(x, t)]} . (8.1)

(All we did to the right-hand side was swap the negatives around.)

How can we simplify the integral? For simplicity, let’s let f(x) = ∂U(x,t)
∂t .

When taking the integral of f(x) from a to a+∆a, we are calculating the area
under the integral from a to a + ∆a. If ∆a is extremely small, this area can
by approximated by a rectangle with width ∆a and height f(a). See Figure
8.3. Thus if we let ∆a→ 0, we can make the following approximation:

∫ a+∆a

a

f(u)du ≈ f(a)∆a. (8.2)

If we apply (8.2) to Equation (8.1), with f(x) = ∂U(x,t)
∂t , we have

∂U(x, t)

∂t
∆x ≈ −{F [U(x+∆x, t)]− F [U(x, t)]}.

Divide both sides by ∆x:

∂U(x, t)

∂t
≈ −{F [U(x+∆x, t)]− F [U(x, t)]}

∆x
. (8.3)

Since we are letting ∆x → 0, we can treat ∆x as we usually would dx (or
∂x in this case). We thus have the (partial) derivative of F with respect to x
on the right-hand side of this equation. Remember the definition of a partial
derivative:

∂z(u, v)

∂u
= lim
∆u→0

z(u+∆u, v)− z(u, v)

∆u
.

So if we take the limit as ∆x → 0 in equation (8.3), we’ll have the partial

derivative ∂F [U(x,t)]
∂x .

We have thus derived the conservation law
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f(a)

a a+∆ a

∆ a

}

f(a)

Fig. 8.3. Approximating a thin area by a rectangle. Area ≈ f(a) ×∆a.

∂U(x, t)

∂t
= −∂F [U(x, t)]

∂x
,

which is often rewritten as

∂U

∂t
+
∂F (U)

∂x
= 0.

This is the conservation equation. Like the conservation law of energy,
which says that nothing can be created or destroyed, it says that measles
droplets cannot spontaneously appear or disappear; they are all accounted for
in the overall flow of droplets.

8.1.1 Diffusion

Diffusion is the term given to “random spreading”, such as that seen when we
drop dye into water, as you’ve probably seen in chemistry classes. It involves
the movement from high concentration of particles to low concentration. It is
a result of Brownian Motion, which is the vibration of the molecules of the
medium and the molecules in question. Brownian Motion can be affected by
several factors, including temperature.

For diffusion, F (U) = −D ∂U
∂x , where D is the diffusion constant, which

depends on the viscosity of the medium. The flow is proportional to the change
in density; if the density is decreasing over distance, then ∂U

∂x is negative.
Differentiating, we have
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∂F

∂x
=

∂

∂x

(
−D∂U

∂x

)

= −D∂
2U

∂x2
.

The diffusion equation is then

∂U

∂t
= D

∂2U

∂x2
. (8.4)

8.2 Measles in a corridor

Harry is infected with measles. After he sneezes in a corridor at school, the
infectious molecules (airborne droplets) spread out from the epicentre (him)
and random molecular collisions may knock them left or right. (For simplicity,
we’re only assuming one spatial dimension, hence the corridor.) His sneeze has
some initial velocity, but, after a while, the movement of infected droplets will
be largely determined by the way in which they interact with each other, not
the initial velocity.

If there are s seconds between collisions and each collision displaces a
droplet by ±r, what is the mean distance we can expect the measles to travel
in either direction after time t?

With each random collision, a droplet moves a distance r to the left or
right. We can plot the movements of an infectious droplet in Figure 8.4 if we
take the horizontal axis to be time and the vertical axis to be space (so +y
represents the left direction, and −y represents the right direction).

Assume each collision (left or right) is independent of the previous one
and let rn denote the displacement from 0 at the nth step (positive if to the
left and negative if to the right). For the path in Figure 8.4, r1 = r, r2 = r,
r3 = −r, r4 = r, r5 = −r, r6 = −r, r7 = −r, r8 = r, r9 = −r, r10 = −r,
r11 = r. The total displacement (in the y direction) after n collisions is

yn = r1 + r2 + r3 + · · ·+ rn.

So in Figure 8.4, y1 = r, y2 = 2r, y3 = r, y4 = 2r, y5 = r, y6 = 0, y7 = −r,
y8 = 0, y9 = −r, y10 = −2r, y11 = −r. On average, yn will be zero, since the
law of probability states that the collisions will likely send the droplets left as
often as right.

We want to look at the mean distance, without the individual components
cancelling each other out, so we’ll look at the sum of squares. If we square yn,
we get

y2
n = (r1 + r2 + r3 + · · ·+ rn)2

= r2
1 + r2

2 + r2
3 + · · ·+ r2

n + 2(r1r2 + r1r3 + · · · ).



98 8 The spread of measles

0 2 4 6 8 10 12
−4

−3

−2

−1

0

1

2

3

4

di
sp

la
ce

m
en

t
s 11s10s9s7s5s4s3s2s

2r

−2r

−r

0

r

time
(sec)

Fig. 8.4. The trajectory of an airborne measles droplet due to random collisions.

Since rk is either +r or −r, each term in the parentheses has an equal chance
of being positive (the product of two positive terms or two negative terms)
or negative (the product of one positive term and one negative term). Since
each term will be of the same magnitude, r2, they should all cancel out, on
average (i.e., for large n). This leaves us with the first n terms, but each has
the same value (r2). So we thus have the approximation

y2
n = nr2.

Looking back at Figure 8.4, we see that since there are s seconds between
each collision, then, after n steps, sn seconds will have elapsed.

t = sn

n =
t

s

y2 = nr2

=

(
t

s

)
r2.

The fraction r2

s is a positive constant (since s is positive), so we can rename

it by some (positive) constant C2 = r2

s . (We use C2 since we know for a fact
that C2 can’t be negative.)

Thus

y2
n = C2t

yn = ±C
√
t.
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Graphing this, we have Figure 8.5.
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Fig. 8.5. Average trajectory of droplets over time.

What does this tell us? If we kept track of a whole lot of droplets, the
tendency as a whole would be to follow paths within this parabolic trajectory.
It’s reasonable to assume that the spatial spread of droplets is approximately
normally distributed at any given time. However, the distribution is wider for
later times than it is for earlier times. Thus, the parabola traces one standard
deviation from the average vertical displacement of 0. So 70% of the droplets
should be found within this parabola at any time.

This tells us important information about the spread of measles over time,
given one spatial dimension. This is very useful when determining how strin-
gent any quarantine measures should be, for example. It also gives us a basic
idea of how to determine the spread over two or three dimensions, although
the mathematics is a lot harder.

8.3 Lab work

The problem

We want to track the spread of measles in a corridor. The time interval
between collisions is s = 1 second, and each collision displaces an infected
droplet by ±r = ±0.01 mm. Assume there are N droplets. Find the average
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displacement and the average squared displacement after n steps by calculat-
ing both yn and y2

n for each droplet (i.e., find yav and y2
av) for the following

values of n and N :

n (number of steps) 100 100 100
N (number of droplets) 15 200 1000

• What does yav approach for large N?
• What does y2

av approach for large N?
• Include as part of your answer a plot of both of them on the same graph

for N = 15 and N = 200.
• Suppose we want to fit the following model to the data: y2

av = Dtλ. Rewrite
this equation in a manner which may be compared to the computational
data to determine the values of D and λ using the polyfit command. Use
the data from the n = 100, N = 200 run.

• Is λ what you think it should be?
• Plot ±

√
y2
av vs. t. On the same set of axes, plot the path taken by 15

droplets for n = 1000. What can you say about the way the disease
spreads?

The solution

First we need to create a matrix that consists of the displacements of
a number of droplets over time. In each time step, the droplet undergoes a
displacement of ±r. If we keep track of whether it was +r or −r for each
droplet by placing these in a row of a matrix, then we can find the total
displacement by simply adding all the entries in that row. So a row with
three +r’s and two −r’s would add up to a total displacement of +r for one
particular droplet.

If we did this for every droplet (in subsequent rows), then we could find to-
tal displacements for each. Finding the average displacement is simply done by
adding up all N total displacements and dividing by N . The average squared
displacement can by found by squaring the total displacements and adding
them together before dividing by N .

The displacement matrix will be a matrix with a bunch of 1’s and −1’s,
multiplied by the scalar r. More importantly, it is a random matrix of 1’s and
−1’s. Since there are N droplets, we will have N rows. We are also keeping
track of n steps. Thus, we create an N × n random matrix.

To do this, we can use the rand function to generate a uniform dis-
tribution of random numbers between 0 and 1. This isn’t quite what we
want, however, so we have to convert these to either +1 or −1. We can use
an if ... then ... else to separate the random numbers: those that are
above 0.5 will be changed to 1 while those below 0.5 will be changed to −1.
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clear all

n=100;

N=15;

r=0.01;

a=rand(N,n); %(a is the random matrix)

for i=1:N

for j=1:n

if a(i,j)>0.5

a(i,j)=1;

else

a(i,j)=-1;

end

end

end

a=r.*a;

Note that there’s no output yet. Although if you want to see the random
matrix, you can drop the last semicolon (;).

We’ll put this together with some more pieces in a moment. These first
few program fragments are to show you how the individual pieces in the whole
program work.

In order to sum rows, columns or parts of rows or columns of a matrix,
we use the sum command. However, we won’t just sum the total of each
row; instead we’ll create an N × n matrix of running totals (i.e., the third
column consists of the total displacement at the third step). Our “running
total” matrix y should look like the following, where every row represents an
individual droplet and r1 is its first displacement, r2 its second and so on:

y =



r1 r1 + r2 r1 + r2 + r3 · · · r1 + r2 + r3 + · · ·+ rn
...

...
...

...
r1 r1 + r2 r1 + r2 + r3 · · · r1 + r2 + r3 + · · ·+ rn


 (N × n).

We want rows to be added up to the jth column, for all j from 1 to n (so
we’ll need a for loop). We wish to do this for all N rows (so we’ll need two
for loops). Mathematically, we wish each entry of our “running total” matrix
y to be equal to the sum of row i, columns 1 to j. This requires the following
code:

for i=1:N

for j=1:n

y(i,j)=sum(a(i,1:j));

end

end
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(Again, try dropping the semicolon (;) to see what happens.)
Here we are telling the sum command to look at the ith row, columns 1

through j, of the matrix a. We want Matlab to sum all the columns of our
“running total” matrix: this adds the displacements for all N droplets at each
step. Dividing the answer by N , we have a row matrix which represents the
average displacement at all n steps. A similar approach yields the average
squared displacement.

yav=sum(y)./N;

yav2=sum(y.^2)/N;

We also want to plot the average displacement and the two average dis-
placements as calculated by the squaring method. That is, we have calculated
y2
av, we now find the two new values of yav that represent the positive and

negative square roots of y2
av. We will place these values in the first two rows

of some new matrix Y .

Y(1,:)=yav2.^(0.5);

Y(2,:)=-(yav2.^(0.5));

We thus want to plot the variables yav and Y vs. time. How do we create
our time matrix?

If there is a time s between steps then the first step will be at time (1)(s),
the second step will be at time (2)(s) and the last (nth) step at time (n)(s).
The time matrix will go from s to n.∗s with increments of 1 (since n increases
by 1 each time). Thus we can easily create our time matrix t and plot our
variables. We add this code to the others, along with titles and gtext labels
to label particular curves and using hold on to keep the N = 15 run when
we rerun our program for N = 200.

clear all

n=100;

N=15;

%N=200;

r=0.01;

s=1;

a=rand(N,n); %(a is the random matrix)

for i=1:N

for j=1:n

if a(i,j)>0.5

a(i,j)=1;

else
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a(i,j)=-1;

end

end

end

a=r.*a;

for i=1:N

for j=1:n

y(i,j)=sum(a(i,1:j));

end

end

yav=sum(y)./N;

yav2=sum(y.^2)/N;

Y(1,:)=yav2.^(0.5);

Y(2,:)=-(yav2.^(0.5));

t=s : n.*s;

plot(t,yav,t,Y)

title('The spread of measles for N=15 droplets')

xlabel('time')

ylabel('Average displacement and average displacement^2')

gtext('N=15')

%gtext('N=200')

hold on

You’ll have to rerun this, making the obvious changes, to get the results
for N = 200.

The next part of the problem involves simplifying y2
av = Dtλ so that we

can calculate values of D and λ from our experimental data. To do this, we
take the natural logarithm of both sides:

y2
av = Dtλ

ln
(
y2
av
)

= ln
(
Dtλ

)

ln
(
y2
av
)

= ln(D) + ln
(
tλ
)

(since ln(ab) = ln a+ ln b)

ln
(
y2
av
)

= ln(D) + λ ln(t) (since ln(ac) = c ln a).

Thus, a log-log plot of y2
av vs. t would have a slope of λ and an intercept of

ln(D). Since the slope and intercept are the coefficients of a linear polynomial,
we can use the polyfit function to determine these. The command polyfit

finds the coefficients of a polynomial p(x) of degree n that fits the data in a
least squares sense. The command polyval returns the value of a polynomial
of degree n evaluated at x. We can use these two commands to fit polynomials
of any degree to our data. Of course, if the degree is higher than the number
of data points, Matlab will give you a warning.

We can define the first two rows of a new matrix L to be ln(t) and ln(y2
av)

respectively and then apply a linear fit. The program is again similar, but
don’t forget to make sure N = 200 this time.
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clear all

n=100;

N=200;

r=0.01;

s=1;

a=rand(N,n); %(a is the random matrix)

for i=1:N

for j=1:n

if a(i,j)>0.5

a(i,j)=1;

else

a(i,j)=-1;

end

end

end

a=r.*a;

for i=1:N

for j=1:n

y(i,j)=sum(a(i,1:j));

end

end

yav2=sum(y.^2)/N;

t=1.*s : n.*s;

plot(log(t),log(yav2),'*')

Now go to Tools → Basic Fitting and apply a linear fit to the data. Click
on the → button and apply a linear fit. Write down the values p1 and p2
from the linear polynomial.

Run your program again and apply the linear fit. Notice how p1 and p2
have changed slightly? Try doing it all a third time.

Due to the random portion of this problem, the exact numbers you arrive
at will differ slightly each time, but p1 should be close to 1 (λ should be 1,
since we proved in the previous section that y2 = C2t) and p2 should be in
the range (−9.4 to −9.0), making D equal to approximately e−9.2.

Determining D helps us find the best model of the form we’d suspected,
but determining λ validates our guesswork in the first part of this chapter.
Remember that we’d made some approximations when deriving the equations,
so the fact that λ ≈ 1 tells us that our approximations were reasonable.

We now use these values of D and λ to create our mean distance plot
and include the actual trajectories of 15 droplets to see if they behave in the
manner that we are assuming they do. We are interested in the running total
displacements of the 15 droplets (our y matrix), and we create new y values to
fit our y2

av = e−9.2t formula. Let’s assign the positive and negative yav values
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(
±
√
e−9.2t

)
to the first and second rows of a new matrix Y (new because we

don’t have such a variable in our present program, although we did have such
a variable in our first program). Make sure n = 1000 and N = 15.

clear all

n=1000;

N=15;

r=0.01;

s=1;

D=exp(-9.2);

a=rand(N,n); %(a is the random matrix)

for i=1:N

for j=1:n

if a(i,j)>0.5

a(i,j)=1;

else

a(i,j)=-1;

end

end

end

a=r.*a;

for i=1:N

for j=1:n

y(i,j)=sum(a(i,1:j));

end

end

t=1.*s : n.*s;

Y(1,:)=(D.*t).^(0.5);

Y(2,:)=-(D.*t).^(0.5);

plot(t,y,t,Y)

title('Mean distance plot')

xlabel('time')

ylabel('Displacement')

These graphs will be slightly different each run, due to the random nature
of the displacements, of course.

Analysis of the results

The standard average stays pretty much at zero, as we expect; there should
be approximately as many droplets moving to the left as to the right at any
given moment. However, our squared-derived average gives us much more in-
teresting information: the mean distance travelled in the positive and negative
directions by the droplets. This is why we calculate the squared average, to
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acquire much more useful information about how the system will behave. Both
the first and last sections of this lab demonstrate that the mean positive and
negative y values correspond to the values associated with a parabola, should
they be plotted vs. time. Keep in mind that this does not represent a phys-
ical parabola in two space dimensions; we are sticking to a one-dimensional
problem here, and the droplets are spreading to the left or right. The values
of the mean distances correspond to parabolic values with respect to time.

8.3.1 Exercises

1. Try running the first program several times, without changing N (thus
overlaying different solutions on top of one another). How convincing is
this?

2. Based on the mean distance output, does it seem reasonable that 70% of
the trajectories are within the parabola?

3. Use the command axis([0 1000 -2 2]) to change scale the y-axis (you
can do this in the command window; you don’t have to rerun the program).
Now how does it look?

4. Try increasing N in the mean distance program (say N = 50). How do
the results look now?

5. Based on these simulations, what would be a reasonable quarantine dis-
tance, if you wanted to be sure to contain more than 70% of the droplets?
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Solving Partial Differential Equations

This chapter provides a method to analytically solve the PDEs from the previ-
ous chapter. Solving PDEs in general is extremely difficult and often outright
impossible. Possible solutions could be functions of x, t or more likely both,
in some manner.

By the end of this chapter, you should be able to turn PDEs into ODEs,
apply boundary conditions, solve the ODEs and reconstruct the original solu-
tion. Or at least appreciate how complicated mathematical analysis of spatial
modelling can get.

Note: The labs for this chapter don’t require knowledge of the theory here,
so if you get lost or want to skip the mathematics entirely, you can still do
the lab (except for the last question).

9.1 Separation of variables

One approach is to assume that solutions are of the form X(x)T (t), where
X and T are yet-to-be-determined functions. That is, the solution can be a
function of both x and t (which we’d expect), but it must be made up of a
function purely of x and a function purely of t multiplied together. This is
called separation of variables. For example, xt + x = x(t + 1) = X(x)T (t).
Obviously, there might be other solutions not of this form (e.g., ext), but it
does give us a place to start.

We’ll solve equation (8.4), the diffusion equation. For simplicity of nota-
tion, we represent partial derivatives with respect to a particular variable by
subscripts of those variables. So equation (8.4) becomes

Ut = DUxx.

Using separation of variables, we thus have
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U = XT

Ut = XṪ

Ux = X ′T

Uxx = X ′′T,

where we use ( )′ to denote spatial derivatives and ˙( ) to denote time deriva-
tives. Since both X and T are solely functions of one variable (x and t respec-
tively), their derivatives are ordinary derivatives, not partial.

Putting this into the diffusion equation, we have

XṪ = DX ′′T

Ṫ

DT
=
X ′′

X
.

↑ ↑
independent independent

of x of t

We’ve moved all the variables involving time to one side and all the variables
involving space to the other side. (The D could go on either side, but it’s
usually easier to stick constants with the time equation.)

However, something miraculous has occurred. The left-hand side of this
equation is dependent only on t, while the right-hand side is dependent only
on x. If we change t from, say, 2 to 54, we might assume the value of the
left-hand side would change. If so, the right-hand side would have to change
as well, but it is independent of t! It doesn’t have to change just because t
changes. The only way for the left-hand side to equal the right-hand side at
all times is if each side is always equal to the very same constant. That is, for

t = 4, 78 etc or for x = 89, −0.0002 etc, both Ṫ
DT and X′′

X must always equal
the same constant.

We thus have two independent ODEs, which are much easier to solve than
PDEs. It turns out that if this constant is positive or zero, then there will be
no (nontrivial) solutions. See Appendix G if you’re interested in this. So we’ll
set both sides to equal the same negative constant, which we’ll call −λ2. Thus

Ṫ

DT
=
X ′′

X
= −λ2

Ṫ = −λ2DT (9.1)

X ′′ + λ2X = 0. (9.2)

Solving equation (9.1) is relatively straightforward:
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1

T

dT

dt
= −λ2D

∫
1

T
dT = −λ2D

∫
dt

lnT = −λ2Dt+ c

T = ke−λ
2Dt, (9.3)

where k = ec.
To solve equation (9.2), we write

(
d

dx

)2

X + λ2X = 0

[(
d

dx

)2

+ λ2

]
X = 0

[
d

dx
+ iλ

] [
d

dx
− iλ

]
X = 0,

using the difference of two squares a2+b2 = (a+ib)(a−ib) and where i =
√
−1.

(We can only use this method because the equation has constant coefficients.)
It’s not worth dwelling on complex numbers if you haven’t seen them be-
fore, but they’re useful to solve polynomials. Then again, if you haven’t seen
complex numbers before, you’re probably not reading this chapter in terribly
much detail either!

Now we don’t want X = 0, so either
[
d
dx + iλ

]
X = 0 or

[
d
dx − iλ

]
X = 0.

These are both first-order, linear ODEs (despite the complex numbers), which
are easy to solve. The first one is

dX

dx
+ iλX = 0

1

X
dX = −iλdx

∫
1

X
dX = −iλ

∫
dx

lnX = −iλx+ k1

X = A1e
−iλx (where A1 = ek1)

= A1 cosλx−A1i sinλx,

since eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ. By similar reasoning, the
other solution is

X = A2e
iλx

= A2 cosλx+A2i sinλx.
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The general solution will be a linear combination of these two solutions... but
they’re both of the same form anyway. So the general solution is

X = B cos(λx) + C sin(λx).

(Since we don’t know the coefficients, we can absorb the i into them.) This
allows us to get the general solution.

9.2 Boundary conditions

However, we could also impose boundary conditions on our measles problem.
If we assume the corridor is of length L with Harry standing at one end, then
infectious droplets can’t pass through the walls at either end, so there will
be no particles at x = 0 or x = L (since there’s a wall at these points). This
corresponds to the boundary conditions U(0, t) = 0 and U(L, t) = 0. (If we
were to specify a certain distribution of the original sneeze at t = 0 then we
would also have an initial condition U(x, t) = f(x).)

Bear in mind that we can’t have T (t) = 0 (or else the entire solution is
zero), so the first boundary condition is

U(0, t) = X(0)T (t) = 0

⇒ X(0) = 0

B cos(0) + C sin(0) = 0

B(1) + C(0) = 0

B = 0

Therefore X = C sin(λx).

We don’t want C = 0, or else the solution would then be x ≡ 0, which we’ve
already ruled out.

The second boundary condition gives us

U(L, t) = X(L)T (t) = 0

⇒ X(L) = 0

C sin(λL) = 0

⇒ λL = nπ (since we don’t want C = 0)

λ =
nπ

L
.

Because the sine function is zero at regular intervals (nπ), our boundary con-
ditions have allowed us to find an infinite number of λ values.

We thus have, for each n,

Xn(x) = Cn sin
(nπ
L
x
)

Tn(t) = kne
−(nπL )2Dt (from equation (9.3)).
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We’ve put subscripts to indicate that each coefficient will be different for
different n. The general solution is the product Un(x, t) = Xn(x)Tn(t), or

Un(x, t) = Ane
−(nπL )2Dt sin

(nπ
L
x
)
,

where An represents the value of knCn for each n. Not only are there an
infinite number of λ values, but each has its own particular corresponding
function (a different function depending on the value of n).

Thus there is more than one answer, depending on what n is. It does
not represent a physical variable in the sense that time or distance does, but
nevertheless there are various different solutions, as well, since the solutions
corresponding to different n values are linearly independent. Addition or scalar
multiplication (or both) of independent solutions always yields another viable
solution. In the end, we determine which solution(s) best represent a particular
case (i.e., which one of the mathematically correct solutions actually mimics
“real life”) only through experimentation and observation.

We can write the general solution as

U(x, t) =

∞∑

n=0

Ane
−(nπL )2Dt sin

(nπ
L
x
)
. (9.4)

9.3 Initial conditions

The final condition we could impose would be an initial condition. As an
example, let’s suppose we imposed the initial condition (corresponding to
Harry’s initial sneeze) as

U(x, 0) = 2 sin
πx

L
− 3 sin

5πx

L
+ 14 sin

6πx

L
. (9.5)

So if we set t = 0 in our general solution (9.4), we get

U(x, 0) =

∞∑

n=0

An sin
(nπ
L
x
)
. (9.6)

The exponential term has disappeared, because it’s equal to 1 when t = 0.
All we need to do now is match (9.5) to (9.6). But this is extremely straight-

forward, since we just match the coefficients. Thus A1 = 2, A5 = −3 and
A6 = 14. Better yet, all other An’s match to zero! So the final solution only
involves n = 1, 5, 6. Thus

U(x, t) = 2e−( πL )2Dt sin
πx

L
− 3e−( 5π

L )2Dt sin
5πx

L
+ 14e−( 6π

L )2Dt sin
6πx

L
.

(9.7)
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9.4 Lab work

This lab explores the solution found in (9.7). You don’t need to understand
any of this chapter in order to do these exercises, except for the last one.

The problem

Use Matlab to plot the surface z(x, y) = sin(0.2xy) over the range −7 ≤
x ≤ 7, −7 ≤ y ≤ 7.

The solution

We need to transform our x and y variables into a “mesh”. That is, a grid
of equally-spaced intervals, so that Matlab can plot the surface above each of
the grid points. The command meshgrid will do this for us. We then create
the function using the new, meshed, variables.

To plot the surface, we use the function mesh.

x=-7:0.1:7;

y=-7:0.1:7;

[X Y]=meshgrid(x,y);

z=sin(0.2.*X.*Y);

mesh(X,Y,z)

xlabel('x')

ylabel('y')

zlabel('z')

Looks great, huh? Except it’s not quite obvious what this complicated
function actually looks like. Fortunately, Matlab has an amazing solution to
this problem.

Go to Tools → Rotate3D. This allows you to rotate the figure in any
direction, using the mouse. Simply click on the figure and move the mouse
around. You can swivel it around, move it up and down, even upside down.

Rotate your figure until you can clearly see the point in the middle. This
is a very special kind of point, called a “saddle point”. It’s a maximum in
one direction (from underneath) and a minimum in another direction (from
above). Just like a horse’s saddle, where the point you sit on is also both a
maximum (in the direction across your legs) and a minimum (in the direction
of the horse’s spine) simultaneously.

9.4.1 Exercises

1. Plot the following 3-dimensional surfaces over the range −7 ≤ x ≤ 7,
−7 ≤ y ≤ 7:
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(a) z(x, y) = sin(x+ y)

(b) z(x, y) = log(xy)

(c) z(x, y) = exp(−0.01x2y2)

(d) z(x, y) =
sin
√
x2+y2√

x2+y2
(Note that the Matlab command for the square

root is sqrt.) Is there a problem when (x, y) = (0, 0)? What’s happen-
ing at this point?

Use the Rotate3D tool to examine each figure from different viewpoints.

2. Plot the 3-dimensional solution (9.7) with D = 0.01 and L = 3 over the
range and the following ranges of time:

(a) 0 ≤ t ≤ 1

(b) 0 ≤ t ≤ 5

(c) 0 ≤ t ≤ 10.

3. Describe in words what is happening in this plot.

4. Is this solution biologically reasonable? Explain.

5. (Theoretical) Try solving the boundary value PDE

∂2U

∂t2
= c2

∂2U

∂x2

U(0, t) = 0

U(L, t) = 0

U(x, 0) = 7 sin
3πx

L
− 2 sin

5πx

L
∂U(x, 0)

∂t
= 0

using the methods outlined in this chapter. (Hint: All but two of the An’s
will be zero.)
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The discrete logistic equation

This chapter deals with finite difference equations, which are another way
of examining changes to populations. However, instead of using a continuous
variable (time), we use a discrete variable (which may be in “clumps” of time,
or discrete events, such as annual changes) to model distinct changes from
one period to another.

By the end of this chapter, you should be able to construct a simple dif-
ference equation, use the cobwebbing method to explore equilibrium points
and their stability and see an introduction to the exciting worlds of periodic
orbits and chaos.

10.1 Developing a nonlinear model

10.1.1 Spatial limitations

The growth of populations eventually becomes constrained by spatial consid-
erations. A bacterial culture in a petri dish might exhibit a geometric growth
rate for a time, but eventually the culture starts to fill the ecological niche
(space and nutrients are not limitless) and the growth rate becomes sub-
geometric.

Spatial considerations are hugely important in real-world applications, as
we’ll see in the coming chapters. Your chances of catching a disease will vary
according to where you live in the world, places where you work, travel and
visit and even the type of environment your neighbourhood is in. You’re more
at risk of West Nile virus in suburban areas with lots of green spaces than
you are in an inner-city, urban environment.

However, spatially explicit models are also notoriously complicated, math-
ematically. The actual models might not be so hard to formulate, but the anal-
ysis gets very difficult, very quickly. In this chapter, we’re not going to develop
spatially explicit models, but we are going to consider spatial limitations as
an implicit factor in our models.
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10.1.2 Difference equations

My savings account gets $10 added into it each Friday. So each week, my
current savings are equal to the previous week’s savings plus $10. If “a” rep-
resents the amount of money in the account then, mathematically, the amount
of money I have in the nth week is

an = an−1 + 10.

This is known as a “difference equation”. The value of a variable changes
by a prescribed amount (not always a simple constant) from the (n − 1)st

time period to the nth period. More generally, the new variable is calculated
according to some function f of the old value; it is “updated” according to a
kind of “update rule”:

an = f(an−1), (10.1)

where f is some function. The subscript n doesn’t exactly count time; it is an
integer which counts the number of time periods since the initial “start time”
at n = 0. This sort of equation is called a difference equation.

It is important to distinguish difference equations from differential equa-
tions (DEs). Difference equations deal with finitely spaced, instantaneous
“steps”, whereas DEs are based on continuous changes in variables. In the
above example, changes (increases in the amount of money in my savings ac-
count) only occur once a week; they are specific, instantaneous events, and in
between them nothing happens. As we’ve seen, DEs (both ordinary and par-
tial) are used to model systems that change continuously, such as the spread
of influenza through a population. The epidemiological spread of disease is
well modelled by continuous dynamics. In reality, of course, influenza is not
spread continuously, but rather from person to person. However, as the popu-
lation gets larger and larger, then the contribution from each individual gets
smaller and smaller... so, in the limit, the spread would become continuous,
and we’d find ourselves dealing with DEs.

Let’s consider equation (10.1), but we’ll drop the subscripts for the mo-
ment. For the annual spread of (say) smallpox through a community, it is
reasonable to assume

• f(a = 0) = 0 (no one infected, no subsequent infections)
• f(a) > 0 whenever a > 0 (how do you have a negative population?)
• f is differentiable (a common assumption in applied mathematics; it means

the function is “smooth” without unrealistic jumps or corners).

A linear growth rate, for example, would be f(a) = ra, with r > 0. How-
ever, spatial considerations require us to look for something that is less than
linear, or else the disease would go on spreading forever. This means we want
the growth rate (the derivative) to be slowing down as a increases. If the
derivative is slowing down, then its derivative will be negative. Thus
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f ′′(a) < 0 for all a > 0.

By Taylor’s Theorem (see Appendix H), we can rewrite f as

f(a) = f(0) + af ′(0) +
1

2
a2f ′′(0) +O(a3), (10.2)

where O(a3) indicates that the lowest term in the remainder is of the order of
a3, which we can approximate by zero (since a is small, a3 is tiny, so O(a3) is
negligible compared to the other terms). Now, if f(a) > 0 when a > 0, then
the first derivative at a = 0 must be positive (or possibly zero, but that’s not
very interesting). We’ll sharpen this up and assume

f ′(0) = r > 0.

Since f ′′ < 0, we can write

f ′′(0) = −2b < 0

(the 2 is inserted merely to balance out the 1
2 in equation (10.2)). Substituting

into our simplified Taylor’s expansion gives

f(a) = af ′(0) +
1

2
a2f ′′(0) (Remember f(0) = 0)

= ar +
1

2
a2(−2b)

= ra− ba2.

Putting it all together, our model, known as the “discrete logistic equa-
tion”, is

an = ran−1 − ba2
n−1. (10.3)

This is definitely not linear (the a2
n−1 term guarantees this). Thus, we cannot

expect clear, predictable behaviour out of this equation all the time.
Intuitively, this equation can be seen to include a natural (linear) growth

rate (an = ran−1), minus a “competition” term (−ba2
n−1) which would in-

crease dramatically as the disease spreads and infectious individuals “com-
pete” for the same limited susceptible individuals.

Let’s just note at this point that we’ve managed to derive a model using
the barest of assumptions (linear growth and a nonlinear spatially limiting
term). As we analyse this model in this chapter and the next, try to remember
just how simple this model was to formulate. We’ll see all manner of crazy
dynamics from this very basic model, which tells us a lot about how much is
going on when we step into the world of nonlinearity.

We can plot equation (10.3) with the updated value an on the y-axis and
the previous value an−1 on the x-axis. See Figure 10.1.
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Fig. 10.1. Difference equations are visualised by plotting the previous value versus
the updated value.

Since we had a lot of information around a = 0, we expect our model to
be fairly accurate in this region. The presence of a maximum makes sense:
there would be a maximum number of infections that the community could
ever support, no matter what the growth rate of the infection was. Further
away from a = 0 however, the results are potentially less accurate; we had no
information about this area, and one of our key assumptions (“throwing away”
the higher-order terms in the Taylor expansion) relied on the assumption that
a was small.

So the applicability of the model has limitations, like all models. But let’s
put aside these suspicions and see what it tells us anyway. Note that the model
only makes mathematical sense on the interval [0, r/b] (why?). Let’s rescale
to make life easier:

x =
b

r
a ⇒ a =

r

b
x.

Substituting this into equation (10.3), we have

an = ran−1 − b(an−1)2

(r
b
xn

)
= r

(r
b
xn−1

)
− b

(r
b
xn−1

)2

r

b
xn =

r2

b
xn−1 −

r2

b
(xn−1)2

xn = rxn−1 − rx2
n−1.

We have thus reduced our equation to
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xn = rxn−1(1− xn−1). (10.4)

Now we only have one parameter to deal with (r), and the parabola is con-
tained within 0 ≤ x ≤ 1. Note that x doesn’t directly represent the infected
population (it is off by the ratio used to define it). Nevertheless, reducing
the number of parameters is always helpful, especially in more complicated
systems.

We wish to follow the dynamics (the time progression) of the system. To
start, we draw a point whose x-axis coordinate (“old value”) must be equal to
the initial condition x0 and whose y-axis coordinate (“updated value”) must
be equal to the first “output” value x1; this is the point (x0, x1). In the next
iteration, x1 is now our old value (xn−1), and x2 is the new xn value; thus the
next point will be (x1, x2). And so on. See Figure 10.2.
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Fig. 10.2. Iterating the dynamics.

10.2 Cobwebbing

There is an easier way to do this, called cobwebbing. Note that the old y-axis
value always becomes the next x-axis value. Thus, if we drew a horizontal
line from one point (xk−1, xk) to the line xn = xn−1 (y = x), we would be at
the point (xk, xk). Drawing a vertical line up or down to meet the curve, we
would encounter the next point (xk, xk+1). To illustrate this, in Figure 10.3,
we start at the point (0, x0) to find the points illustrated above in Figure 10.2.

We will take advantage of cobwebbing to aid us in determining the stability
of any equilibria that may exist. As in DEs, equilibrium points of difference
equations are those where the system is, and remains, in steady state. Their
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Fig. 10.3. Cobwebbing is the same as iterating in Figure 10.2, but it’s easier to
visualise the trajectories.

stability tells us important information about the long-term behaviour of the
system. We can guess that 0 might be an equilibrium — smallpox can’t just
appear out of nowhere — but it’s not clear what other points might be, unless
we do a little mathematics.

Note that whenever the curve crosses the line xn = xn−1, there must be
an equilibrium. (Convince yourself of this if you’re not sure.) Mathematically,
this means equilibria x∗ must satisfy

x∗ = rx∗(1− x∗)
(1− r)x∗ + r (x∗)2

= 0

x∗ [(1− r) + rx∗] = 0.

This is a quadratic in x∗, so the roots are

x∗ = 0, x∗ =
r − 1

r
.

If r = 1, then 0 is the only equilibrium. If r > 1, then an equilibrium point
will exist such that 0 < x∗ < 1. If r < 1, then the nonzero equilibrium would
be negative, and we aren’t interested in that part of the graph, since negative
populations are a physical impossibility. Graphically, r > 1 corresponds to a
curve “high enough” to cross the xn = xn−1 line, not just meet it at 0. The
case r ≤ 1 corresponds to a curve that lies totally below this line on the range
0 < x ≤ 1, meeting it only at 0.

10.2.1 Stability in the discrete logistic equation

We’ve seen stability before, in the context of DEs. Here, we’re fundamentally
talking about the same concept, but there’s a more intuitive way of “seeing”
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stability when we use cobwebbing. An equilibrium point is stable if nearby
points move towards it and unstable if nearby points move away from it.

To explore stability, we start first with the r < 1 case, investigating the
stability of the (only) equilibrium 0 by starting out near it and following the
dynamics by cobwebbing. Figure 10.4 shows the case for r = 0.5. It’s clear
that, in this case, 0 is a stable equilibrium, since the cobwebbing heads towards
it.
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Fig. 10.4. Logistic map for r = 0.5.

Next, we look at the r ≥ 1 case. Figure 10.5 shows the case for r = 2.
Here we see that not only is 0 an unstable equilibrium, but that the other
equilibrium is stable. The cobwebbing heads away from 0 and towards the
other point. We can calculate the exact value of this other equilibrium point:

x∗ =
r − 1

r
from above

=
2− 1

2
= 0.5.

To examine stability mathematically, we can use Taylor’s theorem again
(Appendix H). If we start with an initial point x0 very close to x∗, we could
write

x0 = x∗ + ε,

where ε is very small indeed (although it may be positive or negative). Then
by Taylor’s theorem (Appendix H),
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Fig. 10.5. Logistic map for r = 2.

x1 = f(x0) = f(x∗ + ε)

= f(x∗) + εf ′(x∗) +O(ε2)

≈ x∗ + εf ′(x∗),

since f(x∗) = x∗, and we can approximate O(ε2) by zero since ε is small. If
f ′(x∗) > 0, then x1 and x0 lie on the same side of x∗, whereas if f ′(x∗) < 0,
then x1 and x0 lie on opposite sides. More importantly though, if |f ′(x∗)| > 1,
then x1 is further from x∗ than x0 is. That is, successive trajectories are travel-
ling away from the equilibrium, so it must unstable. Conversely, if |f ′(x∗)| < 1,
then x1 is closer to x∗ than x0 is and hence we have a stable equilibrium.

10.2.2 More complex behaviour

The cobwebbing results for r = 3.2 and r = 4 are shown in Figures 10.6 and
10.7, respectively. Each was iterated 100 times. What’s going on here?

In the first case, the population ends up oscillating between two different
values forever. This is called a periodic orbit, since the orbit cycles periodically
between two (or possibly more) different states. Periodic behaviour is very
common in nature, as seen in the cycling of the seasons, the beating of your
heart or the winter outbreaks of influenza.

In the latter case, the system is undergoing “chaos”. Chaotic systems are
highly unpredictable, as you can guess. Tiny fluctuations at one stage will
lead to huge differences later on. This is disastrous news for our attempts
to use computers to model such systems, because tiny fluctuations in the
computation (e.g., roundoff errors) will have huge impacts later on. Chaotic
systems occur in nature: the weather (this is why the weatherman can’t predict
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Fig. 10.6. Logistic map for r = 3.2.
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Fig. 10.7. Logistic map for r = 4.

more than a few days ahead and also why he’s frequently wrong), a fibrillating
heart (hopefully not yours) and the unpredictable population of cannibalistic
flour beetles (who sometimes eat eggs or pupae, but not always).

Figure 10.7 illustrates the difference between linear and nonlinear systems;
a linear system would never give weird unpredictable results like these. We’ll
explore some more of these issues in the next chapter.
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10.3 Lab work

The problem

We wish to explore the discrete logistic equation for various values of the
parameters, beginning with cobwebbing. This lab emphasises the exploration
of different parameters over the creation of code (since the necessary programs
are somewhat difficult for beginning Matlabbers). Below you will find the pro-
grams necessary for the exercises, where you can explore the discrete logistic
equation.

The solution

The following program plots the discrete logistic equation, the xn = xn−1

(y = x) line and cobwebs for as many iterations as the user wants. It also allows
the user to choose different r and initial values. Note that it runs continuously,
always erasing the old figure (the only way to escape the program is to use
the Control-C break). Pauses are inserted so that it will be easier to follow
the cobwebbing over time (if you choose a very large number of iterations,
you will want to place a % in front of the pause lines to speed things up).

Be sure to type the codes in precisely as-is, because they’re designed to
give outputs on screen.

%Cobwebbing for the discrete logistic equation

while 1<2 %(will run continuously)

clear all

r=input('Choose r, the bifurcation parameter, in (0,4) ');

n=input('Choose n, the number of iterations ');

x=zeros(1,n+1);

x(1)=input('Choose x(1), the initial point, in [0,1] ');

clf

s=0:0.2:1;

plot(s,s,'b')

t=0:0.01:1;

hold on

v=r.*t.*(1-t);

plot(t,v,'g')

pause(1)

w=zeros(1,3);

y=w;

for i=2:n+1

x(i)=r.*x(i-1).*(1-x(i-1));

end
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plot([x(1) x(1)],[x(1) x(2)])

for i=2:n

plot([x(i-1) x(i)],[x(i) x(i)])

pause(1)

plot([x(i) x(i)],[x(i) x(i+1)])

end

xlabel('Previous value x_{n-1}')

ylabel('Updated value x_n')

title('Logistic Map x(n)=r*x(n-1)*(1-x(n-1))')

end

Beyond r = 3, it may be difficult to tell exactly what’s going on. Another
way to look at the same problem is to create a histogram, counting the num-
ber of times the population reaches a certain value over time. Note that, in
both this and the cobwebbing program, small errors are introduced since the
computer you are using can only handle so many decimal points; eventually
these may add up to slightly skew your results.

The following program determines an individual trajectory (with a user-
defined value of r) for 10,000 iterations and counts the amount of time it
spends in different subintervals of [0, 1], each with width 0.001. The starting
point is always 0.5, and a histogram is plotted at the end. Note that it is also
designed to run “forever” (but you may have to hit Control-C TWICE to exit
this program).

%Histogram for the discrete logistic equation

clear all

x0=0.5;

n=10000;

bins=0:0.001:1;

while 1<2

r=input('What is r (between 0 and 4)?');

clf

y=zeros(1,n);

y(1)=r.*x0.*(1-x0);

for k=2:n

y(k)=r.*y(k-1).*(1-y(k-1));

end

hist(y,bins);

xlabel('Population values scaled to lie between 0 and 1')

ylabel('The number of times pop^n lies within value x and

x+\Delta x')

title('Frequency histogram for the Logistic map')
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end

10.3.1 Exercises

Throughout these exercises, keep track of your results for specific r values.
See if you can build up a “big picture” of what is going on. These programs
will come in handy for the next chapter’s lab, so be sure to save your work.

1. For a value of r ∈ (0, 2), sketch the graph of the parabola by hand and
cobweb by hand starting from the initial value of 0.5.

2. Now, using the cobwebbing program, repeat for the same initial value and
r (for 20 iterations), comparing this to your sketch.

3. For the same value of r, run the program with several initial values. For
each run, describe the long-term behaviour of the web and the correspond-
ing time evolution. Can you draw any conclusions about the dependence
on the starting value?

4. Run the program starting from 0.5, for a range of r values from 1 to 3.
Describe the long-term behaviour of the web, and the corresponding time
evolution.

5. Run the program starting from 0.5 for a range of r values from 3 to 4. Try
to describe the long-term behaviour of the web, and the corresponding
time evolution (in the chaotic regime, you might want to use very large n
values and put a % in front of the pause commands).

6. Use the histogram program to explore the same r values as you investi-
gated above. Can you clear up some of the confusion you may have had
for some r values?

7. Can you find a value of r which produces exactly 2 spikes? 4 spikes? 8
spikes? Draw the histograms in each case.

8. Can you find a value of r that produces exactly 3 spikes (this is tricky)?

9. Can you find a value of r that produces exactly 5 spikes (this is even
harder)?

10. Run your cobwebbing program again and see what the trajectories look
like.

11. Consider the difference equation xn+1 = λ sin(πxn) on the range 0 ≤ xn ≤
1.

a) Use Taylor’s theorem to show that 0 is an equilibrium point.
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b) Can you show that there’s a second equilibrium point, assuming λ is
large enough? (Note: you won’t be able to find it explicitly, but it’s
still possible to show that there has to be one.)

c) Use your cobwebbing program to investigate the system when

λ = 0.2, 0.5, 0.8, 0.9.

d) Use your histogram program to confirm your findings for these values.

12. Bonus: Consider the difference equation xn+1 = α sin2 xn. Use your cob-
webbing program to explore what happens for different values of α. How
does the system change depending on where you start your iterations?
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Bifurcations

This chapter introduces one of the most important concepts that mathematics
can bring to biology that biologists are rarely taught. Bifurcations involve the
system changing in some fundamental way when a certain parameter reaches
a critical value. In fact, we’ve already seen a bifurcation, back in Chapter 6.
When the parameter R0 changes from being above 1 to below 1, there’s a
fundamental change in the system; that is, the disease stops being endemic
and will die out on its own.

Bifurcations are intricately tied to stability. A system may undergo a bi-
furcation when an equilibrium changes from being unstable to stable (as in
the R0 example above; the disease-free equilibrium changes from unstable to
stable) or when a new equilibrium (or periodic orbit) is created.

By the end of this chapter, you should be able to determine the stability
of an equilibrium of a difference equation, understand how one determines the
stability of periodic orbits of a difference equation, understand how to read a
bifurcation diagram and have further reasons to develop a healthy scepticism
about relying too much on computers.

11.1 Stability in difference equations

In the previous lab, we saw the stability of equilibria of the logistic equation
change as a certain parameter, r, changed. First there was only one equilib-
rium, at 0 (Figure 10.4), then its stability changed from stable to unstable
when a new (stable) equilibrium was created (Figure 10.5). As r increased,
this new equilibrium became unstable, and a periodic orbit was created (Fig-
ure 10.6). As r increased further, there were more periodic orbits and then
chaos (Figure 10.7).

The chaotic regime can be thought of as a regime where the detailed long-
term behaviour of the deterministic system is effectively unpredictable because
of sensitivity to the initial conditions. This system is an example of what is
called “the period-doubling route to chaos”.
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However, as r increased even further, we were back to periodic orbits again
(assuming you could find the Period 3 and 5 orbits in the lab).

How can we describe what’s happening here in a way that’s easy to un-
derstand? As always, the best way to “see” what’s going on will be to draw a
picture. We’ll have to walk through some of the mathematics to understand
the issues here, but we’ll use that to build up our bifurcation diagram. This
is a diagram that illustrates the changing nature of equilibria, periodic orbits
etc, with the parameter of interest plotted on the x-axis. It’s a neat conceptual
way of visualising the various aspects of the system at a glance, as we’ll see.

11.1.1 The range 0 < r < 3

From Section 10.2 of the last chapter, we had two equilibria, 0 and r−1
r . Let’s

call these x̄1 and x̄2, respectively. (Notice that our nontrivial equilibrium is
different for different values of r.)

In Section 10.2.1, we saw that |f ′(x∗)| < 1 was our condition for stability
of an equilibrium x∗. So let’s differentiate the function:

f(x) = rx(1− x)

f ′(x) = r(1− 2x).

We thus have

f ′(x̄1) = r

f ′(x̄2) = r

(
1− 2 · r − 1

r

)
= 2− r.

It follows that x̄1 is stable if and only if |r| < 1, while x̄2 is stable if and only
if |2− r| < 1. This condition is −1 < 2− r < 1 or 1 < r < 3. This is the same
result we obtained from cobwebbing: up to 1, the zero equilibrium was the
only stable one, while from 1 to 3, only the nonzero equilibrium was stable.

We can plot this in a bifurcation diagram, measuring the stability of the
two points against the parameter r. In such a diagram, stable phenomena
are represented by solid curves, while unstable phenomena are represented by
dashed curves. In the lab, the program can’t “see” unstable equilibria, since it
can never reach them, so the bifurcation programs only show us stable orbits.
Unless you happen to hit the equilibrium exactly, which is unlikely, you’ll
always be moving away from an unstable equilibrium, so the computer only
finds stable phenomena.

In Figure 11.1, we see that, for 0 < r < 1, there is only one equilibrium,
and it is stable. For 1 < r < 3, there are two equilibria (not counting negative
values), one stable and one unstable. Naturally, the nontrivial equilibrium will
be different for different values of r, which accounts for the curve.
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Fig. 11.1. Bifurcation diagram for 0 < r < 3.

11.1.2 The range 3 < r < 3.45

What happens beyond r > 3? In Section 10.2.2, we saw that the population
around r = 3.2 oscillated between two points, w1 and w2. The system has
undergone another bifurcation as r changed from r < 3 to r > 3, splitting
from period one (an equilibrium) to period two (a periodic orbit). “Period
two” means

w2 = f(w1)

and w1 = f(w2).

Therefore

w1 = f [f(w1)] ≡ g(w1).

Let’s examine the stability of g(x). We can use the definition of g to derive
an explicit expression for g(x):

g(x) = f [f(x)]

= rf(x){1− f(x)}
= r[rx(1− x)] {1− [rx(1− x)]}
= r2x(1− x)[1− rx(1− x)].

This might look like Figure 11.2.
Why “might”? Because, depending on the value of r, the curve might

cross the line, once (if the two “hills” were small enough, 0 would be the only
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equilibrium), twice (if the “valley” were sufficiently raised or the second “hill”
small enough), three times (if the “valley” just touched the line), or four times
(as we see here). What’s happening here is another bifurcation, but this time
of periodic orbits.

Two of these equilibria we’ve seen before: the first and third equilibria are
x̄1 and x̄2 from before. How do we know this for sure? Well, since x̄ is an
equilibrium of f , then it must be an equilibrium of g. Thus

g(x̄) = f [f(x̄)]

= f(x̄) (since f(x̄) = x̄)

= x̄ (for the same reason).

What about the stability of these points? We know that both x̄1 and x̄2

are unstable for r > 3, and we saw in the last chapter that we have a periodic
orbit when r > 3. So our other two points are stable, at least for a while.

What’s happening thus far is that our nonzero equilibrium “continues” on
from the region of only one stable equilibrium, but it is no longer stable. So
our bifurcation diagram looks like Figure 11.3.

We also saw in the previous lab that the Period 2 zone only existed for a
certain range beyond 3. After that, they split into Period 4 points and so on.
We can determine the extent of this range using the same arguments as we
made for the singular solution zone. Thus we look for conditions on r such
that |g′(w1)| and |g′(w2)| < 1 (for stability of the two points).



11.1 Stability in difference equations 135

2.6 2.8 3 3.2 3.4 3.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bifurcation parameter r

x*  v
al

ue
s

Fig. 11.3. Bifurcation diagram for the appearance of Period 2 points.

g′(x) =
d{f [f(x)]}

dx
= f ′[f(x)] · f ′(x)

using the chain rule and the definition of g. Next, since f(w1) = w2 and
f(w2) = w1,

g′(w1) = f ′(w2)f ′(w1)

= f ′(w1)f ′(w2) swapping these around

= g′(w2).

We now look to see when |g′(w1)| = |f ′(w2)f ′(w1)| < 1, with the un-
derstanding that the results will apply to |g′(w2)| as well. It turns out (see
Appendix I) that

|g′(w1)| =
∣∣4 + 2r − r2

∣∣ .

We are interested in the boundaries themselves; that is, the values of r for
which |g′(w1)| = 1, or g′(w1) = ±1. If g′(w1) = +1, then

4 + 2r − r2 = 1

r2 − 2r − 3 = 0

(r − 3)(r + 1) = 0.

In this case, the boundaries are r = 3 or −1. We’ll ignore the negative root
(we already said we weren’t interested in this region), and the 3 corresponds
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to the left-most boundary for the Period 2 zone. That is, as we suspected, the
Period 2 points only exist for r > 3.

For the other case, g′(w1) = −1, we have

4 + 2r − r2 = −1

r2 − 2r − 5 = 0

r =
2±
√

4 + 20

2

=
2± 2

√
6

2

= 1±
√

6

≈ 3.45

(after we ignore the negative root). This means that the Period 2 zone should
extend from r = 3 to r ≈ 3.45.

However, when you run your bifurcation program in the lab for (say)
2.8 < r < 3.5, you’ll notice a sort of fuzzy patch precedes each bifurcation,
starting slightly before the points we’ve just calculated. What’s causing this?
Answer: computer round-off error. The area near the bifurcations is so sen-
sitive (nonlinear systems generally are, anyway) that we aren’t getting the
proper results. The range and “amplitude” of the fuzzy area will vary from
computer to computer and, in some cases, depend on the program used to
create the graph (Matlab, C++, Fortran etc).

11.1.3 The range r > 3.45

For higher periods, we could try to repeat the same analysis as for Period
2. From this, we’d have a seventh order polynomial, out of which we could
extract three factors (one for the original nontrivial equilibrium, two for the
now-unstable Period 2 points), leaving us with a fourth order polynomial to
solve (corresponding to Period 4). This is much too hard to do in general, so
we take the lessons we’ve learnt from the theory surrounding Period 2 and
rely on the computer simulations to guide us through higher-order periods.

We’ll see in the lab that not only do we get Period 4, Period 8 and so
on, these start to happen quicker and quicker as r increases. We not only get
chaos, which is pretty interesting in itself, but there are also Period 3, 5, 7 and
so on orbits after the appearance of chaos. Who knew that our little logistic
equation, that was created from the barest of assumptions with only a very
slight nonlinearity to it, could be capable of such diverse behaviour?

The one key point to remember: nonlinear systems are complicated and
sometimes subject to computer error, so be careful.
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11.2 The Doctor Who effect

If you ever have access to video equipment, here’s a fun game you can play.
Point the camera at a TV showing its own output. As you’d expect, you’ll see
a TV that’s watching a TV, which is itself watching a TV and so on. It looks
a little curved, because there’s a (very) slight delay in the signal reaching the
camera. Also, the image is less sharp as you go down the chain, because the
camera digitises the information, meaning it isn’t quite an exact copy.

Now do something exciting to perturb the system: wave your hand in
front, or strike a match. What you get is a continual feedback loop, where
the camera is watching a picture, digitising the information and sending it
back to the screen... but by the time it does, the delay means that at the next
instant it’s not quite watching the same picture. Because of the tiny errors,
what you’ll see will be a magnificent looping effect as the picture continually
updates itself. (An easier way to see this is to watch the opening credits of
old Doctor Who episodes, which were created in exactly this way.)

What you’re seeing is a bifurcation from a stable equilibrium (the TVs
all watching themselves) to a chaotic system (the Doctor Who effect). Bifur-
cations are all around us, and it’s a pity they’re not better known outside
mathematics.

In last chapter’s lab, we saw some other difference equations and the
way their equilibria and periodic orbits changed stability as their parame-
ters changed. In this chapter’s lab, we’ll create a program that will draw the
bifurcation diagrams for us, at least for the stable orbits.

11.3 Lab work

The following program is designed to plot the infected population after a large
number of iterations (equal to the final population value(s) for a certain range
of r values) versus the parameter r over a user-specified range of r.

%Bifurcation in the discrete logistic equation

clear all

rmin=input('Input the minimum value of r: ');

rmax=input('Input the maximum value of r: ');

n=850;

N=100;

for m=1:n

r=rmin+(rmax-rmin)*m/n;

x=0.5;

for k=1:N

x=r.*x.*(1-x);
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end

X(1)=x;

R(1)=r;

for k=1:N

X(k+1)=r.*X(k).*(1-X(k));

R(k+1)=r;

end

plot(R,X,'.')

hold on

end

title('Bifurcation plot')

xlabel('Bifurcation parameter r')

ylabel('x values')

11.3.1 Exercises

1. Run the bifurcation program for the range 0 < r < 4.

2. Now that you have run the program once, you may use the axis command
to “zoom in” on a region. Keep in mind that the detail will be poorer as
you zoom in further.

3. Rerun the program for the smaller r range. This will take a lot longer,
but will give you better detail within that range.

4. Can you use this to find the r values to produce 3 and 5 spikes in the
histogram program (if you didn’t already)? How about 7 spikes?

5. Consider the difference equation xn+1 = λ sin(πxn). Use your program to
draw the bifurcation diagram on the range 0 < λ < 1.

6. Consider the difference equation xn+1 = α sin2 xn. Use your program to
draw the bifurcation diagram for α > 0. What’s happening here?
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More advanced epidemic models

This chapter deals with a range of different options for creating more advanced
models, depending on the circumstances. It examines choices that can be made
for the infection term, for demography and inclusion of factors like the effects
of media or available hospital beds. Throughout this chapter, we’re going to
focus on the differential equation for the susceptibles, with the understanding
that there’s a corresponding equation for infected individuals.

By the end of this chapter, you should understand some of the choices
available for tweaking the basic models and adding in more advanced options.

12.1 The infection rate

In Chapter 5, we used the infection term

S′ = −βSI,

on the grounds that there was no transmission if S = 0 or I = 0. Which is a
condition we’d like to have, but there are other formulations we could use that
would still have this property. In mass-action transmission, the parameter β
is the average ratio of infective contact per infected individual per unit time.
It has units of [people−1·time−1]. This is also known as density-dependent
transmission. For a disease like the flu, the more people around you who are
infected, the more likely you are to catch it. So the contact rate depends on
the density of people around you.

Another form of infection is

S′ = − cSI

S + I
.

This is called standard incidence. In this case, c represents the number of
contacts and the probability of becoming infected. It has units of [1/time].
Note that if the population were constant, so that S + I = N , then we could
write
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S′ = −cSI
N

= −βSI

with β = c/N . That is, the standard incidence is a general case of mass-action
transmission. Of course, populations aren’t usually constant when you have
births and deaths, but it’s an approximation that can be justified in some
circumstances.

This is also known as frequency-dependent transmission. For a disease like
HIV, it doesn’t matter how many people around you have HIV, it only matters
how many of them you have sex with. So the contact rate depends on the
frequency of contacts.

One difference between the two is that the former has no bound if the
population gets large, while the latter flattens out to a maximum as the pop-
ulation increases. Mass action is simpler, however, so when taking derivatives
(to calculate the Jacobian, for instance), it’s a lot easier to work with. Which
one you choose depends on the nature of the disease and the size of the pop-
ulation you’re dealing with.

They aren’t the only choices, of course. Another option that still has no
transmission when S = 0 or I = 0 is

S′ = −βSpIq

where p and q are two further parameters that we might have some control
over. For example, if it takes two zombies to infect a single human, then we
might choose p = 1 and q = 2. This is called a power relationship and is an
obvious generalisation of mass-action transmission.

Another possibility is

S′ = − βSpIq

1− ε+ ε(S + I)
,

where ε ranges between 0 and 1. This is called asymptotic contact and gener-
alises all of the above. If ε = 0 then we have the power relationship. If ε = 1
then we have the generalised version of standard incidence. Note that this
assumes that S and I have the same units as 1 and ε (i.e., no units). So this
works when populations are proportions, not individuals.

As you can see, the possibilities are potentially limitless. Of course, your
choice of model depends on the biology, and there are advanced techniques to
determine which type of model might be best in a given situation. However,
there’s also the issue of mathematical tractability: unless you’re running a
purely numerical analysis, you also need to be able to analyse these models.
(And a purely numerical investigation can miss things.) Even simple models
can give rise to very complicated behaviour. We don’t necessarily need the
perfect model to understand possible outcomes; that is, sometimes we are
happy to trade accuracy for insight.
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12.2 Demography

One issue that often arises in disease modelling is to determine what’s hap-
pening to the demographics of the population, independent of the disease.
This issue comes up a lot in ecological modelling, as you can imagine. How-
ever, even if our main focus is the infection, it’s still important to include the
background dynamics of birth and death.

You may be unsurprised to learn that there are several ways to do this. In
Chapter 6, we saw perhaps the most straightforward way to do this: constant
birth and proportional death. Let’s generalise this slightly by writing

S′ = π(S)− dS,

where π(S) is a growth function and d is the background death rate. The latter
is quite a useful formulation, because it turns out that this means individuals
will be alive for 1/d time units. It’s not the only way to include the death
rate, but it is the easiest.

Except... why not a constant death rate? Surely something like

S′ = π(S)− d̃

would be a simpler way to describe background death: individuals simply
leave at a constant rate with units of [people/time]. The problem is, having
a negative in a differential equation runs the risk of making the population
negative. (We saw this issue in the exercises in Chapter 5 in fact!) Specifically,
if the population is initially zero (so that S(0) = 0) and π(0) = 0 (so if there’s
nobody in the population, there’ll be no growth, which is reasonable), then
the equation is

S′(0) = −d̃ < 0.

That is, initially there’s nobody in the population (which is fine) and the pop-
ulation is decreasing, meaning that shortly afterwards there will be negative
people (which isn’t fine at all). Obviously, any model that allows for negative
populations isn’t a good one. To put it another way, we’d like to avoid nega-
tive people ,. So we don’t want to have negative terms that don’t allow those
terms to be zero when the population is zero. It follows that the simplest form
of the background death rate is the term −dS.

Okay, so what about the growth rate? In this case, we don’t have any
concerns about populations being negative, so we can let π(S) be a constant
if we like. This is what we did in Chapter 6, so we would have something like

S′ = r − dS, (12.1)

where r is the recruitment rate of new people per unit time. It represents
constant birth or immigration (or both) and has units of [people/time]. This
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is a pretty easy equation. It’s linear, so we could solve it without too much
trouble. Or we could look at the equilibrium values:

S′ = 0⇒ r − dS̄ = 0

S̄ =
r

d
.

That is, populations will equilibrate at the value π
d . Note that if S(0) < π

d ,
then S′ > 0, whereas if S(0) > π

d , then S′ < 0. So solutions that start above
π
d will be decreasing, while solutions that start below π

d will be increasing.
For this simple model, all solutions approach the equilibrium. So the outcome
looks like Figure 12.1.

r/d

Fig. 12.1. Constant growth, linear death.

Another option is logistic growth, with

π(S) = rS

(
1− S

K

)
.

In fact, since there’s already a linear factor rS, we can absorb the death rate
into this and simply have

S′ = rS

(
1− S

K

)
.

This has the property that there is no change if S = 0 (so no growth if there
are no individuals) or S = K (where the population is at equilibrium). We call
K the carrying capacity. Since S′ < 0 for S > K and S′ > 0 for 0 < S < K,
it follows that solutions below the carrying capacity will increase, while those
above will decrease. It turns out that all nonzero solutions will converge to
the carrying capacity, so solutions look like Figure 12.2.
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K

Fig. 12.2. Logistic growth.

The difference between Figures 12.1 and 12.2 is that solutions that start
with sufficiently small initial conditions are much “flatter” at first. That is,
they persist at low levels for some time before heading towards the equilibrium.
They get there in the end, but it’s a slower process. More formally, there’s a
point of inflection that changes some of the solution curves from concave up
to concave down. The value of r

d in Figure 12.1 is like the carrying capacity
in logistic growth.

In the logistic growth example, we have nonlinear growth and linear death
(whether explicitly written out or absorbed into the linear term). In the earlier
case, we had constant birth and linear death. We saw that we couldn’t have
constant death. But surely the next simplest version would be linear growth
and linear death?

Unfortunately, problems arise here. Suppose we had something like

S′ = rS − dS,

where rS represents linear growth and dS linear death. However, there’s an
issue when both terms have the same order. We can rewrite this model as

S′ = (r − d)S.

and in fact we can explicitly solve this one:

S(t) = S(0)e(r−d)t.

If r > d, then solutions increase to infinity, which is impossible. If r < d,
then the entire population dies out in the absence of disease, which isn’t very
likely. But why not set r = d and assume that the population is constant?
It’s a nice idea, but unfortunately it means that we’re on a knife-edge case,
where tiny fluctuations in the birth or death rate could result in catastrophic
consequences.
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Alas, a number of disease models make this assumption, with the pop-
ulation sometimes being held in check by the disease itself. This isn’t very
realistic though, so this should be avoided when creating models. In general,
the birth and death terms can be whatever you want, so long as they’re not
the same order and so long as populations can’t become negative.

12.3 The effects of media

In any pandemic, the media can kind of go crazy. Sometimes they panic,
over-reporting on every suspected case. Sometimes they ignore the disease
for much longer than they should. Nevertheless, the media is a powerful tool
for affecting people’s behaviour. It’s not always a straightforward response
though.

How can we build this into our models? We’ll focus on the transmission
rate, although it’s not the only possibility. The transmission rate might change
due to people mixing less as a result of the media reporting on the disease.
There are several ways we might include this, but the basic idea is that the
transmission rate should decrease as the number of infected individuals in-
creases. In a pandemic, you still have to go to work, but you might not go
to a hockey game. With less mixing of susceptibles and infecteds, the contact
rate decreases, which is part of the transmission rate.

Having determined which form of demography we might want, let’s return
to the infection term. Using (say) logistic growth and standard incidence, our
model might look like

S′ = rS

(
1− S

K

)
− β(I)

SI

S + I
. (12.2)

This combines two things we’d previously seen, except that β is no longer a
constant.

The most obvious function to consider is

β(I) = β0e
−mI ,

so that the transmission function decreases as the number of infected individ-
uals increases, eventually approaching zero as the whole population becomes
infected. See Figure 12.3.

However, the media response is not instantaneous. Information takes time
to be released and reported. Yes, even in our 24-hour news cycle! So if it takes
τ days for the health system to release numbers of infected people, then that
will introduce a delay into the system. Our media-transmission function then
becomes

β(I) = β0e
−mI(t−τ).

(Remember that I is a function of time, so β is as well.) See Figure 12.4.
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I

β(I)

β
0

Fig. 12.3. The media-affected transmission function decreases as the number of
infected individuals increases.

I

β(I)

β
0

I(τ)

Fig. 12.4. After an initial delay, the media-affected transmission function decreases
as the number of infected individuals increases.

12.4 Hospital bed capacity

Thus far, we’ve dealt with the infection and demographics, but there’s another
place where we might have some control over our equations: the recovery
rate. Medical resources will determine the treatment and recovery rate, but
resources may be limited. We’ll consider the hospital bed capacity, which
will have a maximum and a minimum. In a pandemic, the hospital may be
inundated, but some minimum treatment will still occur. For diseases like
swine flu (H1N1), a large number of people survived due to respirators in
hospitals that essentially did the breathing for them while their lungs healed.
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In the 1918 Spanish flu pandemic (also H1N1), such patients would have died.
So there’s a relationship between recovery and hospital bed capacity.

For this, we’ll need to consider a full SIR model like

S′ = r − dS − βSI

S + I +R

I ′ =
βSI

S + I +R
− dI − νI − µ(b, I)I

R′ = µ(b, I)I − dR.

(12.3)

Here we’re using standard incidence with a denominator involving all popu-
lations (since we’ve added in the R class). There’s a background death rate d
in all classes and a disease-specific death rate ν in the infected class.

The recovery rate is µ, which is often considered constant. However, here
we will formulate the recovery rate in such a way that it incorporates the effect
of the capacity and limited resources of the healthcare system, as defined by
the parameter b > 0 representing the hospital bed capacity. Conditions that
we want are:

• µ is positive for b > 0.
• When I = 0, µ is constant, so that µ(b, 0) = µ1 > 0, where µ1 is the

maximum per capita recovery rate due to sufficient healthcare resources.
• As I increases, µ should decrease. That is, the more infected people over-

whelm the hospital, the slower treatment and hence recovery will be.
• As the number of infections increase, the available resources cannot meet

the demand, but some individuals will still get treated and recover. Thus
µ has a lower bound µ0 such that limI→∞ µ(b, I) = µ0 > 0.

• As b increases, µ should increase. That is, as more beds become available,
recovery should be higher.

The simplest function that satisfies these requirements is

µ(b, I) = µ0 + (µ1 − µ0)
b

I + b
.

See Figures 12.5 and 12.6.

12.5 Lab work

The problem

Is there a difference between mass-action infection and standard incidence
without demography?

The solution
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Fig. 12.5. The recovery rate µ(b, I) with µ0 = 1 and µ1 = 5.
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Fig. 12.6. The recovery rate as a function of I for a given number of hospital beds
b.

First let’s set up our m-file. We need initial conditions, so let’s suppose
there are five susceptible individuals and 1 infected individual. We’ll run the
output for 3 time units.

clear all

t0=0;

tau=3;

x0=[5 1];

tspan=[t0 t0+tau];

[t,x]=ode45(@standardincf,tspan,x0);
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plot(t,x(:,1),t,x(:,2),'--')

xlabel('time')

ylabel('population')

Now for our function file. We’ll do standard incidence first. The parameter
values don’t really matter, so let’s randomly choose c = 3. The code for this
is thus:

function xprime=standardincf(t,x)

c=3;

xprime(1,:)=-c.*x(1).*x(2)./(x(1)+x(2));

xprime(2,:)=c.*x(1).*x(2)./(x(1)+x(2));

Next, we’ll change the equations for mass-action transmission. We could
write a new function file with a new name and consequently adjust the m-
file... or we could just comment out the equations we used and put in the
revised equations. This saves us having to rename everything. We’ll keep the
name c but we need an N for β = c/N to have a comparison. Since we had
six individuals, let’s choose N = 6. So the revised function file is:

function xprime=standardincf(t,x)

c=3;

N=6;

xprime(1,:)=-c.*x(1).*x(2)./(N);

xprime(2,:)=c.*x(1).*x(2)./(N);

%xprime(1,:)=-c.*x(1).*x(2)./(x(1)+x(2));

%xprime(2,:)=c.*x(1).*x(2)./(x(1)+x(2));

The results are shown in Figure 12.7. (Note that the labels are drawn in
by hand, using the “Plot Tools” interface and then “Textarrow” from the
“Insert” menu.)

Do you notice any difference? They look pretty similar to the naked eye,
but how would we know for sure? One way is to look at the output at the end
of the simulation. If we write x(length(x),:), this will give us the final row
of the x values.

For mass action, we find ans = 0.0037 5.9963. Note that the sum is
exactly 6. In fact, if we write x(length(x),1)+x(length(x),2), then the
answer is 6.

For standard incidence, we find ans = 0.0037 5.9963. However, if we
write x(length(x),1)+x(length(x),2), then the answer is 6.000. What’s
going on here? One is exact and the other is a decimal, but with zeros.
This suggests that the answer isn’t precisely 6 but rather something very



150 12 More advanced epidemic models

A

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

time

po
pu

la
tio

n

Susceptibles

Infecteds

B

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

time

po
pu

la
tio

n

Infecteds

Susceptibles

Fig. 12.7. A. The output for standard incidence. B. The output for mass action.

close to it. So if we write x(length(x),1)+x(length(x),2)-6, then we find
ans=-8.8818e-16.

So do they produce the same output or not? Well, technically no... but
if you have two real-world processes with output that’s within 10−15 of each
other, then they might as well be identical.

There’s a simpler way to approach this, however. Without demography,
S′ + I ′ = 0 in both cases, so the population N = S + I must be a constant.
Hence

c

S + I
=

c

N
= β,
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so the two sets of differential equations really are equal. It’s interesting that
Matlab almost but didn’t quite tell us that. This is the kind of error we should
expect to live with.

12.5.1 Exercises

1. Suppose the demography follows the form of equation (12.1) with r = 5
and d = 0.1 in the S′ equation, with the same death rate (but no births)
in the I ′ equation.

a) Adjust your programs to find x(length(x),:) for both mass action
and standard incidence. What do you conclude now?

b) Rerun your programs for 30 time units. What is this telling you?

c) What if r = 12 and d = 2? Why does this produce what it does?

d) Now repeat the process with logistic growth instead, with the same
parameter values and K = 50. What’s happening now? Try running
for longer (e.g., 300 time units) to see the full effect.

2. Adjust your program to model an infection with the form of equation
(12.2).

a) Run the program for m = 0.1 and β0 = 1.

b) Plot the two functions β(I) on the same graph.

c) What’s the effect of including the −dS term in the S′ equation versus
leaving it out?

3. Consider system (12.3).

a) Calculate the disease-free equilibrium.

b) Calculate R0. (Hint: you may have to bound µ(b, I).)

c) Show that there are potentially two endemic equilibria. (You don’t
have to find them explicitly to do this.)

d) If two endemic equilibria coexist, what can you conclude about their
stability?
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Measles with vaccination

As seen in Chapter 10, when dealing with discrete time, there can be un-
expected results. There we dealt with only one-dimensional models, so here
we’ll investigate a higher-order model. The key to these models is having an
underlying timestep that drive the dynamics.

By the end of this chapter, you should be comfortable with discrete-time
modelling, both in construction and analysis. You should be able to appreciate
some of the similarities and some of the differences between discrete-time and
continuous models.

13.1 The model

Suppose we have a constant number of births and deaths B, so that the
number of births equals the number of deaths each week. This isn’t necessarily
true in the long term, but on a weekly basis it’s an okay assumption.

Individuals recover from measles within a week, so there are only new
measles cases each week. Newborns are born susceptible, while everyone
catches the measles (or gets vaccinated), so only recovered individuals die.

Because time is discrete, we can use difference equations instead of ODEs.
This means that, instead of having a derivative, we will have update each
class at each timestep. Of course, many updates don’t change the state of that
variable, so if there were susceptibles last week, then there will be susceptibles
this week. The basic model is an SIR model, as shown in Figure 13.1.

S I R BB
α

pFig. 13.1. The progression of measles.

The model is given by
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St+1 = St − αItSt +B

It+1 = αItSt

Rt+1 = Rt + It −B.
↑

Anyone infected last week is now recovered.

What changes each week are that measles can infect you and you then
recover the following week, which is why the solo It term doesn’t appear in
the second equation but instead moves individuals to the recovered class at the
next timestep. You might also be born (as a susceptible) or die (as a recovered
individual, which is too bad for you, but at least you survived the measles).
We’re ignoring death due to disease, which is a reasonable assumption in the
developed world, although it might not be in the developing world.

Key differences between this and ODE models are:

• birth and death are both constant, not proportional to population size
• the infectious period is the same length as the time step.

Let’s add vaccination, which takes some susceptibles directly to the recov-
ered class. If a proportion p of susceptibles are vaccinated each week, then the
model becomes

St+1 = (1− p)St − αItSt +B

It+1 = αItSt

Rt+1 = Rt + It −B + pSt.

See Figure 13.2.

S I R BB
α

p

Fig. 13.2. The addition of vaccination.

13.2 Finding equilibria

First, let’s look at the whole population. If we set Nt = St + It + Rt, then,
adding the equations together, we have

Nt+1 = St + It +Rt = Nt.
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That is, we’ve deduced that the population size remains constant over time.
Hence we could write Nt = N . Furthermore, St and It do not depend on Rt.
That is, the third equation decouples from the model. We can thus look at
St+1 and It+1 only.

Equilibria must satisfy St+1 = St and It+1 = It. That is, there should be
no change in time. We could call these fixed values (if they exist) S̄ and Ī.
Plugging them into the model, we have

S̄ = (1− p)S̄ − αĪS̄ +B

Ī = αĪS̄.

From the second equation, either Ī = 0 or S̄ = 1
α . So let’s look at each

case.

Ī = 0 S̄ =
1

α

S̄ = S̄ − pS̄ +B
1

α
= (1− p) 1

α
− Ī +B

pS̄ = B Ī = B − p

α
, if B − p

α
> 0.

S̄ =
B

p
.

Hence the equilibria are

(S̄, Ī) =

(
B

p
, 0

)
,

(
1

α
,B − p

α

)
.

Note that if there’s no vaccination (p = 0), then there’s no disease-free equi-
librium. (If there’s no disease, then the system blows up, because the death
assumption assumes that everyone passes through to the recovered stage.)
The endemic equilibrium only exists if B − p

α > 0.

13.3 Stability in a discrete model

We can find the Jacobian quite easily:

Jp =

[
1− p− αIt −αSt

αIt αSt

]
p > 0

J0 =

[
1− αIt −αSt
αIt αSt

]
p = 0.

The linearisation is thus
(
St+1

It+1

)
= Ji

(
St
It

)
for i = 0, p.
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Although there’s a Jacobian matrix, the conclusions aren’t quite the same
as in the continuous case. This is a two-dimensional system, but let’s first
figure out how stability works for a one-dimensional discrete-time system.

13.3.1 Stability in one dimension

An equilibrium x̄ of xt+1 = f(xt), where f and f ′ are continuous, is
(locally) stable if |f ′(x̄)| < 1 and unstable if |f ′(x̄)| > 1.

See Appendix J for details.
Let’s unpack this a little. First, note that, although we are dealing with

a discrete system, the function f still needs to be continuous, because we
need its derivative. That is, df

dx has to exist and be defined (at least near x̄),
which means we need to be able to differentiate the function. Continuity is a
necessary requirement for differentiability.

Second, in a one-dimensional system, f ′(x̄) is just the (single) eigenvalue
of the (1×1) Jacobian matrix f ′(x̄). That is, the eigenvalue and the Jacobian
matrix are the same, because we only have one dimension, and a 1× 1 matrix
is just a number. We’ll generalise this shortly.

Third, the condition tells us what happens if the absolute value is larger
or smaller than 1, but we don’t know what happens if it’s equal to 1. It turns
out that the results there aren’t predictable... but they weren’t predictable
when the real part of λ was zero in the continuous case either. (See Page 66.)

Finally, there’s nothing to specify that f ′(x̄) has to be real, because we
have a perfectly well defined absolute value for complex numbers as well. (We
can’t have a complex eigenvalue without its conjugate, so we don’t get complex
solutions in a one-dimensional system, but we will in higher-order systems.)
What this condition really means is we get stability when the eigenvalues are
within the unit circle. Compare this to the continuous case, where stability
occurred when the eigenvalues were in the left half of the plane.

13.3.2 Stability in two dimensions

By analogy, the equilibrium ~̄x of ~xt+1 = ~f(~xt) is stable if all eigenvalues of
the Jacobian matrix have absolute value less than 1 and unstable if there is
an eigenvalue with absolute value greater than 1.

First let’s deal with p = 0. The Jacobian at the endemic equilibrium is
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J0

(
1

α
,B

)
=

[
1− αB −1
αB 1

]

det

(
J0

(
1

α
,B

)
− λI

)
= det

[
1− αB − λ −1

αB 1− λ

]

= (1− αB − λ)(1− λ) + αB

= λ2 − (2− αB)λ+ 1

λ1,2 =
2− αB ±

√
(2− αB)2 − 4

2

=
2− αB ±

√
αB(αB − 4)

2
.

There are two cases here.

(i) If αB > 4, then

λ2 =
2− αB −

√
αB(αB − 4)

2

<
2− 4−

√
αB(αB − 4)

2

= −1−
√
αB(αB − 4)

2

and the part under the square root is positive. It follows that |λ2| > 1, and
hence the equilibrium is unstable. (Note that we don’t need to check λ1,
because instability only requires a single equilibrium with absolute value
larger than 1. Nothing that λ1 can do could change the stability.)

(ii) If αB < 4, then we will be taking the square root of a negative. However,
this is no problem, because the absolute value of a complex number z =
u+ iv is |z| =

√
u2 + v2. Hence

∣∣λ1,2

∣∣ =

√(
2− αB

2

)2

+
αB(αB − 4)

4

=

√
4− 4αB + (αB)2 + 4αB − (αB)2

4

= 1.

Therefore this equilibrium is not asymptotically stable. If αB < 4, then,
because of the complex eigenvalues, solutions oscillate around the endemic
equilibrium. They may oscillate towards it, away from it or stay nearby. We
can’t tell without more sophisticated methods.

Next, let’s deal with p 6= 0. The Jacobian at the disease-free equilibrium
is

Jp

(
B

p
, 0

)
=

[
1− p −αB/p

0 αB/p

]
.
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The eigenvalues here are

λ3,4 = p,
αB

p
.

How did we get these so quickly? Answer: because the matrix is upper trian-
gular (i.e., only zeroes below the diagonal), which means the eigenvalues are
the diagonal elements. Note: this isn’t true in general, of course. Or you can
use the formula from Appendix C.

Since 0 < p < 1, |λ3| < 1. So the disease-free equilibrium is stable if

∣∣λ4

∣∣ =

∣∣∣∣
αB

p

∣∣∣∣ < 1

i.e., if αB < p,

and we can define R0 =
αB

p
.

The endemic equilibrium
(

1
α , B −

p
α

)
only exists if R0 > 1; i.e., if αB > p.

The Jacobian at this equilibrium is

Jp

(
1

α
,B − p

α

)
=

[
1− p− α

(
B − p

α

)
−α

(
1
α

)

α
(
B − p

α

)
α
(

1
α

)
]

=

[
1− αB −1
αB − p 1

]

det(Jp − λI) = det

[
1− αB − λ −1
αB − p 1− λ

]

= (1− αB − λ)(1− λ) + αB − p
= λ2 − (2− αB) + 1− p

λ5,6 =
2− αB ±

√
∆

2

where

∆ = (2− αB)2 − 4(1− p)
= α2B2 − 4αB + 4p.

Once again, we have two cases.

(i) If ∆ ≥ 0, then the roots are real. The only restriction on αB is that it is
greater than p. First we have

λ5 =
2− αB +

√
(αB)2 − 4αB + 4p

2

<
2− αB +

√
(αB)2

2
= 1.
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We’ll show that λ5 > −1 in Appendix K. Remember that, for an absolute
value, there are two things to check.
Understanding what happens with λ6 is more challenging. Let’s try a few
values. If αB = 1, then

λ6 =
2− 1−

√
1− 4(1) + 4p

2

=
1−√−3 + 4p

2
.

For the range of p that gives real roots (e.g., p slightly smaller than 1), we
have |λ6| < 1 and hence stability.
Conversely, if αB = 4, then

λ6 =
2− 4−

√
16− 4(4) + 4p

2

=
−2−√4p

2
= −1−√p < −1.

Hence |λ6| > 1.
Since it’s possible for λ6 to be both smaller than or greater than 1, we can
conclude that the equilibrium is sometimes stable and sometimes unstable.
(Note: We weren’t able to show this in general, but testing two values was
enough to conclude that instability is at least possible. We’ll explore this
case in more detail in the lab.)

(ii) If ∆ < 0, then we have complex roots, so

∣∣λ5,6

∣∣ =

√(
2− αB

2

)2

+
−∆
4

=

√
4− 4αB + α2B2 − α2B2 + 4αB − 4p

4

=

√
4− 4p

4

=
√

1− p
< 1.

Hence the endemic equilibrium is stable whenever R0 > 1 and complex
roots arise.

13.4 Lab work

The problem
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Write a program to model the discrete-time system for measles vaccination
for the cases p = 0, αB > p (with ∆ < 0) and αB < p.

The solution

First we’ll need to pick some parameters. Let’s choose B = 115 and α =
0.3× 10−4, so ∆ = (αB)2− 4αβ+ 4p = −0.0138 + 4p. We’ll need small values
of p (which we can vary) to keep this negative. We also need some initial
conditions, so we’ll choose S(0) = 3 × 104, I(0) = 200 and R(0) = 0. Unlike
ODEs, discrete-time systems are really easy to program in Matlab, because
they’re just stepping discretely through time, which is basically exactly what
Matlab does. So a simple for loop will suffice.

clear all

S=3e4;

I=200;

R=0;

%p=0;

p=0.002;

%p=0.005;

B=115;

alpha=0.3e-4;

r=1000;

for n=1:r-1

S(n+1)=(1-p).*S(n)-alpha.*I(n).*S(n)+B;

I(n+1)=alpha.*I(n).*S(n);

R(n+1)=R(n)+I(n)-B+p.*S(n);

end

subplot(1,3,1)

plot([1:r],S,[1 r],[B./p B./p],'--r')

xlabel('Time in Weeks')

ylabel('Susceptibles')

subplot(1,3,2)

plot(I)

xlabel('Time in Weeks')

ylabel('Measles Cases')

subplot(1,3,3)

plot(I,S)

xlabel('Measles Cases')

ylabel('Susceptibles')

Here we’ve set up various values for p that can be adjusted by commenting
in or out. The three plots illustrate a) the time series for susceptibles, b) the
time series for infected individuals and c) the phase portrait.
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For p = 0, we see a periodic orbit. Solutions oscillate around the endemic
equilibrium, which is neither asymptotically stable nor unstable, as predicted
by λ2 (since αB < 4 in this case). There are large, recurring outbreaks of
measles. See Figure 13.3.
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Fig. 13.3. Solutions oscillate around the endemic equilibrium.

For p = 0.002 (so αB > p), we see a decaying orbit. That is, solutions
oscillate towards the endemic equilibrium. There are still recurring peaks but
at lower numbers than without vaccination. See Figure 13.4.

For p = 0.005 (so αB < p), solutions do not oscillate but instead move
directly to the disease-free equilibrium, since |λ4| < 1. There is no endemic
equilibrium. See Figure 13.5.

13.4.1 Exercises

1. What kinds of behaviour can occur in the case when ∆ ≥ 0 and αB >
p? If both the disease-free equilibrium and the endemic equilibrium are
unstable, what happens? Adjust your parameters from your program to
explore this.

2. A more realistic epidemic model for measles vaccination might assume
that the birth and death rates are proportional to the size of the class
and that some people are born infected (although no one is born with
immunity). We can also add other factors, such as a recovery rate that
isn’t in lock with the timestep and standard incidence. Such a model has
the form
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Fig. 13.4. Solutions oscillate towards the endemic equilibrium. The horizontal line
indicates S = B/p, the disease-free equilibrium.
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Fig. 13.5. Solutions move directly towards the disease-free equilibrium, indicated
by the horizontal line. Note the shortened timescale for the measles time series.

St+1 = (1− p)St −
β

N
ItSt + b(Rt + It)

It+1 =
β

N
ItSt + (1− b− γ)It

Rt+1 = (1− b)Rt + γIt + pSt,

where p, b, γ, β > 0 and β = α
N (N is the total population). The parameter

b is the per-capita number of births, γ is the rate of recovery, p is the
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proportion of people vaccinated and β is the number of successful contacts
in time t to t+ 1. Suppose that 0 < p+ β < 1 and 0 < b+ γ < 1.

a) Show that if S0 + I0 +R0 = N , then St + It +Rt = N .

b) Show that if S0, I0, R0 > 0 and S0 + I0 +R0 = N , then solutions are
positive for all time; i.e., St, It, Rt > 0 for all t.

c) Find the disease-free equilibrium (S̄, Ī, R̄).

d) Show that the basic reproductive ratio is

R0 =
βb

(b+ γ)(b+ p)
.

(Hint: find the Jacobian, and remember that we have stability if |λ| <
1.)

e) Use the substitution Rt = N −St−It to reduce the three dimensional
SIR model to a two-dimensional SI model.

f) Find the equilibria of this SI model.

g) Show that the endemic equilibrium exists if and only if R0 > 1.

h) Show that the disease-free equilibrium is locally asymptotically stable
if R0 < 1.

i) If β = 0.5 and b = γ = 0.05, find the minimum proportion of people
p̄ who should be vaccinated in order to eradicate the disease.

j) Write a program to model the spread of measles with the above pa-
rameters for both p < p̄ and p > p̄.
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14

A disease with an asymptomatic class

In this chapter, we’re going to look at a disease where the infection may split
into a symptomatic class and an asymptomatic class, like influenza. Asymp-
tomatic individuals may not know they’re infected (which means they’re un-
likely to seek treatment or stay home), but they may also transmit the infect
at a lower rate, due to a lower viral load. They may also recover faster — or
not, depending.

Unlike Chapter 7, immunity may not be permanent. Recovered individu-
als can lose their immunity due to mutation of the virus and return to the
susceptible class. This makes things a lot more complicated.

By the end of this chapter, you should at least have some appreciation of
the complexities involved in realistic disease modelling. This chapter consoli-
dates a lot of what we’ve seen previously.

14.1 Asymptomatic infection

Many diseases do not confer permanent immunity, but rather provide only
temporary immunity. Influenza is one such disease, because the virus mutates
each year. Previously, we used delay differential equations to describe this
effect, but they’re not essential. So here we’ll move from susceptible to infected
to recovered and then have the ability to return to the susceptible class.

A tweak we can add is to suppose that some proportion of infected indi-
viduals are asymptomatic. That is, they are still infected (and infectious), but
they may have different transmission and recovery rates. We’re not explicitly
modelling symptoms per se, so the effect is to split the infectious class in two.
One thing to be careful of: the word “proportion”. Upon infection, a fraction
of individuals q will move to the regular infected class, while the remainder
(1− q) will move to the asymptomatic class. See Figure 14.1.

Note that susceptibles can be infected by either symptomatic or asymp-
tomatic individuals. So there are four infection terms floating around, char-
acterised by qβ, (1− q)β, qβA and (1− q)βA. So the differential equations are
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Fig. 14.1. A model for influenza with temporary immunity and an asymptomatic
class.

given by

S′ = λ− βSI − βASA+ αR− µS
I ′ = qβSI + qβASA− µI − γI
A′ = (1− q)βSI + (1− q)βASA− µA− γAA
R′ = γI + γAA− αR− µR.

The disease-free equilibrium is given by

(S̄, Ī, Ā, R̄) =

(
λ

µ
, 0, 0, 0

)
.

(You should probably be able to find this for yourself by now.)
Next, we’d like to find the reproduction number. We’re going to do this in

two ways, to illustrate some of the issues that may arise. So we’ll outline the
key steps for each.

14.1.1 Using the characteristic polynomial

Here are the steps we need to take:

1. Find the Jacobian matrix.
2. Evaluate the Jacobian at the disease-free equilibrium
3. Determine the characteristic equation.
4. Use information about the coefficients to develop an R0.
5. Identify any problems that arise.

Differentiating, the Jacobian is

J =




−βI − βAA− µ −βS −βAS α
qβI + qβAA qβS − µ− γ qβAS 0

(1− q)βI + (1− q)βAA (1− q)βS (1− q)βAS − µ− γA 0
0 γ γA −α− µ
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J
∣∣∣
DFE

=




−µ −βS̄ −βAS̄ α
0 qβS̄ − µ− γ qβAS̄ 0
0 (1− q)βS̄ (1− q)βAS̄ − µ− γA 0
0 γ γA −α− µ


 .

The characteristic equation is then

det
(
J
∣∣∣
DFE
− ΛI

)
= (−µ− Λ)(−α− µ− Λ) detM,

where

M =

[
qβS̄ − µ− γ − Λ qβAS̄

(1− q)βS̄ (1− q)βAS̄ − µ− γA − Λ

]
.

The first two eigenvalues are always negative, while the characteristic equation
for M is

0 = (qβS̄ − µ− γ − Λ)((1− q)βAS̄ − µ− γA − Λ)− q(1− q)ββAS̄2

= Λ2 + Λ
[
µ+ γ − qβS̄ + µ+ γA − (1− q)βAS̄

]

+ (µ+ γ)(µ+ γA)− qβS̄(µ+ γA)− (µ+ γ)(1− q)βAS̄.

Rearranging the constant term of the characteristic equation, we have

(µ+ γ)(µ+ γA) = qβS̄(µ+ γA) + (µ+ γ)(1− q)βAS̄

R0 =
qβS̄

µ+ γ
+

(1− q)βAS̄
µ+ γA

.

What problems arise here? Answer: we didn’t consider the coefficient of
the linear term in the characteristic equation. Consider

b = µ+ γ − qβS̄ + µ+ γA − (1− q)βAS̄.

If b > 0, then the largest eigenvalue will be negative if R0 < 1 and will be
positive if R0 > 1. What happens if b < 0? It’s certainly possible that it might
be, as there are negative terms in it. If b < 0, then the largest eigenvalue will
be positive, regardless of the constant term. So even if R0 < 1, the disease-free
equilibrium will be unstable.

Evaluating b at the threshold

There’s one more thing we can do, however, which is evaluate b at the threshold
R0 = 1. At the threshold, the constant term is zero, so if the other eigenvalue is
negative, then small changes in the constant term won’t change the negativity
of the other eigenvalue. That is, if b < 0 when R0 = 1, we will have local
stability.

Using the condition R0 = 1 gives us a further constraint that can allow
some of the negative terms to be cancelled. Substituting
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µ+ γ = qβS̄ +
µ+ γ

µ+ γA
(1− q)βAS̄

gives

b
∣∣∣
R0=1

=��qβS̄ +
µ+ γ

µ+ γA
(1− q)βAS̄ −��qβS̄ + µ+ γA − (1− q)βAS̄

=
µ+ γ − (µ+ γA)

µ+ γA
(1− q)βAS̄ + µ+ γA

=
γ − γA
µ+ γA

(1− q)βAS̄ + µ+ γA

This will be positive if γ ≥ γA; i.e., if recovery from symptomatic infection is
faster than asymptomatic infection. So if asymptomatic infection lasts longer,
then R0 is a threshold. However, this is unlikely to be true for most diseases,
because the viral load for asymptomatic infection is lower, so recovery should
be quicker.

This condition isn’t sharp though. So we could have γ < γA and still have
b
∣∣
R0=1

> 0. We’ll explore this case in the lab.

Splitting R0 into its constituent components

Suppose q = 1, so that nobody is asymptomatic. Then, from the model, the
asymptomatic equation becomes

A′ = −µA− γAA,

so A → 0 as t → ∞. So we might as well set A = 0. (More formally, if
A(0) = 0, then A ≡ 0.) Then the infected equation becomes

I ′ = βSI − µI − γI
= (βS − µ− γ)I,

so we can set

RI0 =
βS̄

µ+ γ
.

This is the reproduction number for a single infected individual in a wholly
susceptible population. In particular, ifRI0 < 1, then I ′ < 0, whereas ifRI0 > 1,
then I ′ > 0.

Next suppose that q = 0, so that everybody is asymptomatic. The infected
equation becomes

I ′ = −µI − γI,
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so we can set I = 0. The asymptomatic equation becomes

A′ = βASA− µA− γAA
= (βAS − µ− γA)A.

We can then define

RA0 =
βAS̄

µ+ γA
.

This is the reproduction number for a single asymptomatic individual in a
population of susceptibles.

We can thus write

R0 =
qβS̄

µ+ γ
+

(1− q)βAS̄
µ+ γA

= qRI0 + (1− q)RA0 .

That is, R0 can be split into a linear combination of the individual reproduc-
tion numbers for each of the two substrains of the virus.

14.1.2 Using the next-generation method

Here are the steps we need to take using this method:

1. Identify the infected classes.
2. Determine the matrix of new infections and the matrix of transfer terms.
3. Find the largest eigenvalue to calculate R0.
4. Identify any problems that arise.

First, let’s note that the only infected classes are the I and A classes. So
this will reduce our problem to a two-dimensional one. The vector of new
infections is

F =

[
qβSI + qβASA

(1− q)βSI + (1− q)βASA

]
.

We are expressing the middle two equations in the form F −V, so the vector
of transfer terms is

V =

[
µI + γI
µA+ γAA

]
.

Differentiating, we have the matrices

F =

[
qβS qβAS

(1− q)βS (1− q)βAS

]
V =

[
µ+ γ 0

0 µ+ γA

]
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The reproduction number is the largest eigenvalue of FV −1, so (using Ap-
pendix C) we have

FV −1
∣∣∣
DFE

=

[
qβS̄ qβAS̄

(1− q)βS̄ (1− q)βAS̄

]



1

µ+ γ
0

0
1

µ+ γA




=




qβS̄

µ+ γ

qβAS̄

µ+ γA
(1− q)βS̄
µ+ γ

(1− q)βAS̄
µ+ γA


 .

Next we need to find the largest eigenvalue, so (using Appendix C again)
we have

det(FV −1 − ΛI) = det




qβS̄

µ+ γ
− Λ qβAS̄

µ+ γA
(1− q)βS̄
µ+ γ

(1− q)βAS̄
µ+ γA

− Λ




= Λ2 − Λ
(
qβS̄

µ+ γ
+

(1− q)βAS̄
µ+ γA

)
+

qβS̄

µ+ γ

(1− q)βAS̄
µ+ γA

− qβAS̄

µ+ γA

(1− q)βS̄
µ+ γ

= Λ

(
Λ− qβS̄

µ+ γ
− (1− q)βAS̄

µ+ γA

)
.

The smaller eigenvalue is 0, while the larger one is

R0 =
qβS̄

µ+ γ
+

(1− q)βAS̄
µ+ γA

= qRI0 + (1− q)RA0 .
Note that R0 is the largest eigenvalue from the next-generation method,

but it is NOT the largest eigenvalue from the Jacobian or characteristic equa-
tion methods. Instead, it’s a rearrangement of the largest eigenvalue from the
Jacobian or characteristic equation methods. Yes, it’s confusing.

What problems arise now? Well, we got the same R0 as with the previous
method, but without the constraint of b > 0. So does that constraint matter?
We’d never know it existed if we only used the next-generation method. We’ll
explore that in the lab.

14.2 Lab work

14.2.1 Exercises

1. Choose parameters that make b > 0 and R0 < 1. Run the time series for
the model in this case.
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2. Now change one of your parameters so that b < 0 and R0 < 1. Run the
time series for the model now.

3. Could γ < γA and yet b
∣∣
R0=1

> 0?

4. If b
∣∣
R0=1

= 0, find the critical value of γA. Is this reasonable?

5. Let f = RA0 /R
I
0. What conditions are required for the outbreak to be

worse as a result of both strains compared just one or the other? (Hint:
substitute RA0 = fRI0 and compare to both RA0 and RI0.)
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15

Impulsive Differential Equations

15.1 Introduction

Many systems undergo drastic changes in a short space of time. If you take
a pill, the amount of drug in your body quickly rises to its maximal level.
It takes roughly 20 minutes for this to occur (although it depends on the
drug of course). This is called the time-to-peak. After this, your body starts
metabolising the drug, so it decreases, approximately exponentially. If the time
until you take your next pill is significantly longer than 20 minutes (say 24
hours), then we can approximate the 20-minute interval by an instantaneous
change.

Why would we do this? Ignoring the time-to-peak part means we don’t
have to link up a series of differential equations (one for the time-to-peak and
one for the metabolising). Since the metabolising part is usually what we’re
most interested in, it allows us to concentrate on this. With an exponential
decay between doses, this makes the analysis quite straightforward, as we’ll
see shortly.

Of course, we still have two scales to deal with. So we’ll approximate
the time-to-peak with an instant jump. Mathematically, this consists of a
difference equation, not a differential equation. That is, solutions restart at
new initial conditions, except that these initial conditions are linked to the
final conditions from the previous cycle.

15.1.1 Fixed-time impulse example

So our drug example would look like this:

x′ = −αx t 6= tk

∆x = c t = tk.

That is, so long as we’re not at one of the pill-popping times, solutions will
decrease exponentially (the metabolising part), as described by the differential
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equation. The second line is a difference equation, where ∆x ≡ x(t+k )−x(t−k ).
This is the instantaneous approximation of the time-to-peak. In our simple
example, the difference between just before the pill (at time t−k ) and just after
(at time t+k ) is a constant c, the strength of the drug in a single pill.

One thing to note here: the tk’s don’t have to be constant. Maybe we take
our pill regularly, but maybe we don’t. The beauty of impulsive differential
equations is that they can apply to either situation. For simplicity, let’s first
assume that our pill is taken regularly. That is, the time between doses is
τ = tk+1 − tk. (We’ll examine the other case in the next example.)

How do we deal with something like this? First, let’s solve the differential
equation. Of course, most differential equations can’t be solved, but this one
is simple enough that it can be. We have to be a little careful here though:
we’re solving a differential equation, but what’s the “initial” condition? Hint:
it’s not the initial condition from the system. That’s because each impulsive
cycle has its own initial condition, x(t+k ). The “initial” time for each cycle
isn’t zero either; it’s tk.

Thus, within each cycle, we have

x(t) = x(t+k )e−α(t−tk).

So far so good. We’ve technically solved the entire differential equation part.
But each solution comes with an “initial” condition x(t+k ) that depends on the
“final” condition from the previous cycle x(t−k−1). The good news is that we
have all the tools we need to put everything together: the difference equation
from the model tells us how to get across the impulse, while the solution of
the differential equation tells us how to get to the end of the next cycle.

Let’s work it through from the true initial condition. (Remember that
every differential equation has an initial condition, whether or not it’s explic-
itly written down. The same is true of every impulsive differential equation.)
Technical note: because there might have been an impulse at time t = 0, we
specify the initial condition at x(0+). Let’s call our initial condition x0.

We then have

x(0+) = x0 the true initial condition

x(t−1 ) = x0e
−ατ the “final” condition from the 1st cycle

x(t+1 ) = x0e
−ατ + c adding the impulse

x(t−2 ) = x(t+1 )e−ατ using the solution

=
(
x0e
−ατ + c

)
e−ατ using the previous “initial” condition

= x0e
−2ατ + ce−ατ the “final” condition for the 2nd cycle

x(t+2 ) = x0e
−2ατ + ce−ατ + c the “initial” condition for the 3rd cycle

x(t+3 ) = x0e
−3ατ + ce−2ατ + ce−ατ +c and so on

...
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Notice that we jumped straight to the “initial” condition for the fourth cy-
cle by recognising the pattern after a while. What we really have here is a
recurrence relation; these are best solved when you can recognise patterns.

Hence the general term for the “initial” condition for the (n+ 1)st cycle is

x(t+n ) = x0e
−nατ + c

[
1 + e−ατ + e−2ατ + · · ·+ e−(n−1)ατ

]

= x0e
−nατ +

c(1− e−nατ )

1− e−ατ .

We used the fact that a geometric series has a handy formula to collapse the
sum into a nice formula. However, this is where we need the fact that the
period τ is constant. If it weren’t, we couldn’t do this last line.

Okay, great. We’ve solved the system! Have we really? Yes... because we
have the nth “initial” condition (from the recurrence relation), and we also
have the solution during any cycle, given an “initial” condition. The solution
is plotted in Figure 15.1.
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Fig. 15.1. Drug concentrations with impulses at fixed times. Parameters used were
α = 0.5 per day, c = 5 milligrams, and the impulse was applied daily.

So now what? Well, let’s do what we always do when we have a solution:
take the limit. In particular, what happens if we have infinite cycles? We have

lim
n→∞

x(t+n ) =
c

1− e−ατ .

Note that this is independent of x0, so the solution holds for any initial con-
ditions.

What we did here was build a recurrence relation from the endpoints of
each cycle and showed they converged. The endpoints are local maxima for
the system (since the metabolising always decreases the amount of drug in
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your body). So each solution will decrease within each cycle, then a new pill
increases the amount of drug.

What’s happening at the “infinite” endpoint? Let’s be a bit more down-
to-earth and set this as our initial condition. We thus have

x(0+) =
c

1− e−ατ the initial condition occurs after an impulse

x(τ−) =
c

1− e−ατ e
−ατ using the solution

x(τ+) =
c

1− e−ατ e
−ατ + c adding the constant amount of drug

=
ce−ατ + c(1− e−ατ )

1− e−ατ
=

c

1− e−ατ = x(0+).

That is, if we start on this endpoint, then we return to it after one cycle. That
means we have a periodic orbit with order 1. It’s periodic because we return
to it and of order 1 since there’s only one impulse per cycle.

Formally, the periodic orbit is given by

x(t) =
c

1− e−ατ e
−αt 0 < t ≤ τ

x(0+) =
c

1− e−ατ .

By convention, we assign the equality in the range to the “final” point, which
means we still have to specify the true initial condition separately... just like
with every differential equation. Neat how these things work out.

15.1.2 Nonfixed-time example

There’s another way to formulate these things, however. What if, instead of
taking your drug every day, you only took your drug when you felt sick? That
is, the time at which the impulse occurs depends on the state of the system,
not the time. Such systems are called autonomous, and we’ll explore them in
more detail in a bit.

For example, suppose we took our drug only when the level of drugs in
our body reached some lower threshold. Then our system could be expressed
as

x′ = −αx x 6= x̄

∆x = c x = x̄.

As before, the solution of the differential equation is

x(t) = x(t+k )e−α(t−tk).
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In this case, however, we know what x(t+k ) is, but we don’t know what tk is.
There’s another wrinkle. If x(0+) < x̄, then the impulse condition will

never be reached and solutions will tend towards zero. So we need to ensure
that x0 > x̄. (What if x0 = x̄? In that case, the solution has “just” undergone
an impulse, so the solution then is x(t) = x̄e−αt, which will approach zero.)

We thus have

x(0+) = x0

x(t1) = x0e
−αt1 = x̄.

Solving for t1, we have

t1 =
1

α
ln
x0

x̄
.

(Note that this is positive, since x0 > x̄.)
Next, we have

x(t+1 ) = x̄+ c

x(t−2 ) = (x̄+ c)e−α(t2−t1) = (x̄+ c)e−ατ = x̄

We’re going to call τ = t2 − t1 for reasons that will become apparent in a
moment. Solving, we have

τ =
1

α
ln
x̄+ c

x̄
=

1

α
ln
(

1 +
c

x̄

)
.

Continuing, we have

x(t+2 ) = x̄+ c

x(t−3 ) = (x̄+ c)e−α(t3−t2) = x̄.

Solving, we have

t3 − t2 =
1

α
ln
(

1 +
c

x̄

)
= τ.

What’s happening here? The first cycle has its own period. But thereafter,
every cycle has the same period. Which makes sense, since they all have the
same “initial” condition and differential equation. That is, the period has
converged (after one impulse, because this was a simple example) and we
have a periodic orbit. See Figure 15.2.

How do we know this periodic orbit exists? We need x0 > x̄, as mentioned
above. Furthermore, since this is a biological system, we need the orbit to be
positive. This is equivalent to requiring that the minimum value of the orbit is
positive. What’s the minimum value? If x0 > x̄, then it’s x̄. So our condition
for existence is x̄ > 0.

(Note that if x̄ = 0, then — since that happens to be the equilibrium
value of the ODE — solutions will not reach the impulsive condition in finite
time. In this case, there will be no impulsive periodic orbit. So the inequality
is strict.)
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Fig. 15.2. Drug concentrations with impulses at nonfixed times. Parameters used
were α = 0.5 per day, c = 5 milligrams, and the impulse was applied when solutions
reached x̄ = 1.

15.2 Motivation

So that’s an overview. If you’re not mathematically inclined, you should prob-
ably skip the rest of this chapter. But for those who care about the details, we
have to worry about all sorts of things. Most mathematical theorems assume
continuity at a baseline, but we don’t even have that. This means that many
theorems have to be reworked, while others don’t have an analogue at all.

An equilibrium in the differential equation might not be an equilibrium
of the system — as indeed it isn’t in the fixed-time example above. The
“equilibrium” x = 0 is fine until you reach t1, after which it’s no longer zero,
because a constant amount c has been added. This plays havoc with basic
concepts like stability (although there’s a fix, as we’ll see below).

Mostly, unlike ODEs, we’re not dealing with equilibria as our phenomena
of interest, but rather periodic orbits. Or, more specifically, impulsive periodic
orbits. These are cycles where the ODEs send solutions in one direction and
the impulsive effect brings it back, just as we saw in the fixed-time example.

The rest of this chapter is very technical, because we need to define things
from the very beginning. And the definitions can be quite finicky, because
we need to account for all the complexities that arise when disturbing the
solutions of differential equations (which is what we’re doing). So follow along
if you can, but don’t sweat it if this is too much in the woods for you. Of
course, if precise definitions of mathematical concepts is your kind of thing,
then you’re in the right place. Much of what follows is developed from the
works of Bainov and Simeonov [3, 4].
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15.3 Impulsive semidynamical systems

We start by expanding the definition of forward movement under differential
equations. First let’s state that definition.

Definition 15.1. A triple (X,π,R+) is a semidynamical system if X is a
metric space, R+ the set of all nonnegative reals and π : X × R+ → X is a
continuous function such that

i) π(x, 0) = x for all x ∈ X, and
ii) π(π(x, t), s) = π(x, t+ s) for all x ∈ X and t, s ∈ R+.

What this means is we have a starting point (from the initial condition) and
also a way to move forward (from the ODE).

For all x ∈ X, define πx : R+ → X by πx(t) = π(x, t). πx is continuous
for all x. We call πx the trajectory of x. The set

C+(x) = {π(x, t) : t ∈ R+}
is called the positive orbit of x. Note that x ∈ C+(x). We also have

C+(x, r) = {π(x, t) : 0 ≤ t ≤ r}.
For any M ⊆ X, we define the following sets: for t ∈ R+,

G(x, t) = {y ∈ X : π(y, t) = x},
is the attainable set of x at t ∈ R+,

G(x) =
⋃

t∈R+

G(x, t),

M−(x) = G(x) ∩M\{x}
and

M+(x) = C+(x) ∩M\{x}.
We then set M(x) = M+(x) ∪M−(x). Note that x /∈M(x).

Definition 15.2. An impulsive semidynamical system (X,π;M,A) consists
of a semidynamical system (X,π), a nonempty closed subset M of X and a
continuous function A : M → X such that

i) No point x ∈ X is a limit point of M(x), and
ii) {t ∈ R+ : G(x, t) ∩M 6= ∅} is a closed subset of R+.

What this means is that solutions can travel forward either via the mech-
anism of the ODE or they can jump when they hit the set M , so long as the
jump points don’t accumulate. We don’t want an infinite number of impulses
in finite time, for instance.

We denote the image of M under the operator A by N = A(M) and, for
all x ∈M , A(x) = x+. That is, trajectories hit M and jump to N .
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Lemma 15.3. Let (X,π;M,A) be an impulsive semidynamical system. Then,
for any x ∈ X, there exists r, s ∈ R+ ∪ {∞} such that 0 < r, s ≤ ∞ and, for
0 < t < s and 0 < t < r,

a) π(x, t) /∈M and if M+(x) 6= ∅, then π(x, s) ∈M
b) G(x, t) ∩M = ∅ and if M−(x) 6= ∅, then G(x, r) ∩M 6= ∅.

This says that solutions travel forward as usual if they’re not at the set
M . This is true for both forward time and backward time.

We call s the time without impulse of x. We define Φ : X → R+\{0}
such that Φ(x) is the time without impulse of x. If {xn} is the set of impulse
points, then {sn} are the corresponding times without impulse. We can think
of a given sn as the time taken from the trajectory starting at xn until xn+1

(the next impulse point). Naturally, if there is no further impulse point, then
sn+1 =∞.

Definition 15.4. Let (X,π;M,A) be an impulsive semidynamical system and
x ∈ X. The (impulsive) trajectory of x is a function π̃x defined on a subset
[0, s), s ∈ (0,∞] as follows:

Let x = x0. If M+(x0) = ∅, then π̃x(t) = πx(t) for all t ∈ R+. If M+(x0) 6=
∅, then, by Lemma 15.3, there exists s0 ∈ R+\{0} such that π(x0, s0) = x1 ∈
M and π(x0, t) /∈M for all 0 < t < s0. We define π̃x on [0, s0] by

π̃x(t) = π(x0, t) 0 ≤ t ≤ s0.

We then continue this process, starting at x+
1 (which is not equal to x1

in general). That is, if M+(x+
1 ) = ∅, then we define π̃x(t) = π(x+

1 , t − s0)
for all t > s0 and s = ∞. If M+(x+

1 ) 6= ∅, then, by Lemma 15.3, there
exists s1 ∈ R+\{0} such that π(x+

1 , s1) = x2 ∈ M and π(x+
1 , t) /∈ M for all

0 < t < s1. We define π̃x on (s0, s0 + s1] by

π̃x(t) = π(x+
1 , t− s0) s0 < t ≤ s0 + s1.

If M+(x+
2 ) 6= ∅, then, by Lemma 15.3, there exists s2 ∈ R+\{0} such that

π(x+
2 , s2) = x3 ∈ M and π(x+

2 , t) /∈ M for all 0 < t < s2. We define π̃x on
(s0 + s1, s0 + s1 + s2] by

π̃x(t) = π(x+
2 , t− s0 − s1) s0 + s1 < t ≤ s0 + s1 + s2.

If M+(x+
n ) = ∅ for some n, then the process halts. On the other hand, if

M+(x+
n ) 6= ∅ for all n = 1, 2, . . . then the process continues indefinitely, with

π̃x(t) = π(x+
n , t−

n−1∑

i=0

si),

n−1∑

i=0

si < t ≤
n∑

i=0

si

for each n ≥ 1.
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Thus the process gives rise to either a finite or infinite sequence {xn} of
points of X such that, with each xn, there is associated a positive real number
sn (or ∞) and, for sn <∞, an impulse xn+1, where π(x+

n , sn) = xn+1.
The interval of definition of π̃x is [0, s] = [0,

∑∞
i=0 si].

What this does is define our trajectories in a piecemeal fashion. We move
forward, and if we hit M , we jump, then move forward again. Of course, if we
ever reach a state where we can never hit M again, the remaining trajectory
is the usual forward trajectory. Otherwise, we’ll hit M infinitely often.

Definition 15.5. A trajectory π̃x is periodic of period r and order k if there
exists m ∈ Z+ and k ∈ Z+ such that k is the smallest integer satisfying
x+
m = x+

m+k and

r =

m+k−1∑

i=m

si.

This defines what we mean by a period: something that comes back around
again (perhaps with the help of an impulse) but wasn’t where it started for all
time in between. Essentially, we need this to distinguish periodic orbits from
equilibria (which “come back” to where they started only in the sense that
they never left, so they’re not really periodic).

A periodic trajectory with no impulse points can be considered to be an
impulsive trajectory with one moment of impulse, such that the trajectory is
continuous at the impulse point. Thus a periodic trajectory with no impulse
points is a first-order periodic orbit, and the period is the time taken to travel
from the impulse point back to itself; hence the period in this case corresponds
to the definition of period in the non-impulsive case.

Note that the trajectory π̃x is continuous if either M+(x) = ∅ or, for each
n, xn = x+

n . Otherwise, the trajectory has discontinuities at a finite or infinite
number of impulse points xn. However, at any such point, π̃x is continuous
from the left.

Trajectories of interest for impulsive semidynamical systems are those with
an infinite number of discontinuities and an interval of definition of R+. We
call these infinite trajectories.

Example. Consider the autonomous system

x′ = x y′ = αy, α > 0,

the sets M = {(x, y) ∈ R2
+ : y = 1

x+1}, N = {(x, y) ∈ R2
+ : x+ y = 1}, and an

operator A : M → N that associates with each point P on M the point P+

on N which is on the ray OP . A is a continuous, bijective mapping.
We shall consider only those trajectories with initial points in the first

quadrant. Note that this quadrant in invariant. We assume initial points are
not on M , by convention.
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Trajectories with initial points in the region y > 1
1+x do not undergo

any impulsive effect. Trajectories with initial points on the x-axis also do not
undergo impulsive effect, since M does not intersect the x-axis. Trajectories
with initial points on the y-axis undergo impulsive effect once, at (0,1), but
motion is continuous, since this is a fixed point of the operator A. Both axes
are invariant.

For 0 < α < 1, trajectories with initial points in the region y < 1
1+x

undergo impulsive effect an infinite number of times. (x+
n , y

+
n )→ (1, 0), s =∞

and π̃(1,0) = π(1,0). See Figure 15.3.
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Fig. 15.3. When α < 1, the impulsive orbits approach part of the x-axis.

Let α > 1. Trajectories with initial points in the region y < 1
1+x are

subject to impulsive effect an infinite number of times and tend towards the
point (0,1), which is a fixed point of the impulsive effect. See Figure 15.4.
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Fig. 15.4. When α > 1, the impulsive orbits converge to a fixed point.

When α = 1, all trajectories with initial points in the region y < 1
1+x even-

tually become periodic, with order 1. Motion between N and M is performed
along rays y = cx.
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15.3.1 Existence of solutions

Let Ω ⊂ Rn be an open set. Suppose that, for each k ∈ Z, the functions
τk : Ω → R are continuous in Ω and satisfy

τk(x) < τk+1(x), with lim
k→±∞

τk(x) =∞

for x ∈ Ω. Let f : R×Ω → Rn, Ik : Ω → Rn, (t0, x0) ∈ R×Ω and α < β.
Consider the impulsive differential system

dx

dt
= f(t, x) t 6= τk(x)

∆x = Ik(x) t = τk(x),
(15.1)

with initial condition

x(t+0 ) = x0. (15.2)

By definition, ∆x ≡ x+ − x, so Ik(x) = x+Ak(x).

Definition 15.6. The function ϕ : (α, β)→ Rn is a solution of (15.1) if

1. (t, ϕ(t)) ∈ R×Ω for t ∈ (α, β),
2. ϕ(t) is differentiable, with

dϕ

dt
(t) = f(t, ϕ(t))

for t ∈ (α, β), t 6= τk(ϕ(t)), and
3. ϕ(t) is continuous from the left in (α, β), and if t ∈ (α, β), t = τk(ϕ(t))

and t 6= β, then ϕ(t+) = ϕ(t) + Ik(ϕ(t)) and, for each j ∈ Z and some
δ > 0, s 6= τj(ϕ(s)) for t < s < t+ δ.

Definition 15.7. A solution of the initial-value problem (15.1)–(15.2) is a
function ϕ that is defined in an interval of the form (t0, β), is a solution of
(15.1) and satisfies (15.2).

These two definitions provide the framework for when a solution exists,
showing that it must be able to be continued past the initial value.

15.3.2 Definitions of stability

The usual definition of stability essentially says that if two solutions start close
together, then they should stay close together for all time. That’s obviously
not going to happen with nonfixed impulses: two solutions might stay together
for a while, but if one jumps before the other, then there’ll be quite far apart
indeed, even if they later come back into synch. So we need to adjust our
definitions of stability.
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Definition 15.8. Let x0(t) = x(t; t0, x0) be a given solution of the initial-
value problem (15.1)–(15.2), existing for t ≥ t0. Suppose x0(t) hits the surfaces
Sk : t = tk(x) at the moments tk such that tk < tk+1 and tk →∞ as k →∞.
Then the solution x0(t) of (15.1)–(15.2) is

• stable if for each ε > 0, η > 0 and t0 ∈ R+, there exists δ = δ(t0, ε, η) > 0
such that |y0 − x0| < δ implies |y0(t)− x0(t)| < ε for t ≥ t0 and |t− tk| >
η, where y0(t) = x(t; t0, y0) is any solution of (15.1)–(15.2) existing for
t ≥ t0;

• uniformly stable if it is stable and δ is independent of t0;
• attractive if for each ε > 0, η > 0 and t0 ∈ R+, there exists δ0 = δ0(t0) > 0

and a T = T (t0, ε, η) > 0 such that |y0−x0| < δ0 implies |y0(t)−x0(t)| < ε
for t ≥ t0 + T and |t− tk| > η;

• uniformly attractive if it is attractive and δ0 and T are independent of t0;
• asymptotically stable if it is stable and attractive; and
• uniformly asymptotically stable if it is uniformly stable and uniformly

attractive.

What this says is that solutions that start together will stay together for
all times except for a small interval around the impulse. Even better, we can
make this interval as small as we want by choosing initial conditions very close
to each other. If the impulses occur at fixed times (i.e., if τk(x) is independent
of x), then the impulse effect occurs at the same time for every solution, so
the notions of stability coincide with the standard definition.

The system (15.1)–(15.2) only possesses the trivial solution if f(t, 0) ≡ 0
and Ik(0) = 0 for all k.

If there are only a finite number of impulse points, then the usual defi-
nitions of stability can be applied to the trajectories after the last impulse
point.

If there are an infinite number of impulse points, then we do not want
the points to accumulate at some finite value, such that tk → r < ∞. This
accounts for our requiring that tk →∞ as k →∞.

15.3.3 Autonomous systems with impulsive effect

Autonomous systems with impulsive effect are written in the form

dx

dt
= g(x) x 6∈M

∆x = I(x) x ∈M.
(15.3)

At an instant t = tk when x(t) encounters the set M , it is instantaneously
transferred to the point x(tk)+I(x(tk)) of the set N . The set M is sometimes
given in the form φ(x) = 0.

System (15.3) has the property of autonomy, so that x(t; t0, x0) = x(t −
t0; 0, x0). Note that systems of the form (15.1) do not possess this property,
even if f(t, x) = g(x) and Ik(x) = I(x).
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Example. The nonfixed-time example from earlier in this chapter is au-
tonomous. To see this, we can write the solution as

x(t) =

{
x0e
−αt 0 ≤ t ≤ t1

(x̄+ c)e−α(t−tk) tk < t ≤ tk+1.

Changing to formal notation, we can write this as x(t; t0, x0), which consists
of the following:

x0e
−α(t−t0) t0 ≤ t ≤ t0 + 1

α ln x0

x̄

(x̄+ c)e−α(t−t0− 1
α ln

x0
x̄ ) t0 + 1

α ln x0

x̄ < t ≤ t0 + 1
α ln x0

x̄ + 1
α ln c+x̄

c

(x̄+ c)e−α(t−t0− 1
α ln

x0
x̄ − 1

α ln c+x̄
c ) t0 + 1

α ln x0

x̄ + 1
α ln c+x̄

c < t ≤ t0 + 1
α ln x0

x̄

+ 2
α ln c+x̄

c
...

...

We can then write x(t− t0; 0, x0) as

x0e
−α(t−t0) 0 ≤ t− t0 ≤ 1

α ln x0

x̄

(x̄+ c)e−α(t−t0− 1
α ln

x0
x̄ ) 1

α ln x0

x̄ < t− t0 ≤ 1
α ln x0

x̄ + 1
α ln c+x̄

c

(x̄+ c)e−α(t−t0− 1
α ln

x0
x̄ − 1

α ln c+x̄
c ) 1

α ln x0

x̄ + 1
α ln c+x̄

c < t− t0 ≤ 1
α ln x0

x̄

+ 2
α ln c+x̄

c
...

...

It follows that the system is autonomous.

Example. Consider the system

dx

dt
= x tk 6= k

∆x = −x
2

+ 1 tk = k

x(0.5) = 2.

Solutions are given by

x(t) =

{
2et−0.5 0.5 ≤ t ≤ 1
x+
k e

t−k k < t ≤ k + 1, k ≥ 1.

Thus x(1−) = 2e0.5, so

x(2) = x(1+)e

= (e0.5 + 1)e.

Hence x(2; 0.5, 2) = e1.5 + e.
Conversely, consider the initial condition x(0) = 2. Then x(1) = 2e, so



15.4 Floquet Theory in R2 187

x(1.5) = x(1+)e0.5

= (e+ 1)e0.5.

Thus x(1.5; 0, 2) = e1.5 + e0.5, so x(2; 0.5, 2) 6= x(1.5; 0, 2). Hence this system
does not have the property of autonomy.

15.4 Floquet Theory in R2

15.4.1 Floquet Theory for continuous systems

Floquet theory for ODEs is a way of examining stability of periodic orbits.
Since we tend to encounter a lot of periodic orbits with impulses, we need to
have a way to determine their stability.

We also provide the proofs of some of the basic theorems. These proofs are
straightforward but were not included in the literature, so we have included
them here for completeness.

For two-dimensional systems, there is a detailed but relatively straightfor-
ward formula for calculation of the second multiplier for a periodic orbit. This
allows the theory of Floquet multipliers to be applied to two-dimensional sys-
tems, or systems that can be reduced to two-dimensional systems, with ease.

15.4.2 Floquet theory

Consider the linear T -periodic system with fixed moments of impulsive effect

dx

dt
= P (t)x t 6= tk

∆x = Bkx t = tk,
(15.4)

subject to the following assumptions:

H1 The matrix P (·) : R→ Cn×n is piecewise continuous, and P (t+T ) = P (t)
for t ∈ R.

H2 tk < tk+1 for k ∈ Z, Bk ∈ Cn×n, and det(I+Bk) 6= 0, where I is the n×n
identity matrix.

H3 There exists an integer q > 0 such that Bk+q = Bk, tk+q = tk + T for
k ∈ Z.

Definition 15.9. Let x1(t), . . . , xn(t) be solutions to (15.4) defined on the in-
terval (0,∞). Let X(t) = {x1(t), . . . , xn(t)} be a matrix-valued function whose
columns are these solutions. Then x1(t), . . . , xn(t) are linearly independent if
and only if detX(0+) 6= 0. In this case, we say that X(t) is a fundamental
matrix of solutions of (15.4).

Lemma 15.10. Suppose H1–H3 hold and limk→∞ tk = ∞. Let X(t) be a
fundamental matrix of solutions of (15.4) in R+. Then
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1. For any constant matrix M̄ ∈ Cn×n, X(t)M̄ is also a solution of (15.4).
2. If Y : R → Cn×n is a solution of (15.4), there exists a unique matrix
M̄ such that Y (t) = X(t)M̄ . Furthermore, if Y (t) is also a fundamental
matrix of solutions, then det M̄ 6= 0.

Proof. 1. X(t)M̄ satisfies

d

dt

(
X(t)M̄

)
=
dX(t)

dt
M̄

= P (t)X(t)M̄

for t 6= tk and

∆
(
X(tk)M̄

)
= X(t+k )M̄ −X(tk)M̄

=
[
X(t+k )−X(tk)

]
M̄

= [∆X(tk)] M̄

= BkX(tk)M̄.

2. Since X(t) is a fundamental matrix, it is invertible for each t. Let M̄ =
X(0+)−1Y (0+), and let Z(t) ≡ Y (t)−X(t)M̄ . Then Z(0+) = 0 and

dZ(t)

dt
=
dY (t)

dt
− dX(t)

dt
M̄

= P (t)Y (t)− P (t)X(t)M̄

= P (t)Z(t)

∆Z = Y (tk)+ −X(tk)+M̄ −
[
Y (tk)−X(tk)M̄

]

= ∆Y (tk)−∆X(tk)M̄

= BkY (tk)−BkX(tk)M̄

= BkZ(tk),

so Z(t) ≡ 0 is the unique solution satisfying Z(0+) = 0. Hence Y (t) = X(t)M̄ .
If Y is fundamental, then

det M̄ =
1

detX(0+)
detY (0+)

6= 0.

Theorem 15.11. Suppose conditions H1–H3 hold. Then each fundamental
matrix of (15.4) can be represented in the form

X(t) = ϕ(t)eΛt t ∈ R

for a non-singular, T -periodic matrix ϕ(·) ∈ PC1(R,Cn×n) and a constant
matrix Λ ∈ Cn×n.
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Proof. Let X(t) be a fundamental matrix for (15.4) and define Y (t) = X(t+
T ). Then, using H1, we have

dyj(t)

dt
=
dxj(t+ T )

dt
= P (t+ T )xj(t+ T )

= P (t)yj(t)

for t 6= tk, and, using H3,

∆yj(tk) = ∆xj(tk + T )

= ∆xj(tk+q)

= Bk+qxj(tk+q)

= Bkxj(tk + T )

= Bkyj(tk)

for each j. Also, detY (0+) = detX(T+) 6= 0, since x1(t), . . . , xn(t) are linearly
independent in the interval (0,∞) and are hence independent in the interval
(T,∞). Thus Y (t) is also a fundamental matrix.

By the lemma, there exists a unique matrix M̄ ∈ Cn×n such that

X(t+ T ) = X(t)M̄

for all t ∈ R. Set

Λ =
1

T
ln M̄

ϕ(t) = X(t)e−Λt.

Hence ϕ(t) is non-singular and belongs to the class PC1(R,Cn×n). Further-
more,

ϕ(t+ T ) = X(t+ T )e−ΛT e−Λt

= X(t)M̄e−ΛT e−Λt

= X(t)e−Λt

= ϕ(t),

since M̄ = eΛT , by definition of Λ. Hence ϕ is T -periodic.

This is a generalisation of the idea that you can solve systems of linear
differential equations by finding the eigenvalues and eigenvectors. Once you
have enough solutions — and those solutions aren’t multiples or other combi-
nations of one another — then you’re done. So if you need n solutions and just
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happen to have n eigenvalues, then you’re done. If some of those eigenvalues
are repeated, it gets a bit more nuanced, but this is the essence of it. Here
we’re using that idea for periodic systems, where both the time-dependent
matrix and the impulsive effect are periodic.

To the fundamental matrix X(t), there corresponds a unique matrix M̄
such that X(t + T ) = M̄X(t) for all t ∈ R. The eigenvalues µ1, . . . , µn of M̄
are called Floquet multipliers of (15.4). The eigenvalues λ1, . . . , λn of Λ are
called the characteristic exponents of (15.4).

Corollary 15.12. Let conditions H1–H3 hold. Then µ ∈ C is a Floquet mul-
tiplier of (15.4) if and only if there exists a nontrivial solution γ(t) such that
γ(t+ T ) = µγ(t) for all t ∈ R.

The following theorem is from Bainov and Simeonov [4].

Theorem 15.13. Suppose conditions H1–H3 hold. Then (15.4) is

1. stable if and only if all multipliers µj satisfy |µj | ≤ 1; and for those
multipliers for which |µj | = 1, the corresponding characteristic exponent
(which has zero real part) is a simple zero of the characteristic polynomial
of Λ,

2. asymptotically stable if and only if all multipliers satisfy |µj | < 1, and
3. unstable if |µj | > 1 for some j.

The idea here is that we convert the (semi)continuous system into a
discrete-time system. For a continuous system, we have stability if the real
part of each eigenvalue is negative. For discrete-time systems, the condition is
that the eigenvalues are within the unit circle in the complex plane. The great
thing about impulsive differential equations is that they lend themselves to
discrete-time systems extremely well.

15.4.3 Orbital stability in R2

Consider the two dimensional autonomous system

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (x, y) 6∈M

∆x = a(x, y), ∆y = b(x, y) (x, y) ∈M
(15.5)

where t ∈ R, and M ⊂ R2 is the set defined by the equation φ(x, y) = 0.
Let γ(t), t ∈ R be a solution of (15.5), with instants of impulsive effect tk,

such that
0 < t1 < t2 < . . . ; lim

k→∞
tk =∞,

and let L+ = {u ∈ R2 : u = γ(t), t ∈ R+}. Denote by J+(t0, z0) the maximal
interval of the form (t0, ω) in which the solution z(t; t0, z0) of (15.5) is defined.

For y ∈ R2, let d(y, L+) = minu∈L+ |y − u| and Bη(γ(t1)) be the ball of
radius η centred at γ(t1).
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Definition 15.14. The solution z = γ(t) of (15.5) is called

1. orbitally stable if for all ε > 0, η > 0 and t0 ∈ R+, there exists δ > 0 such
that d(z0, L

+) < δ and z0 6∈ B̄η(γ(tk))∪ B̄η(γ(t+k )) implies d(z(t), L+) < ε
for t ∈ J+(t0, z0) and |t0−tk| > η, where z(t) = z(t; t0, z0) is any solution
of (15.5) for which z(t+0 ; t0, z0) = z0.

2. orbitally attractive if for all ε > 0, η > 0 and t0 ∈ R+, there exists
δ > 0 and T > 0 such that t0 + T ∈ J+(t0, z0) and d(z0, L

+) < δ and
z0 6∈ B̄η(γ(tk)) ∪ B̄η(γ(t+k )) implies d(z(t), L+) < ε for t ≥ t0 + T , t ∈
J+(t0, z0) and |t0 − tk| > η, where z(t) = z(t; t0, z0) is any solution of
(15.5) for which z(t+0 ; t0, z0) = z0.

3. orbitally asymptotically stable if it is orbitally stable and orbitally attrac-
tive.

Definition 15.15. The solution z = γ(t) of (15.5) has the property of asymp-
totic phase if for all ε > 0, η > 0 and t0 ∈ R+, there exists δ > 0, c > 0
and T > |c| such that t0 + T ∈ J+(t0, z0) and |z0 − γ(t0)| < δ implies
|z(t + c) − γ(t)| < ε for t ≥ t0 + T , t ∈ J+(t0, z0) and |t0 − tk| > η, where
z(t+ c) = z(t; t0 − c, z0) is any solution of (15.5) for which z(t+0 ; t0, z0) = z0.

The definition of stability for periodic orbits is a bit tricker than for equi-
libria, but the idea is the same: solutions that start close need to stay close for
all time, except for small windows around the impulse points. The property
of asymptotic phase ensures that the cycle time of each trajectory comes into
phase with the period of the periodic orbit.

Suppose (15.5) has a T -periodic solution

~p(t) =

[
ξ(t)
η(t)

]
,

with
∣∣∣∣
dξ

dt

∣∣∣∣+

∣∣∣∣
dη

dt

∣∣∣∣ 6= 0.

Assume further that the periodic solution ~p(t) has q instants of impulsive
effect in the interval (0, T ). Since we have a periodic orbit, one multiplier is
equal to 1. The other is calculated according to the formula

µ2 =

q∏

k=1

∆k exp

[∫ T

0

(
∂P

∂x
(ξ(t), η(t)) +

∂Q

∂y
(ξ(t), η(t))

)
dt

]
, (15.6)

where

∆k =
P+

(
∂b
∂y

∂φ
∂x − ∂b

∂x
∂φ
∂y + ∂φ

∂x

)
+Q+

(
∂a
∂x

∂φ
∂y − ∂a

∂y
∂φ
∂x + ∂φ

∂y

)

P ∂φ
∂x +Q∂φ

∂y

.
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Here P , Q, ∂a∂x , ∂b∂x , ∂a∂y , ∂b∂y , ∂φ∂x and ∂φ
∂y are computed at the point (ξ(tk), η(tk)),

and P+ = P (ξ(t+k ), η(t+k )), Q+ = Q(ξ(t+k ), η(t+k )).
This formula may look crazy, but it’s actually incredibly beautiful when

you put all the pieces together, because things tend to collapse nicely into a
simple result. We then have the following theorem, from Bainov and Simeonov
[4], which is an analogue of the Poincaré criterion.

Theorem 15.16. The solution ~p(t) of (15.5) is orbitally asymptotically stable
and has the property of asymptotic phase if the multiplier µ2 calculated by
(15.6) satisfies the condition |µ2| < 1.

Since have a periodic orbit, one of the multiplies already has absolute
value equal to 1. That means the stability comes down to calculating the
other multiplier, which is handily given by the formula above.

Example. Consider the following two-dimensional model for cells infected
with HIV virus and killer cells known as cytotoxic T-lymphocytes (CTLs)
[34]. If we apply a CTL vaccine at regular times that boosts the number of
killer cells, the model is given by

T ′ = π − dT − pCT t 6= tk

C ′ = αCT − δC t 6= tk

∆C = C̃ t = tk,

where tk (k = 1, 2, . . .) are the vaccination times and C̃ is the strength of the
vaccine. Here T are the infected cells, produced at a constant rate π, depleted
at a death rate d or by killer CTLs C at rate p. The CTLS are produced in
response to infected cells at rate α and are depleted at rate δ.

It’s not possible to solve this system explicitly, but we can find an implicit
solution. Define

Tint = e
∫ τ
0

(αT (u)−δ)du.

This is a measure of the difference in CTLs between the beginning and the end
of an impulsive cycle. For a vaccine administered at fixed times, the period is
τ .

Separating variables and integrating, we have

∫ t

0

dC

C
=

∫ t

0

(αT (u)− δ)du

C(t) = C(0)e
∫ t
0

(αT (u)−δ)du.

It follows that

C(τ−) = C(0)Tint

C(τ+) = C(0)Tint + C̃.
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Suppose C(τ+) = C(0). Then

C(0) =
C̃

1− Tint

C(t) =
C̃e

∫ t
0

(αT (u)−δ)du

1− Tint
(15.7)

C(τ−) =
C̃Tint

1− Tint

C(τ+) =
C̃Tint

1− Tint
+ C̃ = C(0).

It follows that there is an impulsive periodic orbit with one impulse per orbit,
whose endpoints satisfy

C(t−n ) =
C̃Tint

1− Tint

C(t+n ) =
C̃

1− Tint
.

Next we show that Tint < 1. Suppose Tint ≥ 1. Then
∫ τ

0
(αT (u)−δ)du ≥ 0.

It follows from (15.7) that C(τ−) ≥ C(0). But

C(τ+) = C(τ−) + C̃

C(0) = C(τ−) + C̃

≥ C(0) + C̃

⇒ C̃ ≤ 0.

This is a contradiction, so Tint < 1. It follows that the periodic orbit exists.
Finally, we examine stability of the periodic orbit by calculating the non-

trivial Floquet multiplier. Define

P (T,C) = π − dT − pCT
Q(T,C) = αCT − δC
a(T,C) = 0

b(T,C) = C̃,

with the (differentiable) function φ implicitly defined by {φ(T (t), C(t)) = 0 :
t = tk}. Let the impulsive orbit be described by (ξ(t), η(t)). Then we have

ξ(t−k ) = ξ(t+k ) = T (τ)

η(t−k ) =
C̃Tint

1− Tint

η(t+k ) =
C̃

1− Tint
.
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Since ξ(t−k ) = ξ(t+k ), we can write

P+ = π − dξ(t−k )− pη(t+k )ξ(t−k ) Q+ = αξ(t−k )η(t+k )− δη(t+k )

P = π − dξ(t−k )− pη(t−k )ξ(t−k ) Q = αξ(t−k )η(t−k )− δη(t−k ).

Then we have Q = TintQ+ and, since η(t−k ) = η(t+k )Tint,

P+Tint = (π − dξ(t−k ))Tint − pη(t+k )Tintξ(t
−
k )

= (π − dξ(t−k ))Tint − pη(t−k )Tintξ(t
−
k ).

From the nullclines, T ′(t−k ) > 0. Thus π − dξ(t−k ) > pη(t−k )ξ(t−k ) > 0.
Hence, since Tint < 1, P+Tint < P . We then have

∆1 =
P+

∂φ
∂T +Q+

∂φ
∂C

P ∂φ
∂T +Q ∂φ

∂C

<
1

Tint
.

(Note that we get this result without explicitly knowing what φ is.)
We thus have

µ2 <
1

Tint
exp

∫ τ

0

(
∂P

∂T
(ξ(t), η(t)) +

∂Q

∂C
(ξ(t), η(t))

)
dt

=
1

Tint
exp

∫ τ

0

(−d− pη(t) + αξ(t)− δ) dt

=
1

Tint
exp

(
−
∫ τ

0

d+ pη(t)dt

)
exp

(∫ τ

0

(αξ(t)− δ)dt
)

=
1

Tint
exp

(
−
∫ τ

0

d+ pη(t)dt

)
Tint

< 1.

Thus the nontrivial impulsive Floquet multiplier lies inside the unit circle, so
the τ -periodic orbit is orbitally asymptotically stable and has the property of
asymptotic phase.

The Floquet theory for impulsive semidynamical systems in Rn, n ≥ 3 is
also developed in Bainov and Simeonov [3, 4], but calculation of the multipliers
is much more difficult.

In practice, the theory is only useful in low-dimensional systems. If we are
in R2 or the system can be reduced to a two-dimensional system, then we can
apply the results in this section.

15.5 Lab work

1. Consider a mosquito-spraying model, where mosquitos grow at a constant
rate m, but the effect of spraying is to reduce the mosquitos by a propor-
tion r. This can be described by the impulsive differential equation
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x′ = m t 6= tk

∆x = −rx t = tk ,

with τ = tk+1 − tk and 0 < r < 1. Determine the impulsive orbit, and
show that it is stable.

2. Consider the spread of MRSA (Methicilin-Resistant Staphylococcus Au-
reus) in prisons, where new (susceptible) prisoners are transferred in when
there is room, while infected prisoners are quarantined at regular intervals.

a) Suppose both events happen simultaneously. Then

S′ = −βSI S 6= C

I ′ = βSI − dI S 6= C

∆S = λ S = C

∆I = −αI S = C

S

I

C

(S(0),I(0))

(S(τ),I(τ))

C+λ

Fig. 15.5. The periodic orbit of first order.

i. Under what conditions will there be an impulsive periodic orbit?
Hint: see Figure 15.5.

ii. Show that this orbit is orbitally asymptotically stable.
iii. Show that the period of the periodic orbit is given implicitly by

τ = −
∫ τ

0

1

βS(I0 + λ+ c− S + d
β ln S

λ+c )
dS.

b) Let n > 0 be an integer and assume that new prisoners arrive at rate
λ at each impulsive effect, while infected prisoners are quarantined
only at the moments of impulsive effect τk whose ordinal number k is
a multiple of n. That is,
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S′ = −βSI S 6= C

I ′ = βSI − dI S 6= C

∆S(τk) = λ S = C

∆I(τk) =

{
0 if k is not divisible by n
−αI(τk) if k is divisible by n

S = C

S

I

C

(S(0),I(0))

(S(τ),I(τ))

(S(t1+),I(t1+))

(S(t2+),I(t2+))(S(t2-),I(t2-))

(S(t1-),I(t1-))

C+λ

Fig. 15.6. The periodic orbit of third order.

i. Under what conditions will there be an impulsive periodic orbit?
Hint: see Figure 15.6.

ii. Show that this orbit is orbitally asymptotically stable.
iii. Show that the period of the periodic orbit is given implicitly by

τ = −
n−1∑

i=0

∫ ti+1

ti

1

βS
(
I+
i + λ+ c− S − d

β ln S
λ+c

)dS.
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Application: AIDS and end-stage renal disease

AIDS is a big, bad disease. It’s number eight in the top ten infectious diseases,
which is pretty outstanding for a disease that’s only been around since the
eighties. This list measures the number of recorded deaths due to each disease
and is as follows:

10. The Third plague, 12 million
9. Cocoliztli, 7–17 million
8. AIDS, 36 million
7. The Justinianic plague of 541–542AD, 15–100 million
6. Spanish flu, 50–100 million
5. The Black Death, 200 million
4. Measles, 200 million (in the past 165 years)
3. Smallpox, 300–500 million (in the 20th century alone)
2. TB, 1 billion (in the past 200 years)
1. Malaria, 5–50 billion

How many people have there been in total? About 110 billion, which means
malaria has killed up to 45% of everyone who ever lived, making it the all-time
biggest killer of humans. Check out my popular-science book “The Top Ten
Diseases of All Time” for the details [32].

Many patients with AIDS go on to develop end-stage renal disease, which is
basically kidney failure. AIDS itself doesn’t kill you, but it creates a climate for
opportunistic infections that will. In the United States, end-stage renal disease
is particularly prevalent in African American patients and the numbers have
risen alarmingly throughout the early years of the 21st century. Thus we’ll
focus on this subset of the population.

The introduction of antiretroviral drugs has drastically changed the face
of HIV. While there is still no cure, ART (antiretroviral therapy, a.k.a. the
triple-drug “cocktail”) has reduced the number of AIDS deaths and made HIV
a disease that it’s possible to live with. What’s not so clear is whether ART
has had an effect on the overall prevalence of AIDS in general or end-stage
renal disease in particular.
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In this chapter, we want to combine the epidemic models of Chapters 5
through 7 with the data-fitting methods from Chapters 3 and 4. (We’re not
using chapters 8 or 9, since we’re only looking temporally, not spatially.) We’d
like to answer the following questions:

1. Has ART had an impact on the prevalence rate of AIDS?
2. Has ART had an impact on the prevalence rate of end-stage renal disease?
3. If aggressive treatment is initiated now, with different effects, what will

the long-term outcome be?

Thus we’ll need to a) formulate a model, b) fit parameters to data, c) draw
conclusions and d) predict the future. This combines the various strands of
applying models to biological problems and will incorporate some real-world
data.

16.1 Determining AIDS prevalence

Has ART had an impact on the number of deaths from AIDS? First we need
some data, courtesy of the US CDC (United States Centers for Disease Con-
trol):

1991 10475
1992 11946
1993 15460
1994 17844
1995 18971
1996 15909
1997 10333
1998 8744
1999 9097
2000 8723
2001 9085
2002 8927
2003 9077
2004 9302
2005 8562

These are the number of deaths due to AIDS for African Americans in
the United States. To see it a bit more clearly, take a look at Figure 16.1.
Seems pretty obvious, doesn’t it? The death rate was increasing until 1995,
then underwent a massive decrease before plateauing out. We don’t need to
fit curves to the data to see that there’s a very obvious change after the
introduction of ART.
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Fig. 16.1. The annual number of deaths due to AIDS for African Americans in the
United States

What about prevalence? Since not as many people are dying, but other
people are progressing from HIV to AIDS, we expect prevalence to be increas-
ing, but perhaps not as sharply as it did before ART. The CDC prevalence
data is:

1991 14561
1992 15897
1993 60649
1994 71847
1995 81317
1996 92319
1997 105464
1998 117890
1999 112483
2000 121903
2001 181475
2002 193814
2003 204466
2004 214017
2005 225270

This is shown in Figure 16.2.
It’s tough to draw any conclusions from these data. Prevalence has contin-

ued to rise, but has it continued to rise as quickly, or has ART slowed down
the rate of increase? Let’s be a bit formal about this and construct a null
hypothesis. This is a hypothesis that states that there’s been no change. If
there has been a change, then we’ll reject this hypothesis. Our null hypothesis
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Fig. 16.2. Prevalence of AIDS among African Americans in the United States.

is thus: ART has had no effect on the prevalence of AIDS. Note that we don’t
specify anything about whether ART has increased or decreased the preva-
lence; it may have done either (which would be interesting, regardless) or it
may have had no effect.

How could we test our hypothesis? One way would be to fit curves to the
pre-ART and post-ART data separately and see what happens. The data are
approximately linear, so we only have to fit straight lines. If we do that, we
have the situation in Figure 16.3.
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Fig. 16.3. Linear fit to pre-ART and post-ART AIDS data.
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What do you think? Looks somewhat convincing. The slope of the first
line is steeper than the slope of the second line, so maybe ART has slowed the
rate of increase of the prevalence. Of course, at this point we should be asking
ourselves how good the fit is, but the two lines have regression coefficients of
0.949 and 0.967, respectively. So these lines are good fits to these data.

However, that’s only half the story. We need to compare this to our null
hypothesis of no effect on the prevalence. To do this, we could fit a line to the
entire data set. See Figure 16.4.
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Fig. 16.4. Linear fit to the entire AIDS data set.

Now what do you think? Is this a better or worse fit? The eye can’t tell,
so we have to rely on the regressional coefficient. In this case r = 0.981, so
this is actually a better fit than either of the two lines in Figure 16.3! This
means we can’t reject the null hypothesis. In order words, ART has had no
significant impact on the prevalence of AIDS among African Americans in the
United States. So we’ve answered our first question.

16.2 Determining end-stage renal disease prevalence

Let’s look at end-stage renal disease data, courtesy of the United States Renal
Data System.1 The mortality data, showing the number of deaths in end-

1 The data reported here have been supplied by the United States Renal Data
System (USRDS). The interpretation and reporting of these data are the re-
sponsibility of the author and in no way should be seen as an official policy or
interpretation of the U.S. government.
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stage renal disease patients, with AIDS nephropathy as primary cause of renal
failure, is

1991 88
1992 126
1993 159
1994 176
1995 255
1996 185
1997 120
1998 141
1999 149
2000 131
2001 126
2002 143
2003 135
2004 128

This is shown in Figure 16.5.
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Fig. 16.5. The number of deaths in African American end-stage renal disease pa-
tients with AIDS nephropathy as primary cause of renal failure in the United States.

Once again, we don’t need mathematical models to tell us that ART has
had an impact on the mortality.

Next, we turn to prevalence. The prevalence of end-stage renal disease
data is:
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1991 350
1992 473
1993 644
1994 709
1995 934
1996 1038
1997 1287
1998 1521
1999 1774
2000 1989
2001 2181
2002 2296
2003 2414
2004 2449

This is shown in Figure 16.6.
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Fig. 16.6. Prevalence of end-stage renal disease among African Americans in the
United States.

Once again, it’s hard to tell if ART has had any impact on the prevalence.
Let’s do the same trick again: fit linear curves to pre-ART and post-ART
data separately and then to the entire data set. See Figures 16.7 and 16.8,
respectively.

This time around, it looks as though ART may have actually increased
the prevalence of end-stage renal disease. That’s not necessarily out of the
question, given that many more people are alive because of ART than would be
otherwise, so it’s possible that the prevalence could increase. This is why we’re
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Fig. 16.7. Linear fit to pre-ART and post-ART end-stage renal disease data.
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Fig. 16.8. Linear fit to the entire end-stage renal disease data.

interested in asking whether ART has had an impact, rather than specifying
what that impact is.

The regression coefficients for the two linear fits in Figure 16.7 are r =
0.98887 and r = 0.98683. The regression coefficient for the linear fit in Figure
16.7 is r = 0.99352. Thus the line that fits the overall data is a better fit than
each of the lines which fit the two subsets. Once again we have to conclude
that ART has had no impact on the prevalence of end-stage renal disease.
We’ve answered our second question.
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16.3 Model fitting

What have we done in the last two sections? We’ve made choices about which
models best fit the data. True, these were simple, linear models, but they’re
models nonetheless. We can use these linear fits to estimate parameters and
construct a more complex ODE model. Note that we could have simply looked
at the data and concluded, with pretty reasonable confidence, that the fits
were linear, regardless of the ART issue. So, if the first half of this chapter
wasn’t to your liking, you can just start here. The only thing we need to know
is that the data are approximately linear (which should be pretty clear).

Let’s think about how to construct such a model. We need to know what
form the model will take, or else we won’t know what parameters we need to
estimate. There are many things we could try, but let’s start with the simplest
version. We only have two variables of interest: the prevalence of AIDS and
the prevalence of end-stage renal disease. The latter doesn’t cause the former,
so it means we can consider AIDS prevalence in isolation.

Let’s start with the easier case and deal with the prevalence of AIDS. Since
we now have some faith that it’s a linear fit, we can use that to construct a
simple linear differential equation. The prevalence is clearly increasing (see
Figure 16.4), so the derivative will be positive. Thus we could assume the
prevalence of AIDS cases satisfies the differential equation

dA

dt
= g. (16.1)

This is just about the simplest differential equation ever and one we could
easily solve. But let’s leave that for a moment and figure out the parameters we
need. Clearly we need g, but we’ll also need an initial condition, A0. From Fig-
ure 16.4, the intercept is A0 = 14959.04166 and the slope is g = 15133.20357.
(Of course, this assumes that time starts at 1991, so we’re really transposing
the x axis by 1991.)

The second case is a bit trickier. A proportion s of the population with
AIDS will progress to end-stage renal disease; those with end-stage renal dis-
ease will die at rate δ, proportional to the end-stage renal disease prevalence.
This leads to the second equation

dN

dt
= sA− δN. (16.2)

We can’t solve this directly, of course, because it depends on the solution to
equation (16.1). However, we don’t need to solve the equations to estimate
the parameters. From Figure 16.8, we have N0 = 268.11 (remembering that
we’re starting at 1991), and the slope of the graph is 179.18.

How can we use the slope of the line to estimate parameters? The slope is
the derivative, so this says that
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dN

dt
≈ 179.18

sA− δN = 179.18.

Since A and N are variables, we can pick whichever values of them we like.
However, remember that the linear fit is just an approximation, so we should
pick values that are closest to the line. The years 1997 and 1998 are the two
years with values closest to the line, in both Figures 16.4 and 16.8. We need
data from two years, because we’re solving for two parameters, s and δ.

We thus have

s(105464)− δ(1287) = 179.18

s(117890)− δ(1521) = 179.18.

We can convert this to matrix form and use Matlab to solve it:
[
s
δ

]
=

[
105464 −1287
117890 −1521

]−1 [
179.18
179.18

]

=

[
0.0048
0.2563

]
.

We now have estimates for all three parameters (g, s and δ), plus the two
initial conditions (A0 and N0). Notice that we didn’t solve either equation,
even though the first is straightforward and the second is doable, once you’ve
solved the first. This is the nice thing about fitting parameters to models:
you can do it without having to find the solution. Can we actually find the
analytic solution? Yes, but the details are a bit technical. See Appendix L if
you’re interested.

16.4 Using the model to predict future outcomes

Now that we have our model, what can we do with it? The best thing that
models can do for us is to predict the future. The downside, of course, being
that we can’t be too confident about such predictions without actual evi-
dence... but if we wait for such evidence to arrive, it won’t be the future any
more.

One way to deal with this is to make a range of predictions, depending on
what you want from the model. In this case, we’ll consider the effects of what
happens if aggressive treatment is initiated. Currently, treatment hasn’t done
very much to slow the prevalence of end-stage renal disease, but treatment also
hasn’t been applied as widely as it could, especially in disadvantaged groups
like African Americans. So let’s see if treatment can eliminate end-stage renal
disease.

We can represent the effects of treatment blocking by the term (1 − h),
where h = 0 specifies no change in progression to end-stage renal disease while
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h = 1 represents therapy that completely blocks the progression to end-stage
renal disease. Thus equation 16.2 becomes

dN

dt
= s(1− h)A− δN.

If h = 0, we have the same equation as (16.2), so the prevalence of end-stage
renal disease would continue to grow. If h = 1, then the prevalence of end-
stage renal disease would be uniformly decreasing, so eventually the disease
would be eliminated.

Of course, we’re likely to be somewhere in between the two. We don’t know
where, so let’s consider a number of possibilities: h = 0.38, 0.65, 0.80, 0.95, 1.
This way, we’ll get an idea of the effect of different treatment options.

To calculate this, we have two possibilities. We could use the explicit so-
lution found in Appendix L, or we could use ode45 in Matlab. Either is fine,
although in general the equations won’t be solvable, so the numerical solver
is probably more useful. The results are shown in Figure 16.9.
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Fig. 16.9. ART-blocking effects on disease progression.

What does this tell us? Most strikingly, it tells us that the only way to
eliminate end-stage renal disease is to have 100% effective therapy. All other
therapies will have an initial dip, then rise in numbers again. Even 95% effec-
tive therapy will eventually lead to an increase in prevalence. Only perfectly
efficacious therapy will eliminate the disease. Unfortunately, that’s impossible
to achieve, in practical terms.

However, that doesn’t mean our model doesn’t tell us anything useful. For
one thing, even therapy that was only 38% effective would not result in an
increased prevalence for about 25 years. While it’s obviously best to have the
most effective therapy possible, our model tells us that there are short-term
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gains to be made, even from less-effective therapy. At the least, instituting
therapy that’s 38% effective now means we’ve got 25 years to come up with
something new before we see a return to the current prevalence levels. If we
can institute therapy that’s moderately effective (say 65%), then we’ve got
about 40 years to develop new strategies. That’s certainly something worth
attempting, even if we can’t actually eradicate the disease.

This sort of thing is done quite a lot in disease control, especially for
diseases like HIV where there is no cure. We may not be able to “solve” the
problem of curing the disease, but we can at least hold back the disease in the
interim, while we work on other treatments. Part of the issue is expectations:
if we’re hoping that our therapy will eradicate the disease, then we’d be in for
a shock. On the other hand, modelling tells us that putting all our efforts into
perfecting therapy might not be the best strategy, since we’ll never achieve
perfect therapy anyway, while even fairly ineffective therapy can do a lot of
good in the meantime.

In this way, we use our models to make important decisions about whether
to proceed or not, knowing the likely outcomes. And we can do it with nothing
more sophisticated than linear regression and simple ODEs.

16.5 Lab work

By this point, you should have all the tools to do this lab. So this is a good
chance to practice everything we’ve learnt in previous labs. If you’re rusty,
have another look at the labs in Chapters 5 and 3.

Here, we’ll fit curves to the mortality data detailed earlier in this chapter,
in order to justify our “obvious” conclusions. Then we’ll see what happens
when we tweak the ODE model a bit, to add another level of realism.

16.5.1 Exercises

1. Using the mortality data for both AIDS and end-stage renal disease (on
pages 200 and 204, respectively), use the “Tools → Basic Plotting” com-
mand to fit straight lines to a) the pre-ART and b) post-ART data (Hint:
enter the data in two separate blocks, counting the 1995 entry in each).
Find the regression coefficient for each.

2. Now fit a straight line to the entire data set for each (be sure not to count
1995 twice, though) and find the regression coefficients.

3. Which is a better fit? You might want to compare r2 values instead. (Can
you guess why?) What does this tell us?

4. When considering the effects of treatment, we assumed that the prevalence
of end-stage renal disease would be affected by treatment, which meant
we had to adjust equation (16.2) by a factor (1 − h). However, we made
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no adjustment to the prevalence of AIDS. What if treatment reduces the
prevalence of AIDS as well? Adjust equation (16.1) in a similar way to
include the effect of treatment j.

5. Now we’ll explore the effects of this new model on the long-term outcome.
Use Matlab to plot the prevalence of end-stage renal disease with no treat-
ment change from 1991 to 2005 (h = j = 0). Then explore different values
of j for different values of h; ie h = 0.38, 0.65, 0.8, 0.95, 1 for each value
j = 0.2, 0.5, 0.8. (You should have three separate graphs, each with five
curves like Figure 16.9.) Note: you can use ode45 or adjust the solution
found in Appendix L.

6. What happens as j → 1? Explain in words.

7. What about j > 1? Explain how this might occur biologically.

8. What happens eventually for j > 1? How realistic is this?
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Application: Malaria with a time delay

Models of malaria can take many forms, as with most diseases. Many biological
factors were ignored in our model in Chapter 6, so there are many possibilities
to complexify the basics. For example, malaria typically incubates in both
humans and mosquitos (but for different lengths of time), which was something
we’d ignored. So one adjustment to the model might be to include this factor.

17.1 A delay differential equation model of malaria

Consider the Ross–MacDonald malaria model with a delay, as given in Ruan
et al. (2008):

dx

dt
= −rx(t) + abm[1− x(t− τ1)]y(t− τ1)e−rτ1

dy

dt
= −µy(t) + acx(t− τ2)[1− y(t− τ2)]e−µτ2 ,

with variables and parameters given in Table 17.1.
This model is a system of delay differential equations, which we saw briefly

in Chapter 5. This makes things harder... but we’re also only modelling in-
fected humans and infected mosquitos, so that makes things easier again.
Modelling is often a trade-off between factors you want to focus on and the
complexity of the overall system: put in more details of one factor and you
might have to ignore other factors, if you want to keep your models reasonable.

Let’s derive an R0 threshold, not analytically (which is tedious), but by
heuristically thinking about it. For a primary human with recovery rate r, the
average time spent in an infectious state is 1/r. During this time, since the
incubation period in humans has duration τ1, the average number of mosquito
bites received from m susceptible mosquitos each with biting rate a gives a
total of RH = acme−rτ1/r mosquitos infected by the primary human case.

Each of these mosquitos survives for an average time 1/µ and, with another
incubation period τ2 in mosquitos, makes a total ofRM = abe−µτ2/µ infectious
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Parameter Description Value

x(t) proportion of infected humans (variable)
y(t) proportion of infected mosquitos (variable)
m ratio of mosquitos to humans 2
a biting rate on a human per mosquito 0.2–0.5/day
b infected mosquito to human transmission efficiency 0.5
c infected human to mosquito transmission efficiency 0.5
r per capita human recovery rate 0.01–0.05/day
µ per capita mortality rate of mosquitos 0.05–0.5/day
τ1 incubation period in humans 10–100 days
τ2 incubation period in mosquitos 5–15 days

Table 17.1. Variables and parameters for the Ross–Macdonald model of malaria
with delay.

bites. The total number of secondary cases is then

R0 = RH ×RM .

See Figure 6.1 on Page 75 for an example illustrating this. Thus

R0 =
a2bcme−rτ1e−µτ2

rµ
.

Note that a appears twice in this expression, since the mosquito-biting rate
controls transmission from humans to mosquitos and from mosquitos to hu-
mans.

Notice that R0 depends on both incubation periods τ1 and τ2. To see how
it depends on them, we could either plot R0 against each one individually... or
we could plot R0 against both simultaneously. To do this, we’ll need to plot
in 3D, but Matlab can handle that quite well, as we saw in Chapter 9. The
following code will produce Figure 17.1:

clear all

a=0.2;

b=0.5;

c=0.5;

m=2;

r=0.05;

mu=0.05;

tau1=0:0.5:40;

tau2=0:0.5:20;

[X,Y]=meshgrid(tau1,tau2);

R0=a.^2.*b.*c.*m.*exp(-r.*X).*exp(-mu.*Y)./(r.*mu);

Z=R0./R0;

mesh(X,Y,R0)
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Fig. 17.1. A example of a two-stage basic reproductive ratio.

hold on

mesh(X,Y,Z)

hold off

xlabel('Incubation period in humans \tau_1')

ylabel('Incubation period in mosquitos \tau_2')

zlabel('Basic reproductive ratio R_0')

Go to Tools → Rotate3D (as we did in Chapter 9). Play with this until
it looks like Figure 17.1. The flat surface is when R0 = 1. This means that
if both τ1 and τ2 are very large, then the disease would die out. This makes
sense: if the disease incubates for a very long time, that would slow down
transmission. Likely delays, however, are something like τ1 = 15 and τ2 = 9.
Looking at our graph, this would suggest that R0 ≈ 3.

Is this good or bad? Well, it’s not great, because we still have disease
(since R0 > 1). But it’s a lot better than R0 = 8, which is what we’d have if
τ1 = τ2 = 0. So it seems that incubation is a good thing, because, although it
doesn’t lead to eradication, it nevertheless makes the disease less virulent.

How do we plot delay differential equations in Matlab? It’s similar to reg-
ular ODEs; it just requires an extra function file to specify the history before
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time began (necessary because of the delay). First we specify our differential
equations:

function dydt = malariadelayf(t,y,Z)

a=0.2;

b=0.5;

c=0.5;

m=2;

r=0.05;

mu=0.05;

tau1=15;

tau2=9;

ylag1=Z(:,1);

ylag2=Z(:,2);

dydt=[-r.*y(1)+a.*b.*m.*(1-ylag1(1)).*ylag1(2).*exp(-r.*tau1)

-mu.*y(2)+a.*c.*ylag2(1).*(1-ylag2(2)).*exp(-mu.*tau2)];

(Note that the dydt= term is actually two lines. You need a hard return at
the end of the penultimate line in the code, because there are two components,
not one.)

Here ylag1 and ylag2 are the two delays. We have to deal with them as
separate entities. The following code specifies the initial conditions:

function s=malariadelayhist(t)

s=[0.01;0.01];

Again, this is a function file, so save it under the same name you give it
(malariadelayhist in this example). This function specifies that the initial
conditions for −15 ≤ u ≤ 0 are x(u) = 0.01 and y(u) = 0.01 (we need to give
initial conditions backwards in time because the solution has a delay; thus,
at time zero, the solution needs to know what happened at t = 0− τ1 = −15
and t = 0− τ2 = −9). Finally, this is the code we’ll run:

clear all

sol=dde23(@malariadelayf,[15, 9],@malariadelayhist,[0, 500]);

figure;

plot(sol.x,sol.y)

xlabel('time t');

ylabel('solution y');

The delays are given here in the [15, 9] vector, and we have to call both
of our function files. This should produce the solution in Figure 17.2.
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Fig. 17.2. Infected humans and mosquitos.

What’s happening here is that there are two equilibria: an unstable disease-
free equilibrium and a stable endemic equilibrium. Notice, however, that we
didn’t find these analytically. This is because things get much more difficult
with delay differential equations. However, the nice part is that the Matlab
coding doesn’t change very much.

17.2 Lab work

17.2.1 Exercises

1. Run the code again with τ1 = 15, 18, 21, 24 and τ2 = 9.

2. Run the code again with τ1 = 15 and τ2 = 9, 12, 15, 18.

3. Does this fit in with your expectations, based on Figure 17.1? Which
incubation delay has more effect on reducing the disease?

4. Suppose you treated malaria by changing the death rate of mosquitos to
µ = 0.105. What happens now?
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5. Can you explain the “bump” that you see?

6. Now suppose the number of mosquitos per human is a periodic function
m = 1.5 + sin(2πt). What happens now? (You may want to run the code
for longer; say 1500 days).

7. Show that if there is no incubation period for either humans or mosquitos,
then the delay model reduces to the classic Ross–Macdonald model

dx

dt
= −rx(t) + abm[1− x(t)]y(t)

dy

dt
= −µy(t) + acx(t)[1− y(t)].

8. Find the two equilibria of this system.

9. Show that, in this case, R0 = a2bcm/µr.

10. What happens if the death rates for humans and mosquitos are large (ie
µr > a2bcm)? Explain the biological implications of this.
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Application: Guinea-worm disease

18.1 Introduction

One of the most fascinating diseases that almost nobody has heard of (but
hopefully soon will!) is Guinea-worm disease (GWD). This is a neglected trop-
ical disease, one that’s spread via drinking water (and only via drinking water,
which matters). Unfortunately, there is no drug to treat GWD, and there is no
vaccine either. Miraculously, however, GWD is about to be eradicated, mak-
ing it the first parasitic disease to be eradicated and the first to be eradicated
without biomedical interventions. This is largely thanks to the efforts of one
man. (See if you can guess who before the reveal.) So how can you eradicate
a disease without a drug, vaccine or immunity?

GWD has been with us since antiquity: it’s mentioned in the Bible, and
Egyptian mummies suffered from it. Essentially, the parasite attaches itself
to a water flea; you drink the flea; and your stomach acid dissolves the flea,
leaving the parasite free to invade your body. Because of gravity, it usually
makes its way to the foot, where it lives for an entire year.

After a year, your foot is burning and itching, so you put it in the water.
And if your village only has one water source, then that often ends up being
the drinking water. At this point, the fully grown worm bursts out of your
foot, spraying forth 100,000 parasites and hence restarting the process.

In the 1950s, GWD affected 50 million people across most of Africa, Asia
and the Middle East. Yet today it’s on the verge of being eradicated, with less
than 25 human cases reported in 2016, in just three African countries. This
ancient scourge is almost gone. So what happened?

Before we reveal the answer, let’s think about how you might eradicate a
water-borne disease (i.e., a disease transmitted through contaminated water).
Possibilities are a vaccine, drugs that treat symptoms, chemicals that kill the
parasite, better hygiene or education that changes people’s behaviour.

This chapter shows how to build a simple model, drawing on Chapter 5,
and illustrates how impulses can be used to make predictions, a la Chapter
15.
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18.2 The model

To create our mathematical model, we need to keep track of what comes in and
what goes out. In the case of Guinea-worm disease, we divide the population
of humans into three subcategories. GWD is not lethal, so each time we speak
of death rate, it is the usual background death rate. The first category is that
of susceptible individuals. Three things can happen to them: they are born,
become infected or die. Similarly, infected individuals become infectious or
die. Infectious individuals recover or die. We also have a population of worms:
the parasite is born when infectious individuals put their foot in the drinking
water (because fresh water produces relief) and dies shortly thereafter.

Denote susceptible individuals by S, exposed individuals by E and infected
individuals by I. The number of larvae in the water is denoted W . The human
birth rate is Π, the infection rate is β, the rate of worm emergence is α, the
recovery rate is κ, and the death rate is µ. Infected individuals produce new
larvae at rate γ, and the larvae are naturally cleared from the water at rate
µW . Although water fleas act as an intermediate host, carrying the nematode
until human digestion, we conflate the larvae and the fleas, in order to keep
the model tractable.

Interventions include filtration, education or chlorination of the water sup-
ply. Although “education” is a complex term, encompassing a multitude of
interventions, we consider education to refer directly to teaching people not to
put their infected limbs in the water supply, in line with established behaviour-
change programs for tackling GWD. Thus, we consider that an increase in
education will have the direct effect of reducing the parasite birth rate, hence
reducing γ. Likewise, by “filtration”, we mean a method that reduces the abil-
ity of the parasite to infect a human host, thus reducing β. Chlorination has
the effect of increasing the death rate of the parasite, thus increasing µW .

Our mathematical model is thus

S′ = Π − βSW − µS + κI t 6= tk

E′ = βSW − αE − µE t 6= tk

I ′ = αE − κI − µI t 6= tk

W ′ = γI − µWW t 6= tk

∆W = −rW t = tk.

See Figure 18.1. Note that S, E, I and W are nonnegative. Furthermore,
since these quantities are averages, we do not assume that individuals are
necessarily infected with only one worm at a time. People have been observed
to have up to seven worms at once.

We use mass-action transmission, since the interaction between parasites
in the water and humans involves drinking parasite-laden water. Thus, since
everyone in the village usually drinks from a single source, each human has
roughly equal chance of encountering the parasite.
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Fig. 18.1. The Guinea-worm disease model

18.3 The system without impulses

First, we shall analyse the corresponding system of ODEs. Note that

S′ + E′ + I ′ = Π − µ(S + E + I).

Thus

S + E + I ≤ Π

µ
.

Hence

I ′ ≤ αΠ

µ
− (κ+ µ)I

I ≤ αΠ

µ(κ+ µ)
+

[
I(0)− αΠ

µ(κ+ µ)

]
e−(κ+µ)t.

Since κ is large, the exponential term is small, so we have

I ≤ αΠ

µ(κ+ µ)
.

It follows that

W ′ ≤ αΠγ

µ(κ+ µ)
− µWW (18.1)

and thus
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W ≤ αΠγ

µµW (κ+ µ)
. (18.2)

These inequalities overestimate the parasite levels in the water, but they allow
us to estimate these levels without solving the original system of differential
equations. This will be useful in the next section.

The disease-free equilibrium satisfies

(S̄, Ē, Ī, W̄ ) =

(
Π

µ
, 0, 0, 0

)
.

Using the next-generation method, we have

F =



βSW

0
0


 V =




αE + µE
−αE + κE + µI
−γI + µWW




F =




0 0 βS̄
0 0 0
0 0 0


 V =



α+ µ 0 0
−α κ+ µ 0
0 −γ µW


 .

Hence we have

FV −1 =




0 0 βS̄
0 0 0
0 0 0







1
α+µ 0 0
α

(α+µ)(κ+µ)
1

κ+µ 0
αγ

µW (α+µ)(κ+µ)
γ

µW (κ+µ)
1
µW




=




βS̄αγ
µW (α+µ)(κ+µ)

βS̄γ
µW (κ+µ)

βS̄
µW

0 0 0
0 0 0


 .

Since this matrix is upper triangular, the eigenvalues are on the diagonal. So,
from the properties of the next-generation process, the largest eigenvalue is
thus

R0 =
Παγβ

µ(α+ µ)(κ+ µ)µW
. (18.3)

Thus, if R0 < 1, then the disease-free equilibrium is stable and is the
only equilibrium (since Î < 0 in this case). If R0 > 1, then the disease-free
equilibrium is unstable and the endemic equilibrium exists. Note that R0 is
increasing with Π, α, γ and β, and decreasing with µ, µW and κ.

Education will discourage infected individuals from putting infected limbs
into the drinking water. This will decrease γ. Filtration of drinking water
using cloth filters will decrease β. Continuous chlorination of the water will
increase µW . All of these interventions will result in R0 decreasing.

However, continuous chlorination is neither possible nor desirable, so we
shall assume chlorination occurs at distinct (not necessarily fixed) times tk. At
these times, the number of larvae in the water are reduced by some proportion
r. This results in a system of impulsive differential equations, as discussed in
Chapter 15.
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18.4 The system with impulses

In this section, we use inequality (18.1) to overestimate the number of larvae
in the water. This allows us to solve the corresponding impulsive differential
equation, in order to derive sufficient controls.

Suppose we have maximum growth of larvae in the water, so that we have
equality in (18.1). Then we have the one-dimensional impulsive differential
equation

W ′ =
αΠγ

µ(κ+ µ)
− µWW t 6= tk (18.4)

∆W = −rW t = tk.

It follows that, for a single impulsive cycle tk ≤ t ≤ tk+1, the solution is

W (t−k+1) = W (t+k )e−µW (tk+1−tk) +
αΠγ

µµW (κ+ µ)

[
1− e−µW (tk+1−tk)

]
,

where W (t−k ) is the value immediately before the impulse and W (t+k ) is the
value immediately after. For simplicity of notation, we can denote W+

k =
W (t+k ) and W−k = W (t−k ). The degree of overestimation in (18.4) is shown in
Figure 18.2.
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Fig. 18.2. Comparison of the actual W with the overestimate used when the growth
rate is assumed to be maximal.

If we start on the endemic equilibrium, then the parasite values at the
impulse times satisfy
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W−1 =
αΠγ

µµW (κ+ µ)

W+
1 = (1− r) αΠγ

µµW (κ+ µ)

W−2 = (1− r) αΠγ

µµW (κ+ µ)
e−µ(t2−t1) +

αΠγ

µµW (κ+ µ)

(
1− e−µW (t2−t1)

)

W+
2 = (1− r)2 αΠγ

µµW (κ+ µ)
e−µ(t2−t1)

+ (1− r) αΠγ

µµW (κ+ µ)

(
1− e−µW (t2−t1)

)

W−3 = (1− r)2 αΠγ

µµW (κ+ µ)
e−µW (t3−t1) + (1− r) αΠγ

µµW (κ+ µ)
e−µW (t3−t2)

− (1− r) αΠγ

µµW (κ+ µ)
e−µW (t3−t1) +

αΠγ

µµW (κ+ µ)

− αΠγ

µµW (κ+ µ)
e−µW (t3−t2).

Thus, the general solution satisfies

W−n =
αΠγ

µµW (κ+ µ)

[
(1− r)n−1e−µW (tn−t1) + (1− r)n−1e−µW (tn−t2) + · · ·

+ (1− r)e−µW (tn−tn−1) + 1− (1− r)n−2e−µW (tn−t1)

− (1− r)n−3e−µW (tn−t2) − · · · − e−µW (tn−tn−1)

]
. (18.5)

We have thus derived a general solution for the maximal number of para-
sites in the water. This occurs immediately before chlorination is applied and
was derived from the overestimate (18.2). Note that this solution does not
depend on the time between chlorinations being fixed.

18.4.1 Fixed chlorination

If chlorination occurs at fixed times, then tn − tn−1 = τ is constant. We thus
have

W−n =
αΠγ

µµW (κ+ µ)

[
1 + (1− r)e−µW τ + (1− r)2e−2µW τ + · · ·

+ (1− r)n−1e−(n−1)µW τ − e−µW τ
(

1 + (1− r)e−µW τ + · · ·

+ (1− r)n−2e−(n−2)µW τ
)]

=
αΠγ

µµW (κ+ µ)

[
1− (1− r)ne−nµW τ
1− (1− r)e−µW τ − e

−µW τ 1− (1− r)n−1e−(n−1)µW τ

1− (1− r)e−µW τ
]
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Hence

lim
n→∞

W−n =
αΠγ

µµW (κ+ µ)

[
1− e−µW τ

1− (1− r)e−µW τ
]
.

This is the long-term maximum value of the infected water (since the effect
of the impulse is to immediately reduce the level of infection). To keep this
below a desired threshold W̃ , we thus require

τ <
1

µW
ln

[
αΠγ − (1− r)W̃µµW (κ+ µ)

αΠγ − W̃µµW (κ+ µ)

]
≡ τmax. (18.6)

This is the maximum period between water treatments required to keep the
infection below W̃ .

Note that W̃ must satisfy

W̃ <
αΠγ

µµW (κ+ µ)
(18.7)

from (18.2) in order ensure we are not taking the logarithm of a negative.
It follows that, in the case of fixed chlorination, we can derive a maximal

(fixed) period of chlorination that will keep the parasite level strictly below a
threshold of our choosing.

18.4.2 Nonfixed chlorination

In resource-constrained regions, regular disease control may be difficult, due
to limited resources and infrastructure. In particular, chlorinating water at
fixed intervals may be difficult or impossible. In order to determine the “next
best” chlorination time under these circumstances using (18.5), the entire
history of chlorination would need to be known. This is unlikely to be the
case, so we assume that only the two most recent chlorination events are
known. Specifically, we assume that

e−µW (tn−tk) ≈ 0 for k > 2

We thus have

W−n ≈
αΠγ

µµW (κ+ µ)

[
(1− r)2e−µW (tn−tn−2) + (1− r)e−µW (tn−tn−1) + 1

− (1− r)e−µW (tn−tn−2) − e−µW (tn−tn−1)

]
.

To keep this below W̃ , we thus require

1− r(1− r)e−µW (tn−tn−2) − (2− r)e−µW (tn−tn−1) <
W̃µµW (κ+ µ)

αΠγ
. (18.8)
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Hence, if the previous two chlorination times are known, then the “next best”
chlorination time satisfies

tn <
1

µW
ln


 2− r2

1− r(1− r)eµW tn−2 − (2− r)eµW tn−1 − W̃µµW (κ+µ)
(αΠγ)


 .

It follows that, when chlorination is not fixed, we can derive the “next best”
chlorination time, assuming the previous two chlorination times are known.

18.5 Numerical simulations

To examine the three crucial control parameters in more detail, we fixed all
other parameters at their sample values and set R0 = 1. We can solve equation
(18.3) for β (which is trivial) and then use γ and µW as our independent
variables. This allows us to create a 3D surface.

clear all

close all

Pi=37;

mu=1/70;

kappa=365*24;

alpha=1;

gamma=[100:100:1000 10000:10000:100000];

muW=0:0.1:200;

r=0.9;

[X,Y]=meshgrid(gamma,muW);

beta=mu.*(alpha+mu).*(kappa+mu).*Y./(Pi.*alpha.*X);

mesh(X,Y,log(beta))

xlabel('Parasite birth rate')

ylabel('Parasite death rate')

zlabel('log(Transmissibility)')

hold on

plot3(100000, 26, log(0.02555),'*r')

plot3(1000, 26, log(0.02555),'*g')

The resulting surface is plotted in Figure 18.3. Parameter combinations
under the surface will lead to eradication, while those above will maintain
disease persistence. The outcome is significantly dependent on changes in
γ. Even if µW were increased a hundredfold, it is still unlikely to lead to
eradication, while β would have to be reduced to extremely low levels because
of the log scale.

The code for solving impulsive differential equations is here:
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Fig. 18.3. Eradication threshold for the three parameters with the greatest influence
on R0. Eradication will occur if the infection rate is reduced to a tiny fraction of
its current value (through filtration of drinking water) or the parasite death rate is
increased more than a hundredfold (through chlorination) or if the parasite birth
rate is reduced to approximately a 1% of its current size (through education).

clear all

global Pi alpha mu kappa beta gamma muW

Pi=37;

alpha=1;

mu=0.0142;

kappa=365*24;

beta=0.0255;

gamma=100000;

muW=26;

r=0.9;

t0=0;

tq=[];

yq=[];

tfinal=12;

x0=[Pi/mu 0 0 200 200];

tq=[];

xq=[];

t0=0;
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reps = 6;

tau=1;

for i=1:reps

tspan=[t0 t0+tau];

[t,x] = ode45(@GWDf,tspan,x0);

n=length(x);

x0=x(n,:);

x0(4)=(1-r).*x(n,4);

x0(5)=(1-r).*x(n,5);

tf=t(n);

tq=[tq;t(1:n)];

xq=[xq;x((1:n),:)];

t0=tf;

end

%plot(tq,xq(:,5))

plot(tq,xq(:,1),tq,xq(:,2),tq,xq(:,3),tq,xq(:,4))

xlabel('time (years)')

ylabel('Population')

function yp=GWDf(t,y)

global Pi alpha mu kappa beta gamma muW

yp(1,:)=Pi-beta.*y(1).*y(4)-mu.*y(1)+kappa.*y(3);

yp(2,:)=beta.*y(1).*y(4)-alpha.*y(2)-mu.*y(2);

yp(3,:)=alpha.*y(2)-kappa.*y(3)-mu.*y(3);

yp(4,:)=gamma.*y(3)-muW.*y(4);

yp(5,:)=gamma.*Pi./(mu.*(kappa+mu))-muW.*y(5);

The idea behind this formulation is that we run the differential equations
for a while (tau), then reset the initial conditions in accordance with the
impulse instructions, using the final conditions from the previous cycle. We
do this a number of times (reps). The tq and xq parts are simply record-
keeping: we need to track the solution every cycle. Note that we also keep
track of the overestimate here in the fifth variable.

Using this code, the effect of annual chlorination is illustrated in Figure
18.4. In this case, despite significant reductions in the larval population imme-
diately after chlorination, the population returns to high levels quite quickly.
The number of susceptibles remains low, while almost all individuals remain
infected.

The effect of reducing the parasite birth rate by 99% is illustrated in Figure
18.5. In this case, the number of exposed and infectious individuals approaches
zero and the entire population becomes uninfected.
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Fig. 18.4. Persistence of the disease under annual chlorination. Chlorination was
assumed 90% successful and applied annually. All parameters were their sample value
in Table 18.1. Note that infection levels are low, since individuals are infectious for
only a brief time (the amount of time they physically submerge their foot in water).
However, the burden of the disease is expressed through the exposed class, where
individuals are infected with Guinea worms for months at a time.
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Fig. 18.5. Eradication of the disease when the parasite birth rate is decreased.
Parameters used were the same as the previous scenario, except that γ = 1000 (see
Figure 18.3).
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Table 18.1. Parameter values. The average transmissibility β was derived from (7
drinks of water per day) × (365 days)/(100,000 larvae)=0.02555. This represented
the ratio of total yearly water ingested to number of parasites. The average lifespan
1/µ was set to 70 years. The average infectious time 1/κ was set to be 1 hour (the
length of time that an infected foot is actually submerged in the water), so that
κ = 24 × 365 = 8760 years−1. The birth rates per 1000 people in the four endemic
countries are 46.09 (Mali), 43.34 (Ethiopia), 33.25 (Sudan) and 28.09 (Ghana), giv-
ing an average of 37.

Parameter Definition Sample value units

S Susceptible individuals S(0) = Π/µ people
E Exposed individuals E(0) = 0 people
I Infectious individuals I(0) = 0 people
W Water-borne larvae W (0) = 200 larvae
Π birth rate 37 people years−1

β transmissibility 0.0255 larvae−1·years−1

µ death rate 0.0142 years−1

κ recovery rate 8760 years−1

α rate of worm emergence 1 years−1

γ parasite birth rate 100,000 larvae·people−1·years−1

µW parasite death rate 26 years−1

r chlorine effectiveness 90% –

18.6 Discussion

So who was responsible for the near-eradication of this disease? Former Presi-
dent Jimmy Carter, who in 1986 set his sights on removing a disease from the
planet — and he’s almost succeeded. He did this through the unglamorous
but important work of mobilising public–private partnerships, delivering edu-
cation messages to remote populations and even negotiating a “Guinea-worm
ceasefire” in the Sudan civil war so that NGOs could go in and educate those
most at risk.

We stand at the brink of eradicating one of humanity’s oldest scourges.
There are three criteria for the eradication of an infectious disease: 1. biological
and technical feasibility; 2. costs and benefits; and 3. societal and political
considerations. GWD satisfies all three. While eradication efforts have been
immensely successful thus far, the final phase of eradication will occur in
resource-poor and underfunded areas of the world. Knowing which strategies
may be optimal will be of enormous benefit.

Smallpox remains the only disease we have completely eradicated, despite
eradication hopes for malaria, yaws and yellow fever in the twentieth century
and current eradication programs, such as polio and leprosy. Measles, rubella
and hepatitis A and B are biologically and technically feasible candidates for
eradication.

A critical tool for smallpox eradication, in addition to an extremely effec-
tive vaccine, was photographic disease-recognition cards, demonstrating that
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non-biomedical interventions were also important. Barriers to smallpox erad-
ication included cultural traditions, a lack of societal support and religious
beliefs. Despite strong biological, technical and cost-benefit arguments for
eradication of many infectious diseases, securing societal and political com-
mitment has been recognised as a substantial challenge.

The most effective way to eradicate GWD is to reduce the parasite birth
rate. This can be achieved via education; specifically, teaching people not
to put infected limbs into the drinking water. Although behaviour changes
are, in general, notoriously difficult, GWD eradication programs have had
significant success in altering people’s behaviour. If 99% of people can be
persuaded not to put their infected feet in the drinking water, then eradication
is assured. While chlorination can theoretically control the disease and we have
provided estimates for the necessary frequency and strength of chlorination,
numerical simulations demonstrate that education is far more effective. Thus,
our results here are not advocating for something untested but rather point to
the importance that one of the three existing intervention methods — namely,
persuading people not to put infected limbs in the drinking water — will have
in the final push towards complete eradication.

The final steps towards eradication of GWD should take place within the
next few years. Our modelling shows that education is the most effective inter-
vention method, but a combination of education, chlorination and filtration
will likely be required to achieve the final steps in the long journey to eradica-
tion. By mustering both scientific and cultural resources, we can successfully
defeat one of the oldest diseases in human history.

18.7 Lab work

1. Show that the endemic equilibrium of the system without impulses is given
by

Ŝ =
µW
βγ

(
κ+ µ+

κµ

α
+
µ2

α

)

Ê =
κ+ µ

α
Î

Ŵ =
γ

µW
Î

Î =
Πβγα− µµW (κα+ µα+ κµ+ µ2)

(α+ κ+ µ)βγµ
.

2. Instead of (18.1), suppose we made a simpler estimate: namely, that I ≤
Π
µ . That is, the number of infected individuals is less than the total number
of humans. In this case, our overestimate would be

W ′ =
γΠ

µ
− µWW t 6= tk

∆W = −rW t = tk.

(18.9)
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a) Solve equation (18.9) for fixed chlorination.
b) Plot this overestimate and the actual solution on the same graph using

the parameters in Table 18.1. What do you think of this overestimate?
c) Find the maximal period for the parameters in Table 18.1 and a par-

asite threshold of W̃ = 1000.
d) Solve (18.6) for the same parameters. Which is more reasonable?

(Note: you might want to change the scale once you’ve found the
answer to help with interpretation.)
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Application: Zombies! (Aargh!)

19.1 Introduction — of peril!

A zombie is a reanimated human corpse that feeds on living human flesh.
They are mindless monsters who do not feel pain and who have an immense
appetite for human flesh, making them one of our natural predators. Their
aim is to kill, eat or infect us. The “undead” move in small, irregular steps
and show signs of physical decomposition, such as rotting flesh, discoloured
eyes and open wounds. Modern zombies are often related to an apocalypse,
where civilisation could collapse due to a plague of the undead.

Major outbreaks of zombies have been recorded since 1968, primarily in
the US and the UK. Various historical records have described zombies over-
whelming such important places as isolated farmhouses, shopping malls and
British pubs. When a susceptible individual is bitten by a zombie, it leaves
an open wound. The wound created by the zombie has the zombie’s saliva
in and around it. This bodily fluid mixes with the blood, thus infecting the
(previously susceptible) individual.

The origins of the zombie outbreak are particularly murky. The historical
records that we have access to have speculated that the causes might include
radiation (Night of the Living Dead), exposure to airborne viruses (Resident
Evil) or stings from genetically altered bees (Dead Rising). However, such the-
ories remain untested, as the individuals in question were soon overwhelmed
by activities such as running in terror, fighting hordes of the undead and,
shortly afterwards, attempting to eat their friends.

Instead, focus has largely been on methods to defeat the zombies. Success-
ful tools at our disposal include guns, the army, eventual starvation — and, of
course, Dire Straits records . However, there is one tool in the zombie arsenal
that has not been utilised: mathematics!

One of the confounding factors in the zombie apocalypse is that previously
living friends and relatives will return to life in the form of the living dead, who
must then be disposed of. So if you feel comfortable shooting grandma in the



238 19 Application: Zombies! (Aargh!)

face, then congratulations: a) you stand a chance of surviving the apocalypse
and b) the world will hence consist entirely of sociopaths.

The biggest problem with the undead is their sheer numbers. They don’t
need to eat, sleep, go to work or stand in line at the bank (although many
will, if undisturbed). So while one zombie may be defeatable, good luck facing
a thousand of them with a limited supply of bullets and no knowledge of how
to forge metal for replacements because Google is long gone at this point. Yes,
that’s how serious this is.

Happily, we have an advantage that the zombies don’t: our braaaiiinnnsss.
The very thing the zombies want to eat is also our greatest weapon. Coinci-
dence? You make the call. We can do all sorts of things the zombies can’t:
build moats, electrify fences, operate vehicles with an internal combustion en-
gine and draw cartoons. The latter may not be so useful in the apocalyptic
collapse of civilisation as we know it, but you never know.

In order to model a zombie outbreak, it is important to observe the action
of zombie infection, preferably from some considerable distance. Humans can
be infected by direct contact with a zombie. However, humans may also die of
natural causes, whereupon they can be resurrected as a zombie. zombies can
also be killed in an encounter with humans, possibly permanently.

19.2 The model — of doom!

For the basic model, we consider three classes: Susceptible (S), Zombies (Z)
and Removed (R). The removed class represents the temporarily deceased,
whether through natural death surrounded by weeping loved ones or through
the (temporary) death of a zombie. This event may also be accompanied by
weeping, although for entirely different reasons. Zombies may also be killed
permanently, upon severance of the brain stem through methods too gory to
describe here. However, this is not as easy as most people imagine (and don’t
even ask about how we know this for a fact), so only a percentage of zombie
deaths will be permanent.

Given the sheer numbers of the undead, we will model infection through
mass action (fortunately, sexual transmission of the zombie virus has only
been documented in a very few cases, about which we do not want to know or
speculate further). We assume a constant birth rate (Π) and a linear death
rate (δ), the latter of which does not remove individuals from the system of
course. The transmission rate is β and the reanimation rate is ζ. When humans
kill zombies, we assume that some proportion p are permanently killed, but
the remainder move to the Removed class, where they can subsequently be
reanimated. However, the rate of effectively killing zombies is likely to be
inefficient, so we shall make the assumption that αp < β. That is, we cannot
kill zombies faster than they can infect us.

The basic SZR model is thus given by
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S′ = Π − βSZ − δS
Z ′ = βSZ + ζR− αSZ
R′ = δS + α(1− p)SZ − ζR.

See Figure 19.1.

Figure 1: The basic model

This model is illustrated in Figure 1.
This model is slightly more complicated than the basic SIR models that

usually characterise infectious diseases [11], because this model has two mass-
action transmissions, which leads to having more than one nonlinear term in
the model. Mass-action incidence specifies that an average member of the pop-
ulation makes contact su⇤cient to transmit infection with ⇥N others per unit
time, where N is the total population without infection. In this case, the in-
fection is zombification. The probability that a random contact by a zombie is
made with a susceptible is S/N ; thus, the number of new zombies through this
transmission process in unit time per zombie is:

(⇥N)(S/N)Z = ⇥SZ .

We assume that a susceptible can avoid zombification through an altercation
with a zombie by defeating the zombie during their contact, and each susceptible
is capable of resisting infection (becoming a zombie) at a rate �. So using the
same idea as above with the probability Z/N of random contact of a susceptible
with a zombie (not the probability of a zombie attacking a susceptible), we
have the number of zombies destroyed through this process per unit time per
susceptible is:

(�N)(Z/N)S = �SZ .

The ODEs satisfy

S� + Z � + R� = �

and hence

S + Z + R � ⇥

as t � ⇥, if � ⇤= 0. Clearly S ⇤� ⇥, so this results in a ‘doomsday’ scenario:
an outbreak of zombies will lead to the collpase of civilisation, as large numbers
of people are either zombified or dead.

If we assume that the outbreak happens over a short timescale, then we can
ignore birth and background death rates. Thus, we set � = ⇤ = 0.

4

Fig. 19.1. The basic zombie model.

19.3 Analysis — of anguish!

Since we are usually dealing with only a short timescale (on the matter of
days or weeks rather than decades), the contributions of human birth and
natural death will be negligible. So we will assume Π = δ = 0.

In this case, the equilibria satisfy

−βSZ = 0

βSZ + ζR− αSZ = 0

α(1− p)SZ − ζR = 0.

From the first equation, either S = 0 or Z = 0. When Z = 0, we have the
DFE

(S̄, Z̄, R̄) = (N, 0, 0),

where N is the entire population. It follows from S = 0 that we get the
“doomsday” equilibrium

(S̄, Z̄, R̄) = (0, N, 0),

with every human converted and every dead individual reanimated. These
equilibrium points suggest that human–zombie coexistence is impossible. You
should probably cancel any well-intentioned dinner parties, unless you want
to be on the menu.

The Jacobian is

J =



−βZ −βS 0

βZ − αZ βS − αS ζ
α(1− p)Z α(1− p)S −ζ


 .
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The Jacobian at the DFE is

J(N, 0, 0) =




0 −βN 0
0 βN − αN ζ
0 α(1− p)N −ζ


 .

We have det(J − λI) = −λ
[
λ2 + λ(αN − βN + ζ) + ζN(αp− β)

]
. With the

assumption that αp−β < 0, it follows that the characteristic equation always
has a root with positive real part. It follows that the DFE is always unstable,
meaning it only takes a small perturbation (say, a zombie or two) and the
infection will spread. This is not good.

Next we have

J(0, N, 0) =



−βN 0 0

βN − αN 0 ζ
α(1− p)N 0 −ζ


 .

In this case, the characteristic equation is det(J−λI) = −λ(−βN−λ)(−ζ−λ).
Since all eigenvalues of the doomsday equilibrium are negative, it is asymptot-
ically stable. Hence, in a short outbreak, zombies will likely infect everyone.

In Figure 19.2, we simulated a mid-size city of a million people, starting
with a single zombie on Day 0. Parameters used were β = 5× 10−6 per peo-
ple per day (representing 5 initial bites for each zombie in a population of 1
million), ζ = 1 per day (representing a 24 hour period before reanimation),
α = β/10 (representing a kill-to-bite ratio of 10%) and p = 0.9 (represent-
ing 90% effectiveness at permanently killing zombies). The result is that the
human race is effectively eradicated after four days.
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Fig. 19.2. Basic model outbreak scenario. Susceptibles are quickly eradicated and
zombies take over, infecting everyone.
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Since ODEs model populations, not individuals, this does not preclude a
few survivors holed up in a shopping mall. However, these individuals repre-
sent a negligible fraction of the population. Furthermore, a) it’s not looking
too good outside and b) they can survive for precisely the length of time it
takes until the stupidest member of their group opens the door. So not terribly
long, then.

The code for the basic zombie model is given by:

clear all

x0=[1e6-1 1 0];

t0=0;

tau=7;

tspan=[t0 t0+tau];

[t,x]=ode45(@zombiesf,tspan,x0);

plot(t,x(:,1),'b',t,x(:,2),'r--')

xlabel('time (days)')

ylabel('Population')

function yprime=zombiesf(t,y)

beta=5./1e6;

zeta=1;

alpha=beta./10;

p=0.9;

yprime(1,:)=-beta.*y(1).*y(2);

yprime(2,:)=beta.*y(1).*y(2)+zeta.*y(3)-alpha.*y(1).*y(2);

yprime(3,:)=alpha.*(1-p).*y(1).*y(2)-zeta.*y(3);

19.4 Incubation — of destiny!

We now revise the model to include more realism, which is very important
when dealing with zombies. As we all know, there is a period of time after
the susceptible human gets bitten before they succumb to their wounds and
become a zombie. During this time, any infected human must on no account
reveal their status to their friends and instead should sweat, shiver uncon-
trollably and generally act suspiciously, while their friends remain hilariously
unaware of the forthcoming transformation.

Susceptibles will first move to an infected class (I) and remain there for
some time until the infection activates and they transform into a zombie.
Infected individuals can still die a “natural” death before activation.

The revised model is thus
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S′ = Π − βSZ − δS
I ′ = βSZ − ρI − δI
Z ′ = ρI + ζR− αSZ
R′ = δS + α(1− p)SZ − ζR.

See Figure 19.3.
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Figure 3: Basic model outbreak scenario. Susceptibles are quickly eradicated
and zombies take over, infecting everyone.

Figure 4: The SIZR model: the basic model with latent infection

As before, if � ⇥= 0, then the infection overwhelms the population. Conse-
quently, we shall again assume a short timescale and hence � = � = 0. Thus,
when we set the above equations to 0, we get either S = 0 or Z = 0 from the
first equation. This follows again from our basic model analysis that we get the
equilibria:

Z = 0 =� (S̄, Ī, Z̄, R̄) = (N, 0, 0, 0)

S = 0 =� (S̄, Ī, Z̄, R̄) = (0, 0, Z̄, 0)

Thus, coexistence between humans and zombies/infected is again not possible.

7

Fig. 19.3. The basic model with latent infection.

As before, we shall assume a short timescale and take Π = δ = 0. In this
case, we have two equilibria:

(S̄, Ī, Z̄, R̄) = (N, 0, 0, 0) and (S̄, Ī, Z̄, R̄) = (0, 0, N, 0).

For the DFE, we can use the next-generation method to find the repro-
duction number. We have

F =

[
βSZ

0

]
V =

[
ρI

−ρI − ζR+ αSZ

]

F =

[
0 βS
0 0

]
V =

[
ρ 0
−ρ αS

]

FV −1 =

[
β/α β/α

0 0

]

Hence the reproduction number is R0 = β/α, which is greater than 1. It
follows that the DFE is always unstable.

The Jacobian matrix is

J =




−βZ 0 −βS 0
βZ −ρ βS 0
−αZ ρ −αS ζ

α(1− p)Z 0 α(1− p)S −ζ


 .

At the doomsday equilibrium, we have

J(0, 0, N, 0) =




−βN 0 0 0
βN −ρ 0 0
−αN ρ 0 ζ

α(1− p)N 0 0 −ζ


 .
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The eigenvalues of this matrix are −βN , −ρ, 0 and −ζ. Since we have a
zero eigenvalue, we cannot determine the stability. We cannot apply the next-
generation method either, since the matrix V is not invertible if S = 0.

What happens if this equilibrium is unstable? Since the DFE is also un-
stable, solutions must persist. If both equilibria are unstable, then there must
be some stable object, such as a periodic orbit or chaos, to which solutions
converge. For our purposes, however, what we really care about is whether
the zombies exist or not, so the stability of the DFE is enough to tell us that
we’re in trouble. Whether the zombie population oscillates or settles down
into an equilibrium is fairly inconsequential.

Using the same parameters as before and adding ρ = 2 (so that it takes
half a day for the infection to activate), we have the following function file:

function yprime=latentzombiesf(t,y)

beta=5./1e6;

zeta=1;

alpha=beta./10;

p=0.9;

rho=2;

yprime(1,:)=-beta.*y(1).*y(3);

yprime(2,:)=beta.*y(1).*y(3)-rho.*y(2);

yprime(3,:)=rho.*y(2)+zeta.*y(4)-alpha.*y(1).*y(3);

yprime(4,:)=alpha.*(1-p).*y(1).*y(3)-zeta.*y(4);

The only change to the script file is that the initial conditions need to have
four components, not three. So with I(0) = 0, we get the situation shown in
Figure 19.4.

Zombies still take over the population, but adding a 12-hour delay to each
infection has bought us an additional four days. We’re still doomed, but it
gives us a bit more time to say goodbye to any surviving loved ones and
perhaps catch a few last episodes of our favourite TV shows, assuming there’s
still electricity, television and, indeed, actors.

19.5 Quarantine — of terror!

It’s time to strike back. Of course, we’ve already been fighting the zombies
at rate α, but we can be more strategic. This is where our braaaiiinnnsss
come in. So let’s quarantine at least some of the zombies. The great thing
about quarantine, mathematically speaking, is that it removes individuals
from the infectious pool. So any zombies who are in quarantine cannot infect
new humans while they remain locked up.

Of course, we’d probably want to quarantine infected humans as well, as-
suming we can find them. Your average zombie might be a hideous shambling
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Fig. 19.4. An outbreak with latent infection.

creature of doom, but at least we can recognise one when we see it. Finding
zombies to quarantine isn’t a problem; of course, we run the risk of them trying
to convert us when we do find them. Infected individuals present the reverse
problem: they’re relatively easy to capture, but we usually don’t know what
they look like. (And who can blame them for wanting to hide their symptoms
if they’re about to be tossed into a cage full of zombies?)

So we’ll quarantine both the infected and also the zombies but at differ-
ent rates (κ and σ, respectively). What happens after quarantine? We could
assume nothing happens, but a) that’s not very interesting and b) mathemat-
ically, we need to deal with this. Some of the quarantined zombies or infected
humans might try to escape, but any that tried to would be killed (at rate
γ) before finding their “freedom”. If we post snipers around the edge, then
there’s a good chance that the snipers could kill escaping individuals, but not
a great chance that any such death would be permanent. So we’ll assume a
proportion q are permanently killed, with the possibility that q may be zero.
The rest will enter the removed class and may later become reanimated as
“free zombies”.

The model with quarantine is thus

S′ = Π − βSZ − δS
I ′ = βSZ − ρI − δI − κI
Z ′ = ρI + ζR− αSZ − σZ
R′ = δS + α(1− p)SZ − ζR+ γ(1− q)Q
Q′ = κI + σZ − γQ

See Figure 19.5.
For a short outbreak, we have the DFE as usual:
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Figure 6: Model Equations for the Quarantine model

we only need to consider the infective di�erential equations I ⇥, Z ⇥ and Q⇥. Here,
F is the matrix of new infections and V is the matrix of transfers between
compartments.

F =

�
⇤

0 ⇥N 0
0 0 0
0 0 0

⇥
⌅ , V =

�
⇤

⇧ + ⌅ 0 0
�⇧ �N + ⌃ 0
�⌅ �⌃ ⇤

⇥
⌅

V �1 =
1

⇤(⇧ + ⌅)(�N + ⌃)

�
⇤

⇤(�N + ⌃) 0 0
⇧⇤ ⇤(⇧ + ⌅) 0

⇧⌃ + ⌅(�N + ⌃) ⌃(⇧ + ⌅) (⇧ + ⌅)(�N + ⌃)

⇥
⌅

FV �1 =
1

⇤(⇧ + ⌅)(�N + ⌃)

�
⇤

⇥N⇧⇤ ⇥N⇤(⇧ + ⌅) 0
0 0 0
0 0 0

⇥
⌅ .

This gives us

R0 =
⇥N⇧

(⇧ + ⌅)(�N + ⌃)
.

It follows that the disease-free equilibrium is only stable if R0 < 1. This
can be achieved by increasing ⌅ or ⌃, the rates of quarantining infected and
zombified individuals, respectively. If the population is large, then

R0 ⇥ ⇥⇧

(⇧ + ⌅)�
.

If ⇥ > � (zombies infect humans faster than humans can kill them, which we
expect), then eradication depends critically on quarantining those in the primary
stages of infection. This may be particularly di⇤cult to do, if identifying such
individuals is not obvious [8].

10

Fig. 19.5. The model with quarantine.

(S̄, Ī, Z̄, R̄, Q̄) = (N, 0, 0, 0, 0).

There is also a coexistence equilibrium

(S̄, Ī, Z̄, R̄, Q̄) =

(
0, 0, Z̄,

σZ̄

ζ
,
σZ̄

γ

)

that only exists if q = 0. If q 6= 0, then the second equilibrium is (0, 0, 0, 0).
Using the next-generation method to analyse the DFE, we consider the

infective classes I and Z. We have

F =

[
0 βN
0 0

]
V =

[
ρ+ κ 0
−ρ αN + σ

]

FV −1 =

[ ρβN
(ρ+κ)(αN+σ)

βN
αN+σ

0 0

]
.

This gives us

R0 =
ρβN

(ρ+ κ)(αN + σ)
.

The DFE is only stable if R0 < 1. We have no control over β, N or ρ. Assuming
that α is already maximised (i.e., we are already killing zombies as best we
can), the two parameters we can control are κ and γ, the rates of quarantining
infected and zombified individuals, respectively. If the population is large, then

R0 ≈
ρβ

(ρ+ κ)α
.

The only way to keep R0 < 1 and prevent an outbreak would be to increase
κ. The result thus depends critically on finding the very individuals who do
not want to be found. This is a problem.

Furthermore, quarantining a large percentage of infected individuals is
unrealistic, due to infrastructure limitations, so we do not expect κ or σ to
be large. We thus expect R0 > 1 in practice. Hence zombies can invade, even
with quarantine. Figure 19.4 illustrates the situation for parameters as before,
with additionally κ = 0.01, σ = 0.1, q = 0.1 and γ = 1/7. In this case, the
zombies are in fact eventually controlled, but honestly it’s a bit of a pyrrhic
victory.
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Fig. 19.6. With quarantine, the entire population collapses, and we all lose.

19.6 A cure — of fear!

Suppose we can produce a treatment for zombie-ism that returns the undead
to life. Okay, stop laughing. Sure, it’s a bit ridiculous, but stay with me here.
The only thing we need to assume is that the treatment does not provide
immunity, meaning that the zombies will become susceptible humans.

Since quarantine didn’t work, let’s drop that. And hey, who cares about
quarantine because we have a cure! See Figure 19.7.

who resurrected from the dead and who were given the cure were also able to
return to life and live again as they did before entering the R class.

Things that need to be considered now include:

• Since we have treatment, we no longer need the quarantine.

• The cure will allow zombies to return to their original human form regard-
less of how they became zombies in the first place.

• Any cured zombies become susceptible again; the cure does not provide
immunity.

Thus, the model with treatment is given by

S� = � � ⇥SZ � ⇤S + cZ

I � = ⇥SZ � ⇧I � ⇤I

Z � = ⇧I + ⌅R � �SZ � cZ

R� = ⇤S + ⇤I + �SZ � ⌅R .

The model is illustrated in Figure 8.

Figure 8: Model equations for the SIZR model with cure

As in all other models, if � ⇧= 0, then S + I + Z + R ⇤ ⌅, so we set
� = ⇤ = 0. When Z = 0, we get our usual disease-free equilibrium,

(S̄, Ī, Z̄, R̄) = (N, 0, 0, 0) .

However, because of the cZ term in the first equation, we now have the possi-
bility of an endemic equilibrium (S̄, Ī, Z̄, R̄) satisfying

�⇥S̄Z̄ + cZ̄ = 0

⇥S̄Z̄ � ⇧Ī = 0

⇧Ī + ⌅R̄ � �S̄Z̄ � cZ̄ = 0

�S̄Z̄ � ⌅R̄ = 0 .

12

Fig. 19.7. The model with treatment.

The model is given by

S′ = Π − βSZ − δS + cZ

I ′ = βSZ − ρI − δI
Z ′ = ρI + ζR− αSZ − cZ
R′ = δS + α(1− p)SZ − ζR.

For a short timescale, there are two equilibria, the DFE
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(S̄, Ī, Z̄, R̄) = (N, 0, 0, 0)

and a survivors’ equilibrium

(S̄, Ī, Z̄, R̄) =

(
c

β
, 0, 0, 0

)
.

Using the next-generation method, we find

R0 =
βS̄

αS̄ + c
.

For S̄ = c/β, we have R0 = β
α+β < 1 always. So the survivors’ equilibrium is

always stable.
For S̄ = N , we have R0 = βN

αN+c . The critical threshold for vaccination
is thus c∗ = (β − α)N . If c < c∗, then the DFE is unstable. If c > c∗, the
DFE is stable. In this case we have bistability, so the results depend on the
initial conditions. However, for our parameters, we find c∗ = 4.5 per day. That
is, the average zombie must be infectious for a maximum 1/4.5=0.222 days
before being cured. This means we need to cure zombies within 5 hours and
20 minutes of their activation. Good luck with that. You’re going to need it.

For a more realistic value, say curing zombies within 5 days of activation,
we have c = 0.2 and hence there are 40,000 survivors. This is better than
nothing, but it’s a lot smaller than the 1,000,000 people we started with. The
results are shown in Figure 19.8.
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Fig. 19.8. With treatment, humans eventually survive, but it takes a long time.

A cure would be nice, but a) we can’t sit around waiting for someone to
invent one when there are zombies at the door, and b) do you really want to be
part of that tiny portion of survivors fighting and curing zombies aggressively
for the better part of a year? Well, it’s better than the alternative, I suppose.
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19.7 Using our braaaiiinnnsss! (impulsively)

Let’s seize the major advantage we have over zombies: no, not our fashion
sense, our intellect. Suppose we try to strategically destroy zombies at such
times that our resources permit. This may be through targeted attacks by
government forces or coordinating among survivors. Each time we attack the
zombies, we can learn lessons, plan better for next time and then strike back
harder, destroying more zombies with each attack. So it’s a careful, thoughtful
balance between education and mindless violence. A bit like high school, then.

This results in an impulsive effect. At each attack, the zombies are reduced.
There’s a baseline level of zombie-killing competence, the kill ratio k ∈ (0, 1].
We’ll hit the zombies n times, where n is the number of attacks we need
until they’re eradicated. That is, we’ll hit the zombies at distinct times, with
ever-increasing force.

We’ll add this effect to the basic model. Yes, the very worst model of all,
the one that gave us only four days to survive.

S′ = Π − βSZ − δS t 6= tn

Z ′ = βSZ + ζR− αSZ t 6= tn

R′ = δS + α(1− p)SZ − ζR t 6= tn

∆Z = −knZ t = tn

We used a kill ratio of 20% and applied the impulsive effect every 24 hours.
The results are illustrated in Figure 19.9.
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Fig. 19.9. Impulsive attacks can control the epidemic.

The impulsive attacks were carried out once per day. For the first two
days, the effects are not noticeable. However, by the third day, the attack
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strength has increased (due to lessons learned) and is considerable by Day
4. The zombies are finally eradicated on Day 5, leaving a small but non-
negligible population of surviving humans. Note that the sharp turns in the
human populations are a result of the impulsive effect; the solutions here are
continuous, but their derivatives are not, producing non-smooth corners at
the impulse times.

The code for the impulsive attacks is given as follows:

clear all

x0=[1e6-1 1 0];

t0=0;

tq=[];

xq=[];

k=0.2;

tau=1;

for i=1:8

tspan=[t0 t0+tau];

[t,x]=ode45(@zombiesf,tspan,x0);

xq=[xq;x];

tq=[tq;t];

t0=t(length(t));

x0=x(length(t),:);

x0(2)=(1-k.*i).*x0(2);

end

plot(tq,xq(:,1),tq,xq(:,2),'r--')

xlabel('time (days)')

ylabel('Population')

There’s one further tweak we have to do, however: we need to ensure that
solutions do not become negative (since we’re subtracting potentially more
zombies than there actually are). In the function file, we solve that problem
by adding this:

if y(2)<0

y(2)=0;

end

19.8 Discussion — of dread!

An outbreak of zombies infecting humans is likely to be disastrous, unless
extremely aggressive tactics are employed against the undead. Without in-
tervention, the collapse of civilisation would happen within days. The key
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difference between the models presented here and other models of infectious
disease is that the dead can come back to life.

Quarantine has the potential to contain the epidemic, but sufficient num-
bers of infected individuals need to be located or else the likely outcome is
the catastrophic elimination of the entire population. Treatment can result in
some humans surviving, but it relies upon the development of a cure either
in advance or within the first few days of the epidemic. Only sufficiently fre-
quent attacks, with increasing force, will result in eradication, assuming the
available resources can be mustered in time.

Furthermore, these results assumed that the timescale of the outbreak
was short, so that the natural birth and death rates could be ignored. If the
timescale of the outbreak increases, then the result is the doomsday scenario:
an outbreak of zombies will result in the collapse of civilisation, with every
human infected or dead. This is because human births and deaths will provide
the undead with a limitless supply of new bodies to infect, resurrect and con-
vert. Thus, if zombies arrive, we must act quickly and decisively to eradicate
them before they eradicate us.

In summary, a zombie outbreak is likely to lead to the collapse of civilisa-
tion, unless it is dealt with quickly. The most effective way to contain the rise
of the undead is to hit hard and hit often. It is imperative that zombies are
dealt with quickly, or else we are all in a great deal of trouble.

19.9 Lab work — of horror!

One of the lessons we saw here was going around the modelling cycle (see
Figure 2.1 on Page 11) several times. In the lab, we’ll do that some more and
examine some potential scenarios.

1. One possibility might be to quarantine the humans instead of the zom-
bies. In this case, these humans will be immune to infection while they
remain quarantined. When they are released from quarantine, they will
be susceptible humans again.

a) Draw the model diagram.
b) Write down the differential equations.
c) For a short-term outbreak, find the DFE and determine its stability.
d) Under what circumstances will there be a second equilibrium? Deter-

mine its stability when it exists.
e) Choose some likely parameter values. Include units for each parame-

ter.
f) Plot the time series.
g) Determine the long-term outcome.
h) Describe any interesting or unexpected features of this disease not

included in the above list.
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2. What if the dead returned to life as susceptible individuals? That is,
zombies will still infect the living, but when the dead rise they rejoin
the human race, at least until bitten again. Perform the same steps as in
the previous question for this option.





Part IV

Appendices



A

Solving the time series directly

Let’s solve the system

dS

dt
= bI − aSI (A.1)

dI

dt
= aSI − bI (A.2)

directly. First, note that the two right-hand sides are negatives of each other.
So if we add the equations together, we have

S′ + I ′ = 0

S + I = N, a constant.

That is, we’ve deduced that the entire population is constant. (Note that this
isn’t true for most models, but we’re dealing with a very simple one here.)
That is, everyone in the town is either susceptible or infected, and no one
enters, leaves, is born or dies. We could thus substitute S = N − I into
equation (A.2) to get

dI

dt
= a(N − I)I − bI
= (aN − b− aI)I.

Since aN − b is just some constant number, we can represent it by a constant
A. Thus

dI

dt
= (A− aI)I.

In order to solve this, we are going to have to put all the “I”s (including
dI) on one side and all the “t”s on the other (although all we have is dt in
this case). Thus, we can rearrange to get
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dI

(A− aI)I
= dt. (A.3)

To solve this, we integrate both sides and use partial fractions (see Appendix
B) to get

∫
1

A

(
a

A− aI +
1

I

)
dI =

∫
dt

1

A
[− ln(A− aI) + ln I] = t+ C

1

A
ln

(
I

A− aI

)
= t+ C since lnu− ln v = ln u

v

ln

(
I

A− aI

)
= At+AC

I

A− aI = eAt+AC since e and ln are inverses

= eAteAC since ex+y = exey

= BeAt (B = eAC is just a constant)

I = (A− aI)BeAt

(1 + aBeAt)I = ABeAt

I =
ABeAt

1 + aBeAt
.

We now solve for B (our integration constant). When t = 0, I = I0. Substi-
tuting this in and remembering that A = aN − b, we have

I0 =
AB(1)

1 + aB(1)
since e0 = 1

I0 =
(aN − b)B

1 + aB

(1 + aB)I0 = (aN − b)B
B[(aN − b)− aI0] = I0

B =
I0

(aN − b)− aI0
Substituting and rearranging to simplify our equation somewhat, we get

I =

(aN−b)I0e(aN−b)t
(aN−b)−aI0

1 + aI0e(aN−b)t

(aN−b)−aI0

=

[
(aN − b)I0e(aN−b)t

(aN − b)− aI0

] [
(aN − b)− aI0

(aN − b) + aI0[e(aN−b)t − 1]

]

=
(aN − b)I0e(aN−b)t

(aN − b) + aI0[e(aN−b)t − 1]
.
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Lastly, since S = N − I, we have

S = N − (aN − b)I0e(aN−b)t

(aN − b) + aI0[e(aN−b)t − 1]
.

We’ve thus (finally!) derived the time-series equations. That is, we have
explicitly found S(t) and I(t) for every set of initial conditions, depending on
parameters inherent to the model. These tell us how the system changes over
time.

In this case, our system was very simple. In fact, it was degenerate, which
is what allowed us to turn the two-dimensional system of differential equations
into a single differential equation (using the fact that N was constant, which
isn’t usually true). Most ODE models aren’t so simple and aren’t solvable.



B

Partial fractions

In order to solve

dI

(A− aI)I
= dt,

we need to split the fraction 1
(A−aI)I into simpler fractions (because we don’t

know how to integrate the left-hand side as it stands).
These fractions will be some combination of 1

A−aI and 1
I . We don’t yet

know what kind of combination, so let’s label the unknowns by G and H:

G

A− aI +
H

I
=

1

(A− aI)I
.

We’re trying to solve for G and H so let’s multiply everything by the
common denominator (which is (A− aI)(I)). This means we get

IG+ (A− aI)H = 1.

Because G and H are constants, this equation must hold true no matter
what values of I we pick. So let’s be clever and pick I = 0 (since that will
eliminate the G part) and I = A

a (since that will eliminate the H part). Thus

I = 0 : 0 +AH = 1 =⇒ H =
1

A

I =
A

a
:

A

a
G+ 0 = 1 =⇒ G =

a

A
.

Substituting our values for G and H into the original fractions, we have

1

(A− aI)I
=

a

A(A− aI)
+

1

AI
.

This is much, much easier, because we know how to integrate the right-
hand side.



C

Eigenvalues

Eigenvalues are numbers that “represent” a matrix; if we have an n×n matrix
A and can find a number λ and a nonzero vector x such than Ax = λx, then
λ is an eigenvalue and x is an eigenvector. Thus

Ax− λx = 0

Ax− λIx = 0,

where I is the n× n identity matrix. We put this in so that λI is a matrix of
the same size as the matrix A (the expression A − λ would make no sense).
Hence

(A− λI)x = 0

Clearly we want x 6= 0 (or else this is all trivial). But if (A − λI)−1 exists
(i.e. det(A − λI) 6= 0), then the only solution is x = 0. So there will only be
eigenvalues when det(A− λI) = 0.

Thus, for the matrix

J
∣∣
(N,0)

=

[
0 b− aN
0 aN − b

]

in Chapter 6, we have

0 = det(J − λI) = det

([
0 b− aN
0 aN − b

]
− λ

[
1 0
0 1

])

= det

[
−λ b− aN
0 aN − b− λ

]

= −λ(aN − b− λ).

How did we get this last line? Eigenvalues of a 2×2 or a 3×3 matrix have
a formula. For the former, we have
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det

[
a b
c d

]
= ad− bc,

and for the latter we have

det



a b c
d e f
g h j


 = aej + bfg + cdh− ceg − afh− bdj.

In general eigenvalues are quite hard... unless we have a row or column
where all but one entry is zero. In this case we’re allowed to reduce the size
of the matrix by extracting that entry. But not only do we get to extract the
entry, we get to eliminate everything else in that row and column!

Thus

det




a b c 0
d e f 0
g h j 0
k m n p


 = p det



a b c
d e f
g h j


 .

So not only does the p come out of the determinant (because everything else
in the last column was zero), reducing the remaining determinant to a much
more manageable 3× 3 determinant, but the last row is simply gone. That is,
k, m and n are out of the picture.

(Technical note: If you’re extracting anything that’s not one of the entries
along the main diagonal then you may or may not need an extra minus sign
when you extract it. We don’t do any such extracting here, so you don’t need
to worry about it, but if you’re interested, check out any undergraduate linear
algebra textbook.)

Assuming you have matrices with lots of zeros, you can reduce very high
order matrices down to 3×3 or 2×2 matrices using this method. Fortunately,
the Jacobian matrix almost always has lots of zeros and the things that aren’t
are usually on the diagonals anyway, so life is a lot easier than it otherwise
would be.



D

The R0 sleight of hand

There’s nothing actually incorrect, but there are a couple of dodgy bits. Mov-
ing “the negatives” to one side isn’t as obvious as it might seem, since there’s
nothing inherent about positive or negative values. For example, we could
apply the same reasoning if we simply added and subtracted 5 to equation
(6.1):

aN + 5− 5− b < 0

aN + 5 < 5 + b

aN + 5

5 + b
< 1

and then we could define an “RSIS2
0 ” to be aN+5

5+b . This would have the same

threshold properties (i.e., if RSIS2
0 < 1 then the disease dies out, whereas if

RSIS2
0 > 1 then the disease will become endemic), but it clearly isn’t the same

value. Furthermore, it is highly unlikely to be the average number of secondary
infections (since adding and subtracting 5 was pretty arbitrary).

We could obviously define an infinite number of threshold parameters in
this way. However, there’s more to it than that. When we have the condition

aN

b
< 1,

it’s by no means clear that we must necessarily define RSIS
0 the way we did.

For instance, we could just as easily define

RSIS3
0 =

[
aN

b

]2

and we’d still have a threshold parameter with the right properties that is
again unlikely to be the average number of secondary infections (since we
arbitrarily squared).
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In fact, how do we even know that our original value RSIS
0 is the average

number of secondary infections? Answer: we don’t. The whole question of
matching the R0 values derived from ODE models to the “true” R0 is a
fascinating and lengthy one, and we’ve only just scratched the surface.



E

Finding eigenvalues for the case of permanent
immunity

This is a much more complicated system than we’ve seen previously. The
first step we’d like to do is find the equilibria, but even that is going to
be a lot of work (feel free to try it for yourself, though). However, one of
the equilibrium points is quite easy: the disease-free equilibrium occurs when
H̄I = 0. (Since it’s a disease-free equilibrium, there has to be no disease at this
equilibrium.) From the last equation, we immediately conclude that H̄R = 0
(why?). Similarly, from the second equation, M̄I = 0 (which we’d expect
anyway, given that we’re looking for the disease-free equilibrium; we could
have started with this assumption just as easily). From the first equation,

we have M̄S = λM

µM
, and from the third equation, we have H̄S = λH

µH
. So the

disease-free equilibrium is thus

(
M̄S , M̄I , H̄S , H̄I , H̄R

)
=

(
λM

µM
, 0,

λH

µH
, 0, 0

)
.

Why is this so useful? Answer: because if we can calculate the Jacobian
matrix, we only need one equilibrium, namely the disease-free equilibrium, in
order to determine the long-term behaviour. So our next step is to calculate
the Jacobian. As before, we differentiate every element with respect to every
other element. The first column will be the partial derivatives with respect to
MS , the second column will be the partial derivatives with respect to MI and
so on. Thus

J=




−µM − βMHI 0 0 −βMHS 0
βMHI −µM 0 βMMS 0

0 −βHHS −µH − βHMI 0 0
0 βHHS βHMI −µH − γH − νH 0
0 0 0 νH −µH



.

At the disease-free equilibrium, we have
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J

∣∣∣∣
(M̄S ,0,H̄S ,0,0)

=




−µM 0 0 −βMHS 0
0 −µM 0 βMMS 0
0 −βHHS −µH 0 0
0 βHHS 0 −µH − γH − νH 0
0 0 0 νH −µH



.

To calculate the eigenvalues, we thus evaluate the determinant

det




−µM − Λ 0 0 −βMHS 0
0 −µM − Λ 0 βMMS 0
0 −βHHS −µH − Λ 0 0
0 βHHS 0 −µH − γH − νH − Λ 0
0 0 0 νH −µH − Λ



.

(We use Λ for the eigenvalues since λ was already taken.)
Finding the determinant of a high-order matrix like this is usually very

messy... unless we have a row or column where every entry except one is zero.
In this case, it’s rather elegant: we take the sole remaining factor of that row or
column out as a product and then evaluate the determinant of the remaining
matrix when we eliminate that entire row and column. See Appendix C. So in
our matrix, this becomes

(−µM − Λ) det




−µM − Λ 0 βMMS 0
−βHHS −µH − Λ 0 0
βHHS 0 −µH − γH − νH − Λ 0

0 0 νH −µH − Λ


 .

Applying the same trick twice more, to the second and last columns (both
are columns in which all but one entry is zero, so we can extract that entry
and eliminate everything else in their respective rows), we get

(−µM − Λ)(−µH − Λ)(−µH − Λ) det

[
−µM − Λ βMM̄S

βHH̄S −µH − γH − νH − Λ

]
.

(See Appendix C again if you’re confused; we did two steps here.)
Rearranging the minus signs and remembering the definition of the deter-

minant of a 2× 2 matrix from Appendix C, we have

−(µM + Λ)(µH + Λ)2
[
(µM + Λ)(µH + γH + νH + Λ)− βMβHM̄SH̄S

]
= 0.



F

Integrating factors

An integrating factor is a factor you multiply in order to convert two terms into
the derivative of a single term. It’s just the product rule for derivatives, but in
reverse. It only works for linear equations, by which we mean equations that
are linear in the variable to be differentiated. We don’t care about nonlinearity
in the other variable.

So to solve

dx

dt
= a(t)x+ b(t),

we have to make sure that this equation is linear in x (which it is; we don’t
care about nonlinearity in the functions a(t) or b(t)). If there were something
in front of the dx

dt term, we’d divide that out first.
We then rewrite this as

dx

dt
− a(t)x = b(t).

The integrating factor is

I(t) = e−
∫
a(t)dt.

So we multiply every term by our integrating factor:

e−
∫
a(t)dt dx

dt
− e−

∫
a(t)dta(t)x = b(t)e−

∫
a(t)dt.

The left-hand side can now be collapsed into a single term:

d

dt

[
e−

∫
a(t)dtx

]
= b(t)e−

∫
a(t)dt.

Why is this? Well, if we “undid” this by using the product rule for deriva-
tives, then we’d have the previous line. What’s so great about this is we now
integrate both sides... the left-hand integral is dead easy, because we don’t
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have to do anything and hopefully the right-hand integral isn’t too hard (but
it usually isn’t).

∫
d

dt

[
e−

∫
a(t)dtx

]
dt =

∫
b(t)e−

∫
a(t)dtdt

e−
∫
a(t)dtx =

∫
b(t)e−

∫
a(t)dtdt+ C

x = e
∫
a(t)dt

∫
b(t)e−

∫
a(t)dtdt+ Ce

∫
a(t)dt.

This isn’t nearly as hard as it looks, because each of the integrals is often
quite straightforward, and we do them as we go, not in a big formula like this.

So to solve

dM

dt
+ µMM = λM ,

the integrating factor is

I(t) = e
∫
µMdt

= eµ
M t.

Multiply everything by the integrating factor:

eµ
M t dM

dt
+ eµ

M tµMM = λMeµ
M t.

We can now collapse the left-hand side into a single derivative:

d

dt

(
eµ

M tM
)

= λMeµ
M t.

Now integrate both sides:

eµ
M tM =

λM

µM
eµ

M t + C

M =
λM

µM
+ Ce−µ

M t.

As t→∞, e−µ
M t → 0, so

lim
t→∞

M(t) =
λM

µM

= M̄S .



G

Trivial solutions for nonnegative constants

We want to examine the two differential equations represented by

Ṫ

DT
=
X ′′

X
= C.

with boundary conditions

U(0, t) = U(L, t) = 0 (for L > 0)

and nontrivial initial conditions. (We made a specific choice in Chapter 9, but
the result is the same for any nonzero initial conditions.) That is U(x, 0) 6≡ 0.

We have no idea what C is. It could be positive, negative or zero. So let’s
try all three.

Case i) C = 0.
This case is easy: the left-hand side implies that Ṫ = 0, so that T (t) = T0,

a constant. Likewise, X ′′ = 0 so X ′ = X0, which means the solution is X =
X0x+X1.

Multiplying our two sub-solutions together, the solution to the PDE is
thus

U(x, t) = T0(X0x+X1).

Next we apply the boundary conditions:

U(0, t) = T0X1 = 0

U(L, t) = T0(X0L+X1) = T0X0L = 0.

Since L 6= 0 (i.e., we actually have a corridor of some length), then either
T0 = 0 or X1 = X0 = 0. Either way, the solution is U(x, t) ≡ 0. But this is
not possible with our initial conditions. Hence C 6= 0.

Case ii) C > 0
Solving the T equation, we have



G Trivial solutions for nonnegative constants 267

Ṫ = CDT
∫
Ṫ

T
dt = CD

∫
dt

ln
T

T0
= CDt

T = T0e
CDt.

Solving the X equation, we have

X ′′ = CX

X ′′ − CX = 0
(
d

dx

)2

X − CX = 0

[
d

dx
+
√
C

] [
d

dx
−
√
C

]
X = 0.

We have two cases here, either of which could be zero. So let’s look at them
both.

dX

dx
+
√
CX = 0

dX

dx
−
√
CX = 0

X ′ = −
√
CX X ′ =

√
CX

X ′

X
= −
√
C

X ′

X
=
√
C

ln
X

X0
= −
√
Cx ln

X

X0
=
√
Cx

X = X0e
−
√
Cx X = X0e

√
Cx.

Hence the general X solution is any combination of the above two solutions:

X = Ae−
√
Cx +Be

√
Cx.

The full solution is thus

U(x, t) = T0e
CDt

(
Ae−

√
Cx +Be

√
Cx
)
.

Applying the first boundary conditions, we have

U(0, t) = T0e
CDt(A+B) = 0.

If T0 = 0, then U(x, t) ≡ 0, and we know that won’t satisfy the initial condi-
tion. Hence we have A+B = 0.

Applying the second boundary condition, we have
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U(L, t) = T0e
CDt(Ae−

√
CL +Be

√
CL) = 0

Ae
√
CL −Ae

√
CL = 0 (since B = −A)

e−
√
CL − e

√
CL = 0 (since if A = 0, then U ≡ 0)

1 = e2
√
CL

2
√
CL = 0,

which implies that either C = 0 or L = 0, neither of which can be true. It
follows that C cannot be positive or zero and is hence negative.



H

Taylor’s Theorem

Taylor’s theorem is used to approximate a function (say sinx or ex, but in fact
it can handle just about any function) about a given value of x (which we’ll
call x0) by an infinite series of polynomials. Taylor’s theorem is less accurate
the further one strays from this value of x0.

Suppose we wish to approximate our function f(x) about x = 0; that
is, x0 = 0. Between our “starting point” f(0) and some nearby point f(b),
we have a curve that we must try to duplicate mathematically to give us an
approximation of f(x) about 0 that we will call F (x).

Our first attempt, F1, is a linear approximation: F1 = a0 + a1x. This is a
pretty simple (and not very good) approximation.

Our second attempt, F2, is a quadratic approximation (a parabola): F2 =
a0 + a1x + a2x

2. F2 is a better approximation of “the real thing” than F1

(though by no means perfect). We can guess that a function of the form
F = a0 +a1x+a2x

2 +a3x
3 + · · ·+anx

n+ · · · would represent the given curve
precisely so that F = f .

Assuming, then, that f = a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n + · · · , we

now evaluate f at 0.

f(0) = a0 + a1(0) + a2(0)2 + a3(0)3 + · · ·+ an(0)n + · · ·
⇒ f(0) = a0.

Differentiating,

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · ·
⇒ f ′(0) = a1

f ′′(x) = 2a2 + (3)(2)a3x+ · · ·+ n(n− 1)anx
n−2 + · · ·

⇒ f ′′(0) = 2a2.

(Note that the 2 is due to differentiation of x2.)

f ′′′(0) = (3)(2)a3 = 3!a3.
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Remember that m! = m(m− 1)(m− 2) · · · (3)(2)(1) and 0! = 1.
You can see the pattern here:

f (k)(0) = k(k − 1)(k − 2) · · · (3)(2)(1)ak = k!ak.

Dividing by k!, we have

ak =
f (k)(0)

k!
.

We now have a formula for the coefficients ak, as long as we know f(x) or
have information about its derivatives at 0. Thus

f(x) = f(0) +
f ′(0) · x

1!
+
f ′′(0) · x2

2!
+
f ′′′(0) · x3

3!
+ · · ·+ f (k)(0) · xk

k!
+ · · ·

This is Taylor’s theorem.
For example, if f(x) = ex,

f(x) = ex f(0) = 1

f ′(x) = ex f ′(0) = 1

f ′′(x) = ex f ′′(0) = 1

etc

Thus

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · =

∞∑

n=0

xn

n!
.

Similarly, if f(x) = sinx,

f(x) = sinx f(0) = 0

f ′(x) = cosx f ′(0) = 1

f ′′(x) = − sinx f ′′(0) = 0

f ′′′(x) = − cosx f ′′′(0) = −1

f (iv)(x) = sinx f (iv)(0) = 0

f (v)(x) = cosx f (v)(0) = 1

etc

Thus

sinx = 0 + x+ 0− x3

3!
+ 0 +

x5

5!
+ · · · =

∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
.
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Stability of periodic orbits in the logistic
equation

Equilibria of g(x) occur when g(x) = x. Thus

g(x) = r2x(1− x)[1− rx(1− x)] = x

r2x(1− x)[1− rx(1− x)]− x = 0

r3x3 − 2r3x2 + (r3 + r2)x+ r2 − 1 = 0

(where divided by x in the second-last line, because we are only looking for
nontrivial equilibria).

This is a cubic, so it has three roots. However, if x̄ is a fixed point of f ,
then it must be a fixed point of g:

g(x̄) = f [f(x̄)]

= f(x̄)

= x̄.

It follows that x− x̄ = x− r−1
r must be a factor of the cubic.

Using long division to factor out the x − x̄ = x − r−1
r term, we arrive at

the quadratic for the remaining two roots:

rx2 − (1 + r)x+ 1 +
1

r
= 0. (I.1)

Substituting into the quadratic formula, we have

x =
(1 + r)±

√
(1 + r)2 − 4r

(
1 + 1

r

)

2r

=
(1 + r)±

√
1 + 2r + r2 − 4r − 4

2r

=
(1 + r)±

√
r2 − 2r − 3

2r

=
(1 + r)±

√
(r − 3)(r + 1)

2r
.
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Note that these two roots are only real when r < −1 (x̄1 is unstable) or when
r > 3 (x̄2 is unstable). We ignore the range r < 0, but this indicates that
Period 2 points only exist beyond r = 3, which is what we discovered from
cobwebbing in Chapter 10’s lab.

We thus have

|g′(w1)| = |f ′(w2) · f ′(w1)|
=
∣∣[r(1− 2w1)] · [r(1− 2w2)]

∣∣
=
∣∣r2[1− 2(w1 + w2)] + 4w1w2]

∣∣ . (I.2)

Useful trick: When y and z are roots of a quadratic x2 + bx+ c = 0, then
y + z = −b and yz = c. If we divide equation (I.1) by r and substitute these
in to (I.2), we have

|g′(w1)| =
∣∣∣∣r2

[
1− 2

r
(1 + r) +

4

r2
(1 + r)

]∣∣∣∣
=
∣∣r2 − 2r(1 + r) + 4(1 + r)

∣∣
=
∣∣4 + 2r − r2

∣∣ .
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One-dimensional discrete stability condition

First suppose |f ′(x̄)| < 1. Then, since f is continuous, there must be some
(possibly small) interval [x̄ − ε, x̄ + ε] around x̄ such that |f ′(x)| < c < 1 on
this interval.

The mean-value theorem says that if a function f is continuous and dif-
ferentiable on an interval [a, b], then there is at least one number ξ satisfying
a < ξ < b such that

f ′(ξ) =
f(b)− f(a)

b− a .

That is, there’s at least one intermediate point whose tangent is parallel to
the line joining the endpoints. (It doesn’t sound that exciting, but it’s one of
the most important theoretical tools in calculus.)

By the mean-value theorem, with x0 ∈ [x̄− ε, x̄+ ε], we have

|x̄− f(x0)| = |f(x̄)− f(x0)|
= |f ′(ξ1)| |x̄− x0|
≤ c|x̄− x0|,

where ξ1 is between x0 and x̄. Since c < 1, it follows that f(x0) is also in the
interval [x̄− ε, x̄+ ε].

Now we apply the mean-value theorem to f(x0) instead of x0:

∣∣x̄− f2(x0)
∣∣ =

∣∣f2(x̄)− f2(x0)
∣∣

= |f ′(f(ξ2)f ′(ξ2)| |x̄− f(x0)|
≤ x |x̄− f(x0)|
≤ c2 |x̄− x0|

where ξ2 is between x̄ and f(x0). By induction, it follows that
∣∣x̄− f j(x0)

∣∣ ≤
cj |x̄− x0| for j = 1, 2, . . .
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Thus limj→∞ f j(x0) = x̄ (since c < 1). That is, repeated iterations of f
will converge to the equilibrium for any initial condition sufficiently close to
the equilibrium. It follows that x̄ is locally asymptotically stable.

Conversely, suppose that |f ′(x̄)| > 1. Then, by continuity, there exists
ε > 0 such that, for x ∈ [x̄− ε, x̄+ ε], |f ′(x)| > c > 1.

For 0 < |x0 − x̄| < ε, by the mean-value theorem, we have

|x̄− f(x0)| = |f ′(ξ1)||x̄− x0|
≥ c|x̄− x0|,

where ξ1 is between x̄ and x0.
We can apply the argument again: if |x̄− f(x0)| < ε, then |x̄− f2(x0)| ≥

c2|x̄− x0|. However, because c > 1, this argument cannot be continued indef-
initely. There must exist a k such that

ck|x̄− x0| > ε.

Hence there exists k such that |x̄− fk(x0)| > ε. That is, no matter how close
the initial condition is to the equilibrium, eventually it will be pushed away
from it. It follows that x̄ is unstable.
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The lower bound for λ5

First note that, since p > 0, we have

λ5 > g(αB) =
2− αB +

√
(αB)2 − 4αB

2
g(4) = −1.

Differentiating, we have

g′(αB) = −1

2
+

αB − 2√
(αB)2 − 4αB

= −1

2
+

αB − 2√
αB(αB − 4)

.

Differentiating again, we have

g′′(αB) =

√
αB(αB − 4)− (αB−2)(2αB−4)√

αB(αB−4)

αB(αB − 4)

=
(αB)(αB − 4)− (αB − 2)(2αB − 4)

[αB(αB − 4)]
3/2

= − (αB)2 − 4αB + 8

[αB(αB − 4)]
3/2

= − (αB − 2)2 + 4

[αB(αB − 4)]
3/2

< 0 for αB > 4.

It follows that g is concave down for αB > 4.
Finally, we have
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lim
αB→∞

g(αB) = lim
αB→∞

2− αB +
√

(αB)2 − 4αB

2

= lim
αB→∞

2− αB +
√

(αB)2 − 4αB

2
· 2− αB −

√
(αB)2 − 4αB

2− αB +
√

(αB)2 − 4αB

=
1

2
lim

αB→∞
(2− αB)2 − (αB)2 + 4αB

2− αB +
√

(αB)2 − 4αB

=
1

2
lim

αB→∞
4

2− αB +
√

(αB)2 − 4αB

= 0.

A function that is initially negative, is concave down thereafter and has final
limit at zero cannot be lower than its initial value. See Figure K.1. It follows
that

λ5 > g(αB) ≥ −1.

0 5 10 15 20 25

-2

-1.6

-1.2

-0.8

-0.4

0.4

Fig. K.1. A function that is concave down, has negative initial value and horizontal
asymptote at zero.
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Solving the end-stage renal disease equations

We’d like to solve the equations for our model of end-stage renal disease:

dA

dt
= g

dN

dt
= sA− δN,

with initial conditions A(0) = A0, N(0) = N0.
Luckily, we can solve the first equation independently of the second. We’ll

just do what we did before: separate variables, integrate both sides, use our
initial condition and rearrange.

dA = gdt
∫ t

0

dA =

∫ t

0

gdt

A−A(0) = gt

A = A0 + gt.

For the second equation, we can use this solution to write

dN

dt
= s(A0 + gt)− δN.

Does this look familiar? If not, have another look at Appendix F. What we
need here is an integrating factor. So let’s do what we did then: put the Ns
on one side, multiply by an integrating factor, integrate and rearrange.
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dN

dt
+ δN = sA0 + sgt

eδt
dN

dt
+ δeδtN = sA0e

δt + sgteδt (the integrating factor is eδt)

d

dt

(
eδtN

)
= sA0e

δt + sgteδt (the product rule in reverse)

∫ t

0

d

dt

(
eδtN

)
dt =

∫ t

0

(
sA0e

δt + sgteδt
)
dt

eδtN −N(0) =
sA0

δ
eδt + sg

∫ t

0

teδtdt.

To do this last integral, we need integration by parts, with u = t, u′ = 1,

v′ = eδt and v = eδt

δ . Thus, we have

eδtN −N0 =
sA0

δ
eδt + sg

[
t

δ
eδt −

∫ t

0

eδt

δ
dt

]

=

[
sA0

δ
eδt +

sgt

δ
eδt − sgeδt

δ2

]t

0

eδtN = N0 +
sA0

δ
eδt +

sgt

δ
eδt − sgeδt

δ2
− sA0

δ
+
sg

δ2
.

Finally, we multiply everything by e−δt:

N = N0e
−δt +

sA0

δ
+
sgt

δ
− sg

δ2
− sA0

δ
e−δt +

sg

δ2
e−δt.

This is the explicit solution for the prevalence of end-stage renal disease.
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Matlab overview

Matlab is a matrix-based, high-performance language for technical computing.
It integrates computation, visualization and programming in an easy-to-use
environment, where problems and solutions are expressed in familiar math-
ematical notation. The basic data element is an array that does not require
dimensioning. This allows you to solve many technical computing problems,
especially those with matrix and vector formulations, in a fraction of the time
it would take to write a program in a scalar noninteractive language such as
C or Fortran. The name Matlab stands for matrix laboratory.

In Matlab, a matrix is a rectangular array of numbers. Special meaning
is sometimes attached to 1-by-1 matrices, which are scalars, and to matrices
with only one row or column, which are vectors. Matlab has other ways of
storing both numeric and nonnumeric data, but, in the beginning, it is usually
best to think of everything as a matrix. The operations in Matlab are designed
to be as natural as possible. Where other programming languages work with
numbers one at a time, Matlab allows you to work with entire matrices quickly
and easily.

There are typically three windows: the Command Window (where the
main typing can be done), an editor (where you can type programs) and
figures (where the figures can be displayed and edited).

At any time, you can type “help topic” (e.g., help plot) in the command
window to find help on a particular topic. You can also press the help button
for a comprehensive overview.

M.1 Variables and operators

Variable names consist of a letter, followed by any number of letters, digits
or underscores. Matlab uses only the first 31 characters of a variable name.
Matlab is case sensitive; it distinguishes between uppercase and lowercase
letters. Thus A and a are not the same variable. To view the matrix assigned
to any variable, simply enter the variable name.
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For example, if you type a=[1 2; 3 4], immediately the output will be
a 2× 2 matrix. You can see how to type in any matrix of any dimension you
want from this example. To stop the output showing, end with a semicolon;
Thus if you type b=[5 6 7; 8 9 10]; there won’t be any output (because
the semi-colon has prevented it), but any any time you can type b to see your
matrix.

You can also generate a vector (which, remember, is a matrix with only
one row or column) by using a colon: x=0:10; will generate the vector
[1 2 3 4 5 6 7 8 9 10]. The default gap between numbers is 1, but you
can make it finer by using two colons: x=0:0.1:10; will generate a vector
starting at 0 and ending at 10, with intervals of 0.1 (don’t forget to end with
the semi-colon or else you’ll get a hideously long output, because such a vector
is quite big).

You can use the regular function operators (+,−,∗,/,̂ ), but remember that
Matlab is matrix-based. So if A and B are matrices (or vectors) then A*B will
also be a matrix. What if you just want to multiply the elements of two vectors
together? In this case, use a period before the operator. Leaving out the period
is the most common mistake for novice Matlab users. If x and y are vectors
of the same size, then x.*y is the product. So [1 2 3].*[4 5 6]=[4 10 18]

Comments are indicated by a % sign.

M.2 M-Files

You can create your own matrices using M-files, which are text files containing
Matlab code. Use the Matlab editor or another text editor to create a file
containing the same statements you would type at the Matlab command line.
Save the file under a name that ends in .m. For example, create a file containing
these five lines.

A = [16.0 3.0 2.0 13.0

5.0 10.0 11.0 8.0

9.0 6.0 7.0 12.0

4.0 15.0 14.0 1.0 ];

Store the file under the name magik.m. Then the statement magik reads the
file and creates a variable, A, containing our example matrix.

M-files can be either scripts or functions. Scripts are simply files contain-
ing a sequence of Matlab statements. Functions make use of their own local
variables and accept input arguments. The name of an M-file begins with an
alphabetic character and has a filename extension of .m. The M-file name, less
its extension, is what Matlab searches for when you try to use the script or
function. A line at the top of a function M-file contains the syntax definition.
The name of a function, as defined in the first line of the M-file, should be
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the same as the name of the file without the .m extension. For example, the
existence of a file on disk called stat.m with

function [mean,stdev] = stat(x)

n = length(x);

mean = sum(x)/n;

stdev = sqrt(sum((x-mean).^2/n));

defines a new function called stat that calculates the mean and standard
deviation of a vector x that you’ve inputted in another program. It’s impera-
tive that you save the function with with the same name as the function (in
this case stat.m) or else Matlab won’t know how to find it when you call it
later. You cannot run function files themselves, only call them within another
program.

Another program can call the function file like this:

x=[1 2 3 4 5 6];

[u v]=stat(x)

(or you could do this in the Command Window).

M.3 Figures

The function plot is a linear 2D plot. If you have vectors x and y that are the
same size, then plot(x,y) will plot the x vector on the horizontal (x) axis
and the y vector on the vertical (y) axis.

So to plot the function y = x2, use this code:

x=-5:0.1:5;

y=x.^2;

plot(x,y)

Notice the period before the power: we want to square every element of the
vector x not multiply the vector by itself (which isn’t legal). You can experi-
ment with coarser or finer intervals than 0.1 if you want (e.g., try x=-5:0.9:5

and see what happens).
You can also plot more than one thing at a time. E.g., if we want to plot

y = x2 and z = x3 on the same graph, use this code:
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x=-5:0.1:5;

y=x.^2;

z=x.^3;

plot(x,y,x,z)

See how we did that? First we plot the horizontal axis variable x, then the first
vertical axis variable y, then x again, then the second vertical axis variable z.

M.4 Loops

When programming in Matlab, we can use if, then, else loops or for

loops to create conditions under which a situation holds in order to execute
certain actions. The syntax is:

if expression

statements

end

When you are nesting ifs, each if must be paired with a matching end.
When using elseif and/or else within an if statement, the general form of
the statement is

if expression1

statements1

elseif expression2

statements2

else

statements3

end

For loops repeat statements a specific number of times.

for variable = scalar:scalar

statement

...

statement

end

where scalar:scalar is a count from one number to another. The scope of
the for statement is always terminated with a matching end.
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M.5 Solving ODEs

To solve ODEs, we need to specify an input variable y0 and a range of times
tspan (which will be of the form [t0 tf]). We also need a function that
evaluates the right-hand side of the differential equations, y′ = f(y). We’ll
save this function as a function file, in the form

function pdot=odefunction(t,p)

pdot(1,:)=...

pdot(2,:)=...

(and, again, we need to save the function file as odefunction.m). For a matrix,
x(1,:) picks out the entire first row, whereas x(:,1) picks out the entire first
column and x(i, j) picks out the scalar entry in the ith row and the jth column.

To put it all together, in our executable M-file, we specify the initial con-
ditions and the range of times and call the function

[t,y] = ode23(@odefunction,tspan,y0);

(You can use ode23 or ode45 as you like.) This produces a matrix whose first
column is the range of times and whose remaining columns define the solution
of the ODE (in as many spatial variables as specified in the initial condition).
So if you type plot(t,y) you’ll have a graph of the solution.

M.6 Solving delay differential equations

Solving delay differential equations is almost exactly like solving ODEs, ex-
cept that we need to specify the “prehistory” as well. This is because delay
differential equations rely on what happened in the past, so, at time zero, we
need to know what happened in negative time. The syntax for the prehistory
function (assuming constant values in the prehistory) is

function s = histfunction(t)

s=...

(Don’t forget to save this under the same name you give the function, in
this case histfunction.m.) There’s also a function file for the ODE function,
of course, which also depends on the delay.

function pdot = odefunction(t,y,Z)

ylag1=Z(:,1);

ylag2=Z(:,2);

Thus, to call these two function files, we need to call the function files,
specify the delay(s), call the prehistory function and give the time span.

sol = dde23(@odefunction,[ylag1 ylag2],@histfunction,tspan);
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M.7 Glossary of other terms

Here are a list of other terms we’ve used. Remember you can always type
help term to find out more about it.

• axis controls axis scaling and appearance. axis([xmin xmax ymin ymax])

sets scaling for the x- and y-axes on the current plot.
• clear all clears any existing variables.
• figure(h) does one of two things, depending on whether or not a figure

with handle h exists. If h is the handle to an existing figure, figure(h)
makes the figure identified by h the current figure, makes it visible and
raises it above all other figures on the screen. The current figure is the
target for graphics output. If h is not the handle to an existing figure, but
is an integer, figure(h) creates a figure and assigns it the handle h.

• global keeps track of variables across different files.
• gtext displays a text string in the current figure window after you select

a location with the mouse.
• input: The command userentry = input('prompt') displays prompt as

a prompt on the screen, waits for input from the keyboard and returns the
value entered in userentry.

• length(x) gives the length of the vector x (i.e., the number of elements).
• meshgrid transforms the domain specified by vectors x and y into arrays

X and Y , which can be used to evaluate functions of two variables and
three-dimensional mesh/surface plots.

• mesh draws a 3D wireframe mesh from the X-Y meshgrid with colour
determined by Z so that colour is proportional to surface height.

• pause by itself causes M-files to stop and wait for you to press any key
before continuing. pause(n) pauses execution for n seconds before contin-
uing, where n can be any nonnegative real number.

• polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n
that fits the data, p(x(i)) to y(i), in a least squares sense.

• polyval(p,x) returns the value of a polynomial of degree n evaluated at
x. The input argument p is a vector of length n + 1 whose elements are
the coefficients in descending powers of the polynomial to be evaluated.

• rand generates arrays of random numbers whose elements are uniformly
distributed in the interval (0,1).

• subplot divides the current figure into rectangular panes that are num-
bered rowwise. Each pane contains a set of axes. Subsequent plots are
outputted to the current pane.

• sum If A is a vector, sum(A) returns the sum of the elements. If A is a
matrix, sum(A) treats the columns of A as vectors, returning a row vector
of the sums of each column.

• title('string') outputs the string at the top and in the center of the
current figure.

• xlabel and ylabel label the x-axis and y-axis of the current axes.



References

1. J.L. Aron (2001). Mathematical modeling: The dynamics of infection In: In-
fectious disease epidemiology, theory and practice (Eds: K.E. Nelson, C.M.
Williams, N.M.H. Graham), Aspen Pub., Gathersburg, MD, pp. 149–169.

2. R.M. Anderson & R.M. May (1991). Infectious diseases of humans. Oxford Uni-
versity Press, Oxford.

3. D.D. Bainov & P.S. Simeonov (1989). Systems with impulsive effect. Ellis Hor-
wood Ltd, Chichester.

4. D.D. Bainov & P.S. Simeonov (1993). Impulsive differential equations: Periodic
solutions and applications. Longman Scientific and Technical, Burnt Mill.

5. B.J. Beaty & W.C. Marquardt (1996). The Biology of disease vectors. University
Press of Colorado, Niwot.

6. S.M. Blower, T.C. Porco & G.H. Darby (1998). Predicting and preventing the
emergence of antiviral drug resistance in HSV-2. Nature Medicine 4:6, 673–678.

7. K.R. Burnham & D.R. Anderson (2002). Model selection and multimodel infer-
ence. Springer, New York.

8. K.R. Burnham & D.R. Anderson (2004). Multimodel inference: Understanding
AIC and BIC in model selection. Sociological Methods & Research 33, 261–304.

9. A.D. Cliff, P. Haggett, J.K. Ord & G.R. Versey (1981). Spatial diffusion: An
historical geography of epidemics in an island community. Cambridge University
Press, Cambridge.

10. R.F. Costantino, R.A. Desharnais, J.M. Cushing & B. Dennis (1997). Chaotic
dynamics in an insect population. Science 275:5298, 389–391.

11. O. Diekmann, J.A.P. Heesterbeek & J.A.J. Metz (1990). On the definition and
the computation of the basic reproduction ratio R0 in models for infectious
diseases. J. Math. Biol. 35, 503–522.

12. O. Diekmann & J.A.P. Heesterbeek (2000). Mathematical epidemiology of in-
fectious diseases: Model building, analysis and interpretation. Wiley, New York.
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