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Abstract

We explore effect of disease spread in both urban and rural populations for heterosex-
ual transmission. We develop a two-sex model for the spread of HIV using ordinary
differential equations. We then use two methods to calculate the basic reproductive
ratio (R0) and demonstrate that one is more biologically reasonable than the other.
Furthermore, including gender differences can have a large quantitative effect on our
choice of intervention strategies. We use numerical simulations to explore the impact
of several possible intervention strategies against the disease. These results suggest
that focusing on the “weaker” sex, i.e., the sex with the higher risk of being infected,
will have a greater impact on slowing the spread of the disease than focusing on the
more infectious sex. We also demonstrate that infection in the rural population can be
sustained by sexual mixing in urban centers.
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1 Introduction

Currently, HIV infects approximately 33 million individuals worldwide, 68% of whom are
in sub-Saharan Africa [1]. The epidemic in southern Africa, which is spreading largely
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through heterosexual exposure, is driven by high rates of labour migration, concurrent sex-
ual partnerships and gender inequalities [2]. Women are infected in greater numbers than
men in sub-Saharan Africa [3]. Intravaginal practices, such as washing, douching, wiping
and inserting substances into the vagina have also been associated with a higher prevalence
of HIV [4, 5]. The highest risk group in rural Uganda are young married women [6]. Fac-
tors such as economic dependence, gender discrimination and neglect of women’s sexuality
increase a woman’s risk for HIV [3]. Marriage has been implicated as a risk factor for HIV
infection in young African women [7], while HIV acquisition is significantly higher for
pregnant women [8].

In many developing countries, shifting population demographics have driven rural men
to seek work in urban centres [9]. Prevalence and risk factors of HIV-1 and HIV-2 infections
vary in urban and rural areas [10]. Migrant men in South Africa are 2.4 times more likely
to be HIV infected than non-migrant men [11]. While HIV prevalence in rural areas is
relatively low, rural men engaging in risky sex in urban areas subsequently infect women in
rural areas, who can then infect further rural men [12].

A number of mathematical models have been developed to account for these effects.
Blower et al. [13] demonstrated that the allocation of HIV medication between urban and
rural settings has a significant effect on the outcome. Optimal public-health outcomes can
be achieved by allocating all resources in the urban centres. However, this is not ethical
and unlikely to be implemented. Consequently, the authors demonstrate that there is an
optimal division of resources between urban and rural settings that facilitates equitable
access to medication for all infected individuals. Renton et al. [14] use a two-sex model
to demonstrate the importance of promoting sexually transmitted disease control as a major
element of HIV prevention. Robinson et al. [15] used a simulation model to asses the
impact of a variety of intervention strategies in rural Uganda. Gregson et al. [16] used
mathematical models to analyse sexual mixing patterns in rural Zimbabwe. Mekonnen et al.
[9] modelled the demographic impact of HIV in urban Ethiopia. Coffee et al. [17] modelled
the impact of migration in South Africa and showed that frequent return of migrants is an
important risk factor for HIV.

Here, we develop a mathematical model to examine the effects of gender differences
in urban-rural populations. We model heterosexual sex, since that is the primary route of
adult HIV transmission in Africa [12]. We pose the following research questions: 1. Can
urban transmission sustain infection in rural areas? 2. Which intervention strategies will
have the greatest effect on the outcome? 3. How do gender differences affect our choice of
intervention strategy?

This chapter is organised as follows. In section 2, we introduce the mathematical model.
In section 3, we analyse the model. In section 4, we illustrate the results with numerical
simulations. In section 5, we explore the effect of possible intervention strategies. Finally,
in section 6, we discuss the implications of the results. Matlab codes used to generate the
figures are displayed in the Appendix.

2 The Model

The model consists of an urban community, in equations indicated by an index u, and a rural
community, indicated by r. In each division, the population N is split into female (X) and



Gender Differences in HIV Models 33

male (Y ). Susceptible individuals and infected ones are denoted by S and I, respectively.
The removal rate from the sexually active population is denoted by µ and the (constant) rate
in which individuals join the sexually active population is η.

The parameter β is the product of the contact rate between the two genders and the
transmission probability. Nicolosi et al. [18] point out that the probability of transmis-
sion depends on which partner is infected. For convenience, this will be reflected by the
parameter α, the degree of differential infection, that occurs in all the female terms.

Critical to the model is the assumption that individuals from the rural community travel
(for example to work) to the urban community and have sexual contact there. We denote
the mixing probability by c, such that cy, for example, is the probability that a male from
the rural community has contact with an urban female within the urban region. The much
more unlikely case of an urban individual having contacts in the rural community is not
considered.

We will now introduce the model for the urban region. The change rate of the suscepti-
bles consists of three parts. First, there is the constant inflow ηu. Second, we have the rate
by which (healthy) individuals conclude their sexually active phase, µs. Third, there is the
rate that describes the loss towards the infected population. This is a product of the contact
rate β and the probability of actually having an infected partner. An urban woman may
meet either an urban man, or a rural man, who has the probability cy of having a contact in
the city. Thus, the chance that an urban woman encounters an infected man in the city is

Iu
y + cyIr

y

Y u + cyY r .

Hence, the urban model is

Nu = Xu +Y u (2.1)
Xu = Iu

x +Su
x (2.2)

Y u = Iu
y +Su

y (2.3)
dSu

x
dt

= ηu−µsxSu
x −

Iu
y + cyIr

y

Y u + cyY r ·α ·β ·Su
x (2.4)

dIu
x

dt
=

Iu
y + cyIr

y

Y u + cyY r ·α ·β ·Su
x −µixIu

x (2.5)

dSu
y

dt
= ηu−µsySu

y −
Iu
x + cxIr

x
Xu + cxXr ·β ·Su

y (2.6)

dIu
y

dt
=

Iu
x + cxIr

x
Xu + cxXr ·β ·Su

y −µiyIu
y . (2.7)

The equations are similar in the rural community. The difference is that rural individuals
may have both rural contacts as well as urban contacts. Additionally, they could also meet
rural individuals in the urban region. Thus, the chance that a rural woman encounters an
infected urban man is

Ir
y

Y r + cx
Iu
y + cyIr

y

Y u + cyY r .
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Hence, the rural model is

Nr = Xr +Y r (2.8)
Xr = Ir

x +Sr
x (2.9)

Y r = Ir
y +Sr

y (2.10)
dSr

x
dt

= ηr−µsxSr
x−

[ Ir
y

Y r + cx
Iu
y + cyIr

y

Y u + cyY r

]
·α ·β ·Sr

x (2.11)

dIr
x

dt
=

[ Ir
y

Y r + cx
Iu
y + cyIr

y

Y u + cyY r

]
·α ·β ·Sr

x−µixIr
x (2.12)

dSr
y

dt
= ηr−µsySr

y−
[

Ir
x

Xr + cy
Iu
x + cxIr

x
Xu + cxXr

]
·β ·Sr

y (2.13)

dIk
y

dt
=

[
Ir
x

Xr + cy
Iu
x + cxIr

x
Xu + cxXr

]
·β ·Sr

y−µiyIr
y . (2.14)

The model is illustrated in Figure 1.

3 Analysis

We will now derive the basic reproductive ratio for our model. Suppose the system is in a
state where almost no individuals are infected. Let the proportion of females in the infected
population be denoted by p ∈ [0,1], i.e. Iu

x = p · Iu. Then, for the urban population, we find

dIu

dt
=

dIu
x

dt
+

dIu
y

dt

=
( Iu

y + cyIr
y

Y u + cyY r ·α ·Su
x +

Iu
x + cxIr

x
Xu + cxXr Su

y

)
β− (µixIu

x +µiyIu
y )

=
( Iu

y

Y u + cyY r + cy
Ir
y

Y u + cyY r

)
·α ·β ·Su

x

+
(

Iu
x

Xu + cxXr + cx
Ir
x

Xu + cxXr

)
·β ·Su

y

−(µix · p+µiy · (1− p))Iu

=
(

Su
x

Y u + cyY r · I
u
y + cy

Su
x

Y u + cyY r · I
r
y

)
·α ·β

+
( Su

y

Xu + cxXr · I
u
x + cx

Su
y

Xu + cxXr · I
r
x

)
·β

−(µix · p+µiy · (1− p))Iu

Approximation 3.1. Since the number of rural individuals is much smaller than the number
of urban individuals, we set

Su
x

Y u + cyY r ≈
Su

x
Y u and

Ir
y

Y u =
Ir
x

Xu ≈ 0 .
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We thus have

dIu

dt
≈

(
α · (1− p) · Su

x
Y u + p ·

Su
y

Xu

)
·β · Iu− (µix · p+µiy · (1− p))Iu .

Figure 1: The diagram visualises the relationships between the eight compartments. A
dashed arrow indicates the inflow rate which affects only the susceptible population. A
solid thin arrow shows where the susceptible people may convert to; the probability is pro-
portional to β and αβ, respectively, depending on the sex. The thick arrows point out which
infected population influences which susceptible population. In order to not overload the di-
agram, we left out the removal rates, which would affect every compartment. The removal
rates differ between the sexes, and between the infected population and the susceptible
population.

Approximation 3.2. We make the further approximation that the male and female popula-
tion are roughly equal in size. Thus

Su
x

Y u ≈ 1 and p =
1
2

.

The same approximations are also valid if x and y, or X and Y , are interchanged.

Hence,
dIu

dt
≈ 1

2
((α+1)β−µix−µiy) Iu ≡ r0,1 · Iu .
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The value of the intrinsic growth rate r0,1 is critical for the behaviour of the disease. If r0,1
is positive, then, the number of infected people increases. Rephrasing, this means that the
disease will persist if

R0,1 =
(α+1)β
µix +µiy

is greater than 1, whereas the disease will be eradicated if R0,1 < 1. The same calculation
can be done for the rural population and, using Approximations 3.1 and 3.2 accordingly,
leads to the same result. In general, the important parameter R0 is defined as the average
number of susceptible people that an infected person infects during their sexually active
phase. Then, it is clear that the total number of infected people can only decrease if R0 < 1.
However, as Heffernan et al. [19] make clear, one should be very careful when it comes to
such a concrete meaning for R0; it is often not clear what the appropriate choice would be.
Surrogate thresholds like R0,1, although not necessarily the average number of secondary
infections, retain the same threshold property: persistence results if the value is greater than
1 and eradication results if the value is less than 1.

However, as we shall see, there are potential issues with this value. Thus, we shall
try another approach to find a better R0. A widely used method is invasion analysis with
Jacobian matrices. The interested reader can find a useful introduction in [20]. To do
invasion analysis, let J be the 8×8 Jacobian matrix for our system. Then, J = (J1|J2|J3|J4)
with

J1 =





−µsx−
Iu
y +cyIr

y
Y u+cyY r ·α ·β 0

Iu
y +cyIr

y
Y u+cyY r ·α ·β −µix
Iu
x +cxIr

x
(Xu+cxXr)2 ·β ·Su

y − (Xu+cxXr)−(Iu
x +cxIr

x)
(Xu+cxXr)2 ·β ·Su

y
Iu
x +cxIr

x
(Xu+cxXr)2 ·β ·Su

y
(Xu+cxXr)−(Iu

x +cxIr
x)

(Xu+cxXr)2 ·β ·Su
y

0 0
0 0

cy
Iu
x +cxIr

x
(Xu+cxXr)2 ·β ·Sr

y −cy
(Xu+cxXr)−(Iu

x +cxIr
x)

(Xu+cxXr)2 ·β ·Sr
y

−cy
Iu
x +cxIr

x
(Xu+cxXr)2 ·β ·Sr

y cy
(Xu+cxXr)−(Iu

x +cxIr
x)

(Xu+cxXr)2 ·β ·Sr
y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Iu
y +cyIr

y
(Y u+cyY r)2 ·α ·β ·Su

x − (Y u+cyY r)−(Iu
y +cyIr

y)
(Y u+cyY r)2 ·α ·β ·Su

x

− Iu
y +cyIr

y
(Y u+cyY r)2 ·α ·β ·Su

x
(Y u+cyY r)−(Iu

y +cyIr
y)

(Y u+cyY r)2 ·α ·β ·Su
x

−µsy− Iu
x +cxIr

x
Xu+cxXr ·β 0

Iu
x +cxIr

x
Xu+cxXr ·β −µiy

cx
Iu
y +cyIr

y
(Y u+cyY r)2 ·α ·β ·Sr

x −cx
Y u+cyY r−(Iu

y +cyIr
y)

(Y u+cyY r)2 ·α ·β ·Sr
x

−cx
Iu
y +cyIr

y
(Y u+cyY r)2 ·α ·β ·Sr

x cx
Y u+cyY r−(Iu

y +cyIr
y)

(Y u+cyY r)2 ·α ·β ·Sr
x

0 0
0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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J3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
0 0

cx(Iu
x +cxIr

x)
(Xu+cxXr)2 ·β ·Su

y − cx(Xu+cxXr)−(Iu
x +cxIr

x)cx
(Xu+cxXr)2 ·β ·Su

y

− cx(Iu
x +cxIr

x)
(Xu+cxXr)2 ·β ·Su

y
cx(Xu+cxXr)−(Iu

x +cxIr
x)cx

(Xu+cxXr)2 ·β ·Su
y

−µsx−
[

Ir
y

Y r + cx
Iu
y +cyIr

y
Y u+cyY r

]
·α ·β 0

[
Ir
y

Y r + cx
Iu
y +cyIr

y
Y u+cyY r

]
·α ·β −µix[

Ir
x

(Xr)2 + cy
Iu
x +cxIr

x
(Xu+cxXr)2

]
·β ·Sr

y −
[

1
Xr + cy

(Xu+cxXr)cx−cx(Iu
x +cxIr

x)
(Xu+cxXr)2

]
·β ·Sr

y

−
[

Ir
x

(Xr)2 + cy
Iu
x +cxIr

x
(Xu+cxXr)2

]
·β ·Sr

y

[
1

Xr + cy
(Xu+cxXr)cx−cx(Iu

x +cxIr
x)

(Xu+cxXr)2

]
·β ·Sr

y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and J4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cy(Iu
y +cyIr

y)
(Y u+cyY r)2 ·α ·β ·Su

x − (Y u+cyY r)cy−cy(Iu
y +cyIr

y)
(Y u+cyY r)2 ·α ·β ·Su

x

− cy(Iu
y +cyIr

y)
(Y u+cyY r)2 ·α ·β ·Su

x
(Y u+cyY r)cy−cy(Iu

y +cyIr
y)

(Y u+cyY r)2 ·α ·β ·Su
x

0 0
0 0[

Ir
y

(Y r)2 + cx
cy(Iu

y +cyIr
y)

(Y u+cyY r)2

]
·α ·β ·Sr

x −
[

Y r−Ir
y

(Y r)2 + cx
cy(Y u+cyY r)−cy(Iu

y +cyIr
y)

(Y u+cyY r)2

]
·α ·β ·Sr

x

−
[

Ir
y

(Y r)2 + cx
cy(Iu

y +cyIr
y)

(Y u+cyY r)2

]
·α ·β ·Sr

x

[
Y r−Ir

y
(Y r)2 + cx

cy(Y u+cyY r)−cy(Iu
y +cyIr

y)
(Y u+cyY r)2

]
·α ·β ·Sr

x

−µsy−
[

Ir
x

Xr + cy
Iu
x +cxIr

x
Xu+cxXr

]
·β ·Sr

y 0
[

Ir
x

Xr + cy
Iu
x +cxIr

x
Xu+cxXr

]
·β ·Sr

y −µiy





.

The disease-free state satisfies

(Su
x , I

u
x ,Su

y , I
u
y ,Sr

x, I
r
x ,S

r
y, I

r
y) =

(
ηu

µsx
,0,

ηu

µsy
,0,

ηr

µsx
,0,

ηr

µsy
,0

)
.

Then, the Jacobian evaluated at this point becomes J(Su
x ,0,Su

y ,0,Sr
x,0,Sr

y,0)= (J5|J6), where

J5 =





−µsx 0 0 − 1
Y u+cyY r ·β ·Su

x

0 −µix 0 1
Y u+cyY r ·β ·Su

x

0 − 1
Xu+cxXr ·β ·Su

y −µsy 0
0 1

Xu+cxXr ·β ·Su
y 0 −µiy

0 0 0 −cx
1

Y u+cyY r ·β ·Sr
x

0 0 0 cx
1

Y u+cyY r ·β ·Sr
x

0 −cy
1

Xu+cxXr ·β ·Sr
y 0 0

0 cy
1

Xu+cxXr ·β ·Sr
y 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and

J6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 − cy
Y u+cyY r ·β ·Su

x

0 0 0 cy
Y u+cyY r ·β ·Su

x

0 − cx
Xu+cxXr ·β ·Su

y 0 0
0 cx

Xu+cxXr ·β ·Su
y 0 0

−µsx 0 0 −
[

1
Y r + cx

cy
Y u+cyY r

]
·β ·Sr

x

0 −µix 0
[

1
Y r + cx

cy
Y u+cyY r

]
·β ·Sr

x

0 −
[

1
Xr + cy

cx
Xu+cxXr

]
·β ·Sr

y −µsy 0

0
[

1
Xr + cy

cx
Xu+cxXr

]
·β ·Sr

y 0 −µiy





Four of the eigenvalues are −µsx, −µsy, −µsx and −µsy, and are thus negative. For the
behaviour of the steady state ( ηu

µsx
,0, ηu

µsy
,0, ηr

µsx
,0, ηr

µsy
,0), we need to find the eigenvalues of

H = (H1|H2), where

H1 =





−µix
µsy
µsx

· ηu

ηu+cyηr ·α ·β
µsx
µsy

· ηu

ηu+cxηr ·β −µiy

0 cx
µsy
µsx

· ηr

ηu+cyηr ·α ·β
cy

µsx
µsy

· ηr

ηu+cyηr ·β 0

∣∣∣∣∣∣∣∣∣∣

H2 =

∣∣∣∣∣∣∣∣∣∣∣

0 cy
µsy
µsx

· ηu

ηu+cyηr ·α ·β
cx

µsx
µsy

· ηu

ηu+cxηr ·β 0

−µix
µsy
µsx

[
1+ cxcy

ηr

ηu+cyηr

]
·α ·β

µsx
µsy

[
1+ cycx

ηr

ηu+cxηr

]
·β −µiy





In order to simplify matters, we will use the following approximation:

Approximation 3.3. As there are many more urban individuals than rural, the constant
urban inflow rate ηu is much bigger than the rural inflow rate, ηr. Furthermore, cx and cy
are both much smaller than 1, so we shall use the approximations

ηu

ηu + cbηr ≈ 1 and
ηr

ηu + cbηr ≈ 0

for b ∈ {x,y}.

For convenience, abbreviate γ = µsx
µsy

. Then, H simplifies to

H̃ =





−µix αβγ−1 0 cyαβγ−1

βγ −µiy cxβγ 0
0 0 −µix αβγ−1

0 0 βγ −µiy





with eigenvalues

λ1,2 =
1
2

(
−µix−µiy ±

√
(µix−µiy)2 +4αβ2

)
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(each one with algebraic multiplicity 2). As the expression under the square root is non-
negative, all eigenvalues will be real. Thus, we have six negative eigenvalues. In order for
the seventh and eighth (they are the same) to be negative, we would need

√
(µix−µiy)2 +4αβ2 > µix +µiy

⇐⇒ µixµiy > αβ2 .

Thus, we define

R0,2 ≡
αβ2

µixµiy
=

αβ
µiy

· β
µix

Again, the value R0,2 = 1 is the critical point. If R0,2 > 1, then we expect the disease to
spread as we have an unstable disease-free steady state.

The value of R0,1 has a threshold when

β−µix +αβ−µiy = 0
1

µiy

(
β

µix
−1

)
+

1
µix

(
β

µiy
−1

)
= 0 .

However, when R0,1 = 1, it is not true in general that R0,2 = 1. For example, if β = 9,
µix = 10, α = 111/9 and µiy = 100, then,

R0,1 =
12
11

> 1

R0,2 = 0.999 < 1 .

We shall argue that R0,2 is more biologically meaningful.
The first term of R0,2 is the number of females that an infected male infects in his active

phase, the second term the number of males a female infects. Suppose, for example, a male
infects four females and a female infects two males, on average. Then, the proper R0 in this
process will be 8, as shown in Figure 2.

Of course, the same result is gained if, in Figure 2, we had started from an infected
female. Interestingly enough, this example shows that, for the reproductive ratio, it does
not matter whether the factor α is associated with either males or females. Thus, henceforth,
when we refer to R0, we are referring to R0,2.

4 Numerical Simulations

4.1 The choice of parameter values

A typical African city, like Durban in KwaZulu-Natal, has around 3.5 million inhabitants.
Blower et al. [13] suggest 400-4,000 villages, with populations ranging from 1,300 to
13,000 individuals. For convenience, we will choose 3,500 inhabitants. The average num-
ber of new sex partners per person per year is given as 0.5-1.5 in [13], but ranges from
0-18.1 in [14]. The latter also suggests a per-partnership transmission probability ranging
from 0.01 to 0.1, so we model the worst-case scenario by using the latter.
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Figure 2: An example of R0,2.
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Figure 3: Ten year urban timecourse without intervention. The top curve represents the
total urban population, the middle one shows the number of susceptible urban individuals
and the bottom curve shows the number of infected urban individuals. The curves for the
rural population are similar, but on a much smaller scale (not shown).
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The time period that susceptible and infected individuals are sexually active is 30 and 10
years, respectively, as suggested in [14]. For the urban-rural contact rate, [13] uses several
random variables, namely c = f c

1+d , where f ∈ (0,1), c ∈ (0.5,1.5) and d ∈ (10,100). As a
mean, we will use 0.5·1

50 = 0.01 (per year), or 0.00085 per month. As it is rare that females
travel to the city, we will set cx = 0. See Table 1.

Table 1: Abbreviations and parameter values

Variable Meaning Value Source

Na Total number of individuals Nu(0) = 3,500,000
in community a ∈ {u,r} Nr(0) = 3,500 [13]

Xa Total number of females 50% [21]
in community a ∈ {u,r}

Y a Total number of males 50% [21]
in community a ∈ {u,r}

Sb
a Total number of susceptibles Su

b = 0.87×Bu

in community a ∈ {u,r}, gender b ∈ {x,y} Sr
b = 0.91×Br [21]

Ib
a Total number of infected Iu

b = 0.13×Bu

in community a ∈ {u,r}, gender b ∈ {x,y} Ir
b = 0.09×Br [21]

α The degree of differential infection 2 [18]

β (contact rate between the two genders) × 1
60 = 1/6 partners per month ×

(transmission probability) 0.1 transmission probability [13]

ηa Constant rate of individuals in community
a ∈ {u,r} joining the sexually active phase ηu = 7,500; ηr = 7.5 [21]

µsb Constant removal rate of susceptibles
of gender b ∈ {x,y} 30 active years⇒ µsb = 1

360 [14]

µib Constant removal rate of infected
of gender b ∈ {x,y} 10 active years⇒ µib = 1

120 [14]

Degree of sexual cross-mixing of
cb individuals of gender b ∈ {x,y} cy = 0.00085; cx = 0 [13]

between urban and rural areas

Using the values in Table 1, we have

R0,1 =
(α+1)β
µix +µiy

=
(2+1) 1

60
1

120 + 1
120

= 3

R0,2 = 8 .

4.2 Numerical results

We use the parameters given in Table 1 and let the system run for ten years. The method
used for all numerical analysis is Runge-Kutta (3,4) with adaptive stepsize. The results are
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Table 2: Changes in infection after ten years

Parameter Starting value Ending value

Su
x 1.52 ·106 9.34 ·105

Iu
x 2.28 ·105 7.88 ·105

Su
y 1.52 ·106 1.17 ·106

Iu
y 2.28 ·105 6.15 ·105

Sr
x 1.59 ·103 1.13 ·103

Ir
x 1.58 ·102 6.62 ·102

Sr
y 1.59 ·103 1.34 ·103

Ir
y 1.58 ·102 5.05 ·102

Nu 3.50 ·106 3.51 ·106

Nr 3.50 ·103 3.63 ·103

S 3.05 ·106 2.11 ·106

I 4.55 ·105 1.40 ·106

pux 50.00% 49.06%
pui 13.00% 39.97%
prx 50.00% 49.26%
pri 9.00% 32.15%

shown in Figure 3.
The numerical changes are given in Table 2, where pab, a ∈ (u,r), b ∈ (x,y) is the

percentage of individuals of a given gender in a given region.
It is interesting to note that pux and prx, the percentage of the female population in the

city and the village, respectively, stays close to 50%, although females are infected twice as
easily as men.

4.3 Long-term behaviour and a second steady state

In order to understand the dynamics of the system better, we simulated fifty years of the
epidemic. The results are shown in Figure 4. We see that the trend indicated in the first
ten years, will be continued for quite a while and that infected individuals will eventually
outnumber susceptible individuals. However, at some point the number of susceptible indi-
viduals stops decreasing so drastically and seems to asymptotically approach a steady state
from above. Also, the infected population seems to approach a steady state from above.
Note that the graph for the infected population overshoots and reaches its peak slightly be-
fore the decrease of the susceptible population slows down. This phenomenon is typical for
SIR-models.

Any long timescale simulation we performed showed the effect of all three functions
(the total, the susceptibles and the infected population) seemingly approaching a steady
state. However, we haven’t shown that this state is actually a stable steady state, so we will
refer to it as a “quasi steady state”.

From a biological point of view, however, such a long timescale is not realistic. The
parameters may very well change over time and some new dynamics may enter the system
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to change it completely. That is the reason why the focus in this chapter is on the shorter
timescale of ten years.
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Figure 4: Fifty year urban timecourse without intervention.

5 Intervention Strategies

5.1 Modelling intervention strategies

We wish to include a variety of intervention strategies, in order to compare their effective-
ness. When modelling intervention strategies, there are two main approaches. The first is
to alter our differential equations, such as including a recovery term or subtracting a certain
term from the transmission probability. The advantage of this method is that it provides a
general approach. The disadvantage is that it complicates the model. The second method is
to change some parameter values. While this approach cannot give us a general picture, it
is straightforward and allows for a variety of possible intervention strategies to be explored
numerically.

From our analysis of R0, the parameters β, µix and µiy are clearly the most important.
For comparison purposes, we will always make changes in these parameters in such a way
that R0,2 reduces to 2. Although this value is not below one (and will thus not lead to erad-
ication), it is nevertheless a significant reduction from 8. Consequently, we are comparing
intervention strategies that reduce the prevalence of the disease, but which do not lead to
eradication.
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AIDS-awareness education and/or an increased condom use will decrease the trans-
mission probabilty and/or the contact rate, resulting in a decreased β. If AIDS tests were
available that could inform infected people about their status, we could hope that infected
people stop having unsafe contact with others and thus drop out of our model. The re-
sult would be an increase of µix and/or µiy. Antiretroviral drugs would decrease β, while
simultaneously increasing µix and µiy.

A critical question is whether or not any of these changes would influence the system in
the long run. We can obviously hope that the disease will spread slower with a smaller R0,
but will it in the long run still reach this second steady state we saw in the previous section?
In order to address this question, let us look at Figure 5.
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Figure 5: The system with doubled removal rates. The solid curves show the behaviour of
the system without intervention; the thinner red lines give the same functions for a doubled
µix and µiy.

Thus, if we double both µix and µiy and compare it to the behaviour of the system without
intervention, we see a significant difference. While we still have the overshooting of the
infected population, the actual numbers are drastically different. The infected population
never outnumbers the susceptible population. Note that the overall population is lower,
since we are assuming many more people are removed from the system.

Changes resulting from an increased β are shown in Figure 6. As expected, the disease
spreads much quicker with the higher β. Besides that, the functions behave similarly. Again,
we see an overshoot of the infected population and both systems approaching a steady state
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in the long run. However, we see that these two steady states differ and that with the smaller
β the approached steady state is much better, due to a smaller amount of infected people
and a larger amount of susceptibles.
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Figure 6: The system with β halved. The thin red curves show the behaviour of the system
without intervention, the solid black curves give the same functions for β halved.

5.2 Strategy comparison

We want to compare the following intervention strategies:

- Strategy I: Halving β through increasing education.

- Strategy II: Doubling µix and µiy, due to more widespread testing.

The result are shown in Figure 7. Clearly, strategy I is superior to strategy II. The total
number of susceptible individuals increases in strategy I, while it decreases in strategy II.
Even in the total number of infected individuals, strategy II shows a worse performance
although infected individuals leave the system twice as often! These two effects, taken
together, result in a huge difference in the AIDS prevalence after ten years. The actual
numbers are found in the Table 3.

While the number of infected individuals increases in both strategies, it should nev-
ertheless be noted that R0 is still greater than 1. If strategy I is implemented instead of
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Figure 7: Comparison of the two intervention strategies. The solid black curves show the
system without intervention. The dotted red lines show the effects of halving β (strategy I).
The dashed blue curves show the effects of doubling µix and µiy (strategy II).

Table 3: Changes in infection after ten years, using strategies I and II.

Starting value No intervention Strategy I Strategy II

Su
x 1.52 ·106 9.34 ·105 1.53 ·106 1.19 ·106

Iu
x 2.28 ·105 7.88 ·105 3.29 ·105 3.73 ·105

Su
y 1.52 ·106 1.17 ·106 1.64 ·106 1.38 ·106

Iu
y 2.28 ·105 6.15 ·105 2.47 ·105 2.88 ·105

Sr
x 1.59 ·103 1.13 ·103 1.66 ·103 1.38 ·103

Ir
x 1.58 ·102 6.62 ·102 2.43 ·102 3.00 ·102

Sr
y 1.59 ·103 1.34 ·103 1.74 ·103 1.53 ·103

Ir
y 1.58 ·102 5.05 ·102 1.81 ·102 2.26 ·102

Nu 3.50 ·106 3.51 ·106 3.74 ·106 3.23 ·106

Nr 3.50 ·103 3.63 ·103 3.83 ·103 3.43 ·103

S 3.05 ·106 2.11 ·106 3.17 ·106 2.57 ·106

I 4.55 ·105 1.40 ·106 5.77 ·105 6.61 ·105

pux 50.00% 49.06% 49.57% 48.45%
pui 13.00% 39.97% 15.40% 20.48%
prx 50.00% 49.26% 49.69% 48.84%
pri 9.00% 32.15% 11.08% 15.30%
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Table 4: Changes in infection after ten years, using all four strategies
Starting value No Intervention Strategy I Strategy II Strategy III Strategy IV

Su
x 1.52 ·106 9.34 ·105 1.53 ·106 1.19 ·106 1.37 ·106 1.13 ·106

Iu
x 2.28 ·105 7.88 ·105 3.29 ·105 3.73 ·105 4.42 ·105 2.18 ·105

Su
y 1.52 ·106 1.17 ·106 1.64 ·106 1.38 ·106 1.36 ·106 1.49 ·106

Iu
y 2.28 ·105 6.15 ·105 2.47 ·105 2.88 ·105 1.60 ·105 3.59 ·105

Sr
x 1.59 ·103 1.13 ·103 1.66 ·103 1.38 ·103 1.53 ·103 1.33 ·103

Ir
x 1.58 ·102 6.62 ·102 2.43 ·102 3.00 ·102 3.38 ·102 1.80 ·102

Sr
y 1.59 ·103 1.34 ·103 1.74 ·103 1.53 ·103 1.52 ·103 1.63 ·103

Ir
y 1.58 ·102 5.05 ·102 1.81 ·102 2.26 ·102 1.28 ·102 2.71 ·102

Nu 3.50 ·106 3.51 ·106 3.74 ·106 3.23 ·106 3.33 ·106 3.20 ·106

Nr 3.50 ·103 3.63 ·103 3.83 ·103 3.43 ·103 3.51 ·103 3.40 ·103

S 3.05 ·106 2.11 ·106 3.17 ·106 2.57 ·106 2.73 ·106 2.62 ·106

I 4.55 ·105 1.40 ·106 5.77 ·105 6.61 ·105 6.02 ·105 5.77 ·105

pux 50.00% 49.06% 49.57% 48.45% 54.43% 42.13%
pui 13.00% 39.97% 15.40% 20.48% 18.07% 18.05 %
prx 50.00% 49.26% 49.69% 48.84% 53.18% 44.27%
pri 9.00% 32.15% 11.08% 15.30% 13.27% 13.26%

strategy II, there is a difference of approximately 80,000 fewer infected after 10 years; the
percentage reduction in urban infectionis 20.5% under strategy II, but only 15.4% under
strategy I.

5.3 The effect of gender differences

We now propose intervention strategies that affect only one gender, in order to determine
some of the effects of gender on the outcome. Instead of doubling the removal rates uni-
formly, as in strategy II, we instead propose quadrupling only one gender-specific removal
rate. This reflects the situation where testing of one gender results in them ceasing to find
new sexual partners and thus leaving the sexually active pool.

- Strategy III: Available AIDS tests for males only to quadruple µiy.

- Strategy IV: Available AIDS tests for females only to quadruple µix.

We compare all four intervention strategies in Figure 8. In order to get a better view
of the development of the number of infected individuals, we zoom in. See Figure 9. The
values are given in Table 4, where pui and pri are the percentages of infected individuals in
the urban and rural areas, respectively.

When comparing the percentage of infected people in the population, we see that strat-
egy III and strategy IV perform about equally (approximately 18%), which is between strat-
egy I (15.4%) and strategy II (20.5%). However, if we concentrate on the total amount
of infected people, we see that strategy II (6.61× 105) performs worse than strategy IV
(5.77× 105), which actually gives us the same result as strategy I. So the difference be-
tween strategy I and strategy IV really is only in the number of susceptible individuals. The
number of infected people in strategy IV is always less than the number of infected people
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of strategy I for the first ten years. The number of infected people in strategy III is less than
that in strategy I for five years and thereafter is greater. Strategy II always produces more
infected individuals than any other strategy.
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Figure 8: Comparison of all intervention strategies. The solid black curves show how the
system behaves without intervention. The dotted red curves represent the system under the
influence of strategy I. The dashed blue curves represent strategy II. The dashed pink curves
represent strategy III and the dot-dashed green curves represent strategy IV.

5.4 Redefining “success”

The previous discussion raises the question of which measurement of “success” is appropri-
ate. On the one hand, we want as few infected people to be sexually active as possible. On
the other hand, the lower the percentage of infected individuals in the sexually active phase,
the lower the chance for an individual to actually have sexual contacts with an infected
person.

Besides the percentage or overall number of infected people in the population, another
way to measure success is to look at the total number of newly infected people in a given
time period. Rephrasing this, we want to count the cumulative number of susceptible people
who become infected.

Consequently, we introduce a measure function M, that satisfies

dM
dt

=
Iu
y + cyIr

y

Y u + cyY r ·α ·β ·Su
x +

Iu
x + cxIr

x
Xu + cxXr ·β ·Su

y
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+
[ Ir

y

Y r + cx
Iu
y + cyIr

y

Y u + cyY r

]
·α ·β ·Sr

x +
[

Ir
x

Xr + cy
Iu
x + cxIr

x
Xu + cxXr

]
·β ·Sr

y

with M(0) = 0. The four summation terms in the derivative of M are the number of new
infections in, respectively, urban men, urban women, rural men and rural women.
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Figure 9: Comparison of intervention strategies for infected individuals. The dotted red
curve shows the number of infected people under strategy I, the dashed blue curve shows
the number of infected people under strategy II. The solid pink curve represents the number
of infected people under strategy III and the dot-dashed green curve represents the number
of infected people under strategy IV.

In Figure 10, we see the change in M when there are no intervention strategies, while
Figure 11 compares the different measure functions for the four different strategies. While
strategies II, III and IV are more or less equally “successful”, strategy I is significantly
better. Here, the number of new infections is less than half as big as the amount in any other
strategy and is one third of the amount in the system without intervention.

It follows that, in terms of preventing new infections in all groups, strategy I (halving
β) is clearly superior. However, the next best intervention is strategy IV (quadrupling the
female removal rate), which is significantly better than quadrupling the male removal rate.
This shows that gender differences have an important impact on the outcome.
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Figure 10: The model without intervention (black curves) and the measure function M (red
curve).
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Figure 11: The measure function for all intervention strategies. The solid black and red
curves show the system without intervention and with strategy I, respectively. The dotted
curve demonstrates strategy II, the dotted-dashed curve strategy III and the dashed curve
strategy IV.
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6 Conclusion

The best strategy for reducing the impact of the epidemic is reducing the infection prob-
ability. Failing that, the next best strategy is to increase the removal rate of females from
the sexually active pool. This may be achieved through education, increased testing, im-
proved condom use or prevention awareness. Interestingly, increasing the removal rate of
females is significantly more likely to improve the outcome than increasing the removal rate
of males (Figure 11).

Our model thus demonstrates that gender differences can have a significant effect on the
outcome. We also demonstrated that transmission occurring predominantly in urban areas
results in an increase from 13% to 40% in urban areas and an increase from 9% to 32% in
rural areas after ten years (Table 2). It follows that urban transmission can sustain infection
in rural areas.

We also analysed the effects of calculating the basic reproductive ratio under two sce-
narios. In the first, we assumed that the number of rural individuals is significantly smaller
than the number of urban individuals, and also that the male and female populations are
similar in size. In the second, we assumed that the inflow of urban individuals is large,
while the inflow of rural individuals is small. In each case, the value depends only on
the transmission probability, the removal rates of each gender and the degree of differen-
tial infection. While each value satisfies the threshold condition that the disease persists
if R0 > 1 and is eradicated if R0 < 1, we showed that the second approximation led to
a path-independent product of the individual reproductive numbers for each gender. This
demonstrates the care that needs to be taken when calculating surrogate R0-like thresholds
from mathematical models (see [19] for more discussion).

Furthermore, the second calculation of R0 demonstrated that the choice of whether the
degree of differential infection is applied to males or females is arbitrary. Thus, the results
can be generalised to note that removing the “weaker” sex – i.e., the one with the high-
est risk of being infected – has a greater impact on the outcome. This “removal” could
be achieved via targeted education strategies, increased testing for one gender or through
community organisations. Of course, education campaigns or AIDS testing should attempt
to encompass both genders if possible, but the realities of existing cultural structures may
make one gender more receptive to some stategies than others.

While the first two approximations lead to a “first guess” for R0, this value is not bi-
ologically meaningful. By refining our approximations, we derived a biologically useful
threshold condition. Approximation 3.3 implies that HIV can be sustained in urban areas
alone. By using this key approximation, we were able to simplify an 8× 8 system to two
2×2 systems. This makes the system mathematically tractable and allows the derivation of
the second, more useful, R0.

We are primarily interested in transient behaviour of the system. While analytical
methods may determine long-term phenomena such as equilibria, the timescale of such
behaviour may be much longer than the lifespan of an infected individual. Consequently,
we use numerical simulations to examine the short-term dynamics of the system. In Tables
2 and 4, our starting values are a long way from the disease-free equilibrium and do not
evolve to stable behaviour in a ten-year period. While stable behaviour is eventually seen,
it takes approximately 50 years to reach (Figure 4), much longer than the timecourse of the
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disease in individuals.
It should be noted that this model is only a partial snapshot of the epidemic, as it ignores

many other important routes of transmission. Specifically, homosexual transmission, needle
sharing and vertical transmission are not modelled.

In summary, the effects of gender differences can have a significant impact on which
intervention strategy should be applied. Not all intervention strategies will have the same
effect, even if they remove the same number of total individuals. Furthermore, the effects
of urban and rural mixing have a significant effect on the outcome for rural individuals,
who suffer a proportionally greater increase in prevalence than do urban areas. It follows
that, before intervention strategies are implemented, the population-level impact should be
carefully assessed.
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Appendix

Below are the codes used in generating the figures.

Associated function file (aidsf.m)
function z = aidsf(t,x0); global beta alpha etau usx usy cx cy uix uiy etar
z(1,:) = etau - usx*x0(1) - alpha*beta*((x0(4) + cy*x0(8))/(x0(4) + x0(3) + cy*(x0(8) + x0(7))))*x0(1);
z(2,:) = alpha*beta*((x0(4) + cy*x0(8))/(x0(4) + x0(3) + cy*(x0(8) + x0(7))))*x0(1) - uix*x0(2);
z(3,:) = etau - usy*x0(3) - beta*((x0(2) + cx*x0(6))/(x0(2) + x0(1) + cx*(x0(6) + x0(5))))*x0(3);
z(4,:) = beta*((x0(2) + cx*x0(6))/(x0(2) + x0(1) + cx*(x0(6) + x0(5))))*x0(3) - uiy*x0(4);
z(5,:) = etar - usx*x0(5) - alpha*beta*(x0(8)/(x0(8) + x0(7)) + cx*(x0(4) + cy*x0(8))/(x0(4) + x0(3)
+ cy*(x0(8) + x0(7))))*x0(5);
z(6,:) = alpha*beta*(x0(8)/(x0(8) + x0(7)) + cx*(x0(4) + cy*x0(8))/(x0(4) + x0(3) + cy*(x0(8) +
x0(7))))*x0(5) - uix*x0(6);
z(7,:) = etar - usy*x0(7) - beta*(x0(6)/(x0(6) + x0(5)) + cy*(x0(2) + cx*x0(6))/(x0(2) + x0(1) +
cx*(x0(6) + x0(5))))*x0(7);
z(8,:)= beta*(x0(6)/(x0(6) + x0(5)) + cy*(x0(2) + cx*x0(6))/(x0(2) + x0(1) + cx*(x0(6) + x0(5))))*x0(7)
- uiy*x0(8);
end

The main file (aids.m)
function aids(varargin);
% There are two special features included: The function ’aids’ takes one or two optional arguments.
% They allow you to implement the counter strategies I,II,III or IV and allow you to choose the
% running time. If no argument is give the system runs on strategy 0 (= no counter measures)
% for Tmax = 120 months. If only one optional argument is given, that stands for the counter
% strategy:
%
% 0 = no counter measures
% 1 = Strategy I (half beta)
% 2 = Strategy II (double µix,µiy)
% 3 = Strategy III (quadruple µix)
% 4 = Strategy IV (quadruple µiy)
%
% If two optional arguments are given, the first one stands for the counter strategy and the second
% one for the time (in months) the simulation shall run. Examples:
%
% >> aids; % no counter strategy, ten years
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% >> aids(2); % counter strategy II, ten years
% >> aids(3,240); % counter strategy III, twenty years
% >> aids(0,1200); % no counter strategy, one hundred years
%
% The second special feature is that you can plot several runs into one diagram. MatLab
% automatically plots the old graphs red and the new one blue, so you always know where you’re
% at.

% global parameter values
global beta alpha cx cy usx usy uix uiy etau etar;
beta = 1/60;
alpha = 2;
cx = 0;
cy = 0.00085;
usx = 1/360;
usy = 1/360;
uix = 1/120;
uiy = 1/120;
etau = 7500;
etar = 7.5;

% further parameter values
strategy = 0;
Tmax = 120;
pui = 0.13;
pri = 0.09;
Nu = 3500000;
pux = 0.5;
Nr = 3500;
prx = 0.5;

% starting values
Sux = (1-pui)*pux*Nu;
Iux = pui*pux*Nu;
Suy = (1-pui)*(1-pux)*Nu;
Iuy = pui*(1-pux)*Nu;
Srx = (1-pri)*prx*Nr;
Irx = pri*prx*Nr;
Sry = (1-pri)*(1-prx)*Nr;
Iry = pri*(1-prx)*Nr;
M = 0;

% handling the optional argument
if nargin == 1
strategy = varargin1;



56 Bernhard P. Konrad, Robert J. Smith? and Frithjof Lutscher

end
if nargin == 2
strategy = varargin1;
Tmax = varargin2;
end
if nargin > 2
disp(’Too many arguments’);
end

% resetting the parameter values according to the chosen strategy
if strategy == 1
beta = .5*beta;
end
if strategy == 2
uix = 2*uix;
uiy = 2*uiy;
end
if strategy == 3
uiy = 4*uiy;
end
if strategy == 4
uix = 4*uix;
end

% solving the ode
j=1;
tau=0.1;
t0=0;
x0=[Sux,Iux,Suy,Iuy,Srx,Irx,Sry,Iry];

for i=1:Tmax/tau
tspan=[t0 t0+tau];
[t,x] = ode45(@aidsf,tspan,x0);
n=length(t);
xnew=x(n,:);
for k=1:8
u(k,j)=xnew(k);
end
time(j)=t(n);
t0=t0+tau;
x0=x(n,:);
j=j+1;
end

% plotting the results
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hold on
grid on
set(findobj(’Type’,’line’),’color’,’r’);
plot(time,u(1,:) + u(2,:) + u(3,:) + u(4,:)); % urban population
plot(time,u(2,:) + u(4,:)); % infected urban population
plot(time,u(1,:) + u(3,:)); % suspective urban population

plot(time,u(5,:) + u(6,:) + u(7,:) + u(8,:)); % rural population
plot(time,u(6,:) + u(8,:)); % infected rural population
plot(time,u(5,:) + u(7,:)); % suspective rural population
end


