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Abstract. Tularemia is an infectious disease caused by the bacteria 
Francisella tularensis. The disease is naturally occurring the the 
wild and primarily carried by animals and arthropods, but can also 
infect humans. Vectors include ticks,  deer flies, horse flies and 
mosquitoes. A live attentuated vaccine has been available for 
decades, but has only received limited distribution to high-risk 
individuals. We develop a mathematical model for tularemia in 
order to examine the effects of pulse vaccination using impulsive 
differential equations. We develop thresholds for the frequency of 
vaccination and proportion of vaccinated individuals that will 
reduce human infection below a desired level. We also illustrate 
our results with numerical simulations and show that a 15% 
reduction in infectibility is achievable with modest (60%) coverage 
if vaccinations occurs three times a year. However, annual 
vaccination, even if coverage was high, is unlikely to have much 
impact on the disease. 
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1. Introduction 
 

 Tularemia is an infectious disease caused by the bacteria Francisella 
tularensis. Typically found in North America, Europe and Asia, the spread and 
incidence of the disease has been steadily decreasing in recent years [12]. 
Tularemia occurs primarily in the Northern Hemisphere, with regular incidence 
of disease in the Czech Republic, Finland, Japan, Kazakhstan, Slovakia, Sweden, 
Russia, the US and Uzbekistan [2]. In particular, tularemia cases in the US are 
mainly concentrated in Arkansas, Missouri and Oklahoma, which accounted for 
42.45% of all cases from 2000-2008 [16]. Nowadays, the prevalence and 
incidence of tularemia is fairly low, though it is endemic in certain rural regions 
and numerous small outbreaks have been reported in recent decades. 
 Several animals and arthropods can carry the disease, and the disease itself 
naturally occurs in the wild. In particular, ticks, deer flies, horse flies and 
mosquitoes are known to contribute significantly to the transmission of the 
disease [15]. The animal population can contract the disease due to interaction 
with infected arthropods or with the contaminated environment. As 
environmental factors and arthropods are wide ranging, the disease has been 
noted in domestic animals, wild small mammals and fish [3]. While human-to-
human transmission has not yet been reported, humans can contract 
tularemia through a number of different methods, including [12]: 
 

• Fly and tick bites spreading the disease from animals to humans 
• Contact with infected animals, including consumption of infected meat 
• Drinking contaminated water or inhaling infected particles. 

 
Tularemia in humans can manifest in several different forms: ulceroglandular, 
oculoglandular, pneumonic, oropharyngeal, gastrointestinal and typhoidal [3]. 
The most common form is ulceroglandular, which accounts for 80% of cases and 
has a fatality rate of 5% in untreated cases [3]. If tularemia has been ingested 
through contaminated meat or infected water, then it will likely display itself as 
either oropharyngeal or gastrointestinal tularemia [3]. Cases of oropharyngeal and 
gastrointestinal tularemia have the highest untreated fatality rate of 60%. Contact 
with airborne tularemia in the eyes may lead to oculoglandular or pneumonic 
tularemia, the latter of which has an untreated fatality rate of 40% [3]. 
 Current methods of prevention for the general public are limited to 
techniques that reduce their exposure to infected animals and ticks [12]. Once 
infected,  there is an effective antibiotic regimen that limits the mortality rate 
to below 2% [12]. Recovery for most individuals results in long-lasting 
immunity to the disease [12]. As the bacteria are highly infective and easy to 
aerosolise, the disease has been recognised as a potential bioterrorism weapon. 
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This has led to increased interest in the development and production of vaccines 
[5]. Current vaccines include an attenuated form of the Francisella tularensis 
Live Vaccine Strain (LVS), which has been available for several decades. This 
vaccine, while efficacious against non-aerosol forms of transmission, offers less 
protection against aerosol transmission. Furthermore, as the basis for the immune 
response and rate of reversion are unknown, it has not been deemed safe enough 
to distribute to the general public and has only been distributed to individuals of 
high risk who are in constant contact with the disease [2,5]. 
 Most studies of tularemia to date have been clinical in nature. Past studies 
have addressed the disease, vaccine and drug options [2, 3, 12], as well as 
transmission and infection sources during an outbreak [6]. Studies have also 
focused on the clinical diagnosis of tularemia [7], and verifying the efficacy of 
the live vaccine [4]. Mathematical modelling of this disease has received 
relatively little attention. 
 This chapter will attempt to model tularemia within a small group of 
organisms. We will first consider the model without vaccination to examine 
various dynamics of the system before extending the model to include impulsive 
vaccinations occuring at regular intervals. Numerical simulations of the system 
will then illustrate the effect of the vaccine. 
 

2. The system without vaccination 
  

 For the basic model of tularemia, we consider eight populations, listed in 
Table 1. Contamination of the environment, in the form of infected airborne 
particles or contaminated water, will be treated as a population in order to 
consider its effects on the dynamics of the other three populations. 
 By using a system of ordinary differential equations (ODEs) to characterize 
the system, we assume that the populations mix homogeneously. This is valid for 
the population of animals, insects and the environment, as they are in constant 
contact with each other. This may also hold for the human population when 
considering an isolated rural village. 
 For this model, we assume that there are constant birth rates within the 
insect, animal and human populations , and that all offspring are 
born susceptible to the disease. There is also constant background or decay rates 
within the insect, animal, human and environment populations  

.  
 Susceptible individuals become infected through mass-action 
transmission after interaction with infected organisms in the other 
populations( , for i = 1 to 7) and subsequently move into their respective 
infected populations. 
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Table 1. State variables. 
 

 
 
 Susceptible animals can become infected through exposure to the 
contaminated environment  and susceptible humans can become 
infected through exposure to contaminated water (ρ2) and air (ρ3). Infected 
animals and humans can recover from the disease (βA, βH), though only 
humans recover with lifelong immunity. Finally, infected animals and 
humans can die at a disease-specific death rate that is higher than the 
background death rate ( ). 
 These interactions produce the following model: 
 

                        

(1)

 
 
where the all of the parameters are nonnegative. The interactions between the 
different populations are illustrated in Figure 1. 
 Using Model (1), the disease-free equilibrium population values are: 
 

 
 
The endemic equilibrium values are: 
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Figure 1. Flowchart of the model without vaccination. The dashed lines represent 
routes of transmission, while the solid lines represent transfer of individuals from one 
compartment to another. 
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for given parameters. 
 
Theorem 2.1. Define 
 

 
 
If h0 = min{A,D,AB − C,C(AB − C) − A2D} > 0, the disease-free equilibrium 
is stable. Otherwise, the disease-free equilibrium is unstable. 
Proof. It suffices to provide the conditions in which all of the eigenvalues of the 
Jacobian matrix of Model (1) when evaluated at the disease-free equilibrium have 
a negative real part. The Jacobian matrix for Model (1) is J = [J1|J2] where J1 and 
J2 are as follows: 
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When evaluated at the disease-free equilibrium, the eigenvalues satisfy  
roots of the characteristic equation 
 

 
 

where 
 

 
 

By assumption, μI , μA and μH are all strictly positive, so it suffices to 
examine the determinant of the matrix. This is a quartic of the form 

B  +  where A, B, C and D are equal to the 
following: 
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According to the Routh-Hurwitz stability criterion, all of the roots will have 
negative real part if A > 0, D > 0, AB −C > 0, and C (AB − C) > A2D, which 
provides us with the conditions outlined in the theorem. 
 Note that the criterion A > 0 is unlikely to hold if  as  

 is likely much larger than   

in which case  
 
3. The system with vaccination 
 
 We will now turn our attention to the system with pulse vaccinations 
given at regular time intervals (τ) to a proportion of the susceptible human 
population  (p). This vaccine has different efficacies for aerosol transmission 
(θ2) and for the other methods of transmission (θ1), and also reverts to the 
original viral strain at a given rate ( ). This system, in ODE form, is 
illustrated below. 
 
For  

 

             

(2)

                     
 
The impulsive conditions are given by 
 

                                                                                                
(3)

                     
 
for t = tk. 
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 The inherent assumption in adding an impulsive component to the 
model is that the changes happen instantaneously, which is a relatively safe 
assumption if enough clinics are set up so that all of the vaccinations can 
occur simultaneously. Due to the impulsive effects, the populations do not 
reach an equilibrium. However, we may attempt to find impulsive orbits for 
these populations and arrive at a bound for the infected human population 
as   
 For notational purposes, define  
and where 

 are the equilibrium values of the populations in the model without 
vaccination. 
 
Theorem 3.1. Let  denote the kth endpoint immediately before the impulse. 
Then 
 

 
 
and 

 
 
are globally asymptotically stable fixed points for the endpoint before the impulse 
for SH and VH. 
 
Proof. First, consider the susceptible human population.  Let 

  Then, from Model (2): 
 

 
 
which implies that 
 

 
 
Then it follows that, for  
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and, after factoring in the impulsive effect and setting t = tk+1, 
 

 
 
Let 

 
where SH  (0) is the initial population of SH. 

 
Then 

 
 

 Let w be the smallest integer such that, for  and E 
all approximately at their equilibrium values. We will now make the 
assumption that the equilibrium values for these populations are the 
same as in the model without vaccination and, moreover, are constant. 
This assumption was  because the infected populations are dependent 
upon multiple populations, of which only a couple are directly affected by 
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the impulses.Then, for   
and so, for  

 

 
 

We apply a similar treatment to the vaccinated human population:  Let  
 From 
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Model  

After accounting for the impulsive effects 
     and setting   

 

 
 
Then, if  we have 

 
 

and so, as  Furthermore, as seen 
above, for given values of  converges to a single fixed point 
and so  will also converge to a single fixed point. It remains to find this 
fixed point, which will occur where 
 

 
 

which implies that  

 Using these endpoints, we can make inferences about the infected human 
population, which is our population of interest. This analysis will use the 
following lemma. 
 
Lemma 3.1.  If  for constants k > 0 and l > 0, then X(t) will 

converge to a value that is less than or equal to  Furthermore, if 
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 then X(t) will converge to a value that is larger than or 

equal to  

Proof. Given that  this implies that   

or  Therefore,  

 and so X(t) will converge to a value that is less than  The 

second part of the theorem follows by reversing the inequalities above. 
 This will be used to help prove that, with appropriate vaccination 
parameters, we can reduce the infected human population below any given 
threshold as  
Theorem 3.2. Let  be the equilibrium values of and                 
E, respectively, in the model without vaccination. Then IH(t) can be reduced 
below any threshold as with appropriate  and  
Proof. Let  denote the desired threshold of infected humans, and 

 and  be the equilibrium values of  and E respectively in 
model without vaccination. Furthermore, note that, by Model (2),  
 

 
 
where  
 Then let w be the smallest integer such that for  and E all 
attain their equilibrium values and  and  are both at their impulsive 
orbits. Similar to our previous analysis, we will assume that the population 
equilibrium values are approximately the same as in the model without 
vaccination so that we can treat it as a constant and  Therefore, consider 

 
 As SH has attained its impulsive periodic orbit, it follows that, as  
for  then, for all   

 This can be made arbitrarily small for p close to 1 and τ close to 0. 
Therefore, choose an appropriate p and  such that 
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Furthermore, as VH is also at its impulsive orbit, note that  for 
 

 
 
This is well-defined for the values of p and  chosen above. Therefore, we 
can choose θ1 such that 

 

 
 

Similarly, choose θ2 such that (1 − θ2)  Finally, choose 

 such that  

 

Therefore, for  using the values of  and  above: 
 

 
 

From Lemma 3.1, it follows that IH will converge to a value less than  
 Therefore, provided that we can control  and , the infected 
human population can be reduced below a given threshold as  The 
following theorem will provide other bounds for  and the infected 
human population under certain conditions as  
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Theorem  3.3. a) Let θ1, θ 2 and  be given. Then, as  and , IH 

will converge to  

 
 and  then, for a given threshold  for IH, 

the minimum threshold for p is: 
 

 
 
c) Similarly, the minimum threshold for  is: 

 

 
  

 Proof. a) Note that, at their impulsive orbits, SH is bounded below by   
and VH is bounded below by  Therefore, for large enough t such that 
IA, II and E are all at their equilibrium values, and SH and VH are at their 
impulsive orbits: 
 

 
 
Similarly, at their impulsive orbits, SH is bounded above by  and VH is 
bounded above by Therefore: 
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Note that, as  and  then  1 

and, by L’Hopital’s rule,  

 Therefore, as  and  the upper and lower bounds of  
will converge to Therefore, IH will 

converge to . 

 
 Parts b) and c) of the theorem follow by noting that if θ1 = θ 2 = 1 and  
= 0 then, for large t, as  and 
SH is bounded above by , it suffices to lower  below the 

threshold of   

 By Theorem 3.1, we note that  Therefore, 

setting  

 

 
Thus 
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It follows that 
 

 
 
Similarly, we isolate  to obtain the other identity: 
 

 
 
and hence 

 

 
 
Note that, if  and  then  Therefore, Theorem 
3.3a indicates that, as  and  IH converges to 0. Otherwise, 
given vaccine parameters and  Theorem 3.3a provides a lower 
bound for the infected human population using pulse vaccinations. 
 
4. Numerical simulations 
  
 As known carriers of the disease, tick and rabbit populations were chosen 
to illustrate the model. However, the lack of reliable records for this disease 
and the number of different transmission routes make it difficult to accurately 
estimate the transmission parameters of the ODE model. Nonetheless, using 
the parameter values outlined in Table 3 (in the appendix), we will illustrate 
the effects of a live vaccine on the populations of interest. These results are 
specific to the parameters chosen and are meant to only be illustrative; the 
exact scale of the effects may drastically change with different parameters. 
 For the purposes of numerical simulations, we assume that the 
populations are at the endemic equilibrium, that no other populations can be 
affected by the disease and the human population is a rural community that 
has approximately 1120 individuals. The vaccine is 97% effective against 
nonaerosol transmission, so θ1 =0.97 [1]. Tests indicate that, when challenged, 
75% of unvaccinated individuals contracted aerosol tularemia compared to 17% 
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of individuals vaccinated with the live vaccine strain (LVS) [14]. Therefore,  
was estimated to be (1 - 17/75) = 0.773. The capacity for reversion is unknown 
so, although biologically unlikely,  was taken to be 0 [14]. 
 We performed a sensitivity analysis on the value of  defined in Theorem 
2.1 using Latin Hypercube Sampling for the range of values outlined in Table 2. 
The results are given in Figure 2, which shows that the parameters that would 
have the largest effects on the system are  and  . Therefore, the 
transmission parameters – the variables that we have difficulty estimating – and 
the relative sizes of the human, animal and insect populations are the most crucial 
to the behaviour of the system. It follows that we are unlikely to control the 
disease in the absence of a vaccine. 
 To examine the effects of vaccination, we varied the vaccination period and 
the proportion of individuals vaccinated for likely values. Our outcome was the 
relative infectability of infected vaccinated individuals compared to infected 
unvaccinated individuals. All simulations began at the endemic equilibrium 
without vaccination.  

 
Table 2. Parameter ranges. 
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Figure 2. Results of parameter sensitivity analysis using Latin Hypercube Sampling. 

 

 
 
Figure 3. Relative infectability of infected vaccinated individuals compared to 
infected unvaccinated individuals. The vaccine was given to 90% of the population, 
every 365 days. 
 
 If the vaccination period was large (say, a year), then even a vaccine given to 
90% of the population would produce results little better than not vaccinating at 
all and in some cases worse, due to forced oscillations in the system. See            
Figure 3. 
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 Conversely, a vaccine with a short vaccination period (say, two months), 
but given to only 30% of the population would result in a significant 
improvement over a widespread but infrequent vaccine. See Figure 4. 
 Keeping the coverage at 30% but increasing the vaccination period to 
120 days saw only a modest increase in the relative infectability. See            
Figure 5. 
 Keeping the vaccination period at 120 days but increasing the proportion 
of individuals vaccinated to 60% resulted in only a slight decrease in the 
relative infectability. See Figure 6. 
 Increasing the vaccination coverage to 90% resulted in only a small 
further decrease in the relative infectability. See Figure 7. 
 Finally, we investigated the effect of the efficacy against non-aerosol 
transmission, as simulations suggested this was a crucial parameter. If a 
vaccine were developed that could prevent 100% of non-aerosol infections, 
then it would have a significant impact on the relative infectability of 
tularemia.  See Figure 8. 
 

 
 
Figure 4. Relative infectability of infected vaccinated individuals compared to 
infected unvaccinated individuals. The vaccine was given to 30% of the population, 
every 60 days. 
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Figure 5. Relative infectability of infected vaccinated individuals compared to 
infected unvaccinated individuals. The vaccine was given to 30% of the population, 
every 120 days. 

 
 
Figure 6. Relative infectability of infected vaccinated individuals compared to 
infected unvaccinated individuals. The vaccine was given to 60% of the population, 
every 120 days. 
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Figure 7. Relative infectability of infected vaccinated individuals compared to 
infected unvaccinated individuals. The vaccine was given to 90% of the population, 
every 120 days. 

 
 
Figure 8. Relative infectability of infected vaccinated individuals compared to 
infected unvaccinated individuals. The vaccine was given to 60% of the population, 
every 120 days, but prevented 100% of non-aerosol infections. 
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5. Discussion 
 
 Numerical simulations illustrate that imperfect vaccines, even in the 
presence of an animal reservoir, can affect the outcome of an outbreak. The 
result is an initial drop in the number of infected vaccinated individuals, 
which gradually equilibrates at a reduced number of infections. 
 Variations in the coverage levels produced only modest changes in the 
relative infectability. A vaccine administered every four months would result 
in about a 15% reduction in the number of infected individuals. This outcome 
could be achieved with only 60% coverage. However, variations in the 
vaccination period had a significant effect on the outcome. A vaccine given 
to only 30% of the population could produce a 15% reduction in the nuber of 
infected individuals if given every two months. Conversely, a vaccine with 
90% coverage could, at times, actually be worse than not vaccinating at all,  
if only given annually. This suggests that the vaccination period is critical 
and that the disease can be reduced if a core group of individuals is targeted,  
so long as efforts are made to follow up. 
 As predicted by theory, a live vaccine has the ability to decrease the 
infected human population below any given threshold. However, this requires 
control over the vaccination parameters, which is not always possible. For 
example, the current LVS vaccine is imperfect and it may not be possible to 
force the required proportion of the susceptible population to receive the 
vaccine. We also investigated the efficacy of the vaccine against non-aerosol 
infection. These suggested that  is a critical parameter; if it were lowered 
then vaccination efforts could be significantly compromised. Conversely, a 
vaccine which had 100% prevention of non-aerosol infection would be highly 
effective, as Figure 8 demonstrates. 
 Our model has a number of limitations, which should be noted. In the 
northern hemisphere, arthropods have seasonal patterns that can be accounted 
for and, depending on the length of the outbreak, may affect the outcome of 
the disease. There are also several species of animals and insects that can 
carry the disease, all of whom interact with each other, the disease and the 
environment in different ways. We assumed mass action transmission,  which 
is appropriate for a small community, but which may break down for an 
outbreak in a larger urban centre. We also assumed vaccination occurred 
instantaneously, which is obviously not the case; however, impulsive 
differential equations have been shown to be quite robust to variations in the 
vaccination time [17]. 
 In summary, vaccination against tularemia can reduce the infectability of 
the disease, but is unlikely to eradicate it. The vaccination period is critical, 
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suggesting that efforts should be put into vaccinating core groups with careful 
followup. However, an improved vaccine that prevented nonaerosol 
transmission would have a significant effect on controlling this disease. 
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7. Appendix: Parameter estimates 

  
Table 3. Parameter estimates. 
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Table 3. Continued 
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