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a b s t r a c t

Tuberculosis (TB) transmission is enhanced by poor living conditions. In this study, a deter-
ministic model was developed to assess the impact of socioeconomic conditions on TB
transmission, taking into account heterogeneous mixing patterns. The epidemic thresholds
known as the reproduction numbers, as well as equilibria for the model, are determined
and stabilities analysed. Results from the study suggest that TB transmission is more com-
mon in poverty-stricken communities than in rich communities, supporting the argument
that TB is a disease of the poor. The outcome is significantly dependent on the probability
of latency, so that if the number of fast TB cases could be reduced, the epidemic would sig-
nificantly improve. Interestingly, our results illustrate that heterogeneous mixing of the
rich and poor will make the epidemic worse, but homogenous mixing will slightly improve
the outcome. Further, even when all other factors are equal, the poor contact rate will have
more impact than the rich contact rate. It follows that the rich community can help them-
selves by helping those less fortunate.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Tuberculosis (TB) is the most prevalent airborne infectious cause of death, killing around three million people, principally
young adults in the world’s poorest nations each year [1]. TB cases have been made worse by the HIV/AIDS pandemic and
emergence of MTB (multi-drug resistant TB) [2]. Infection by HIV greatly increases the likelihood that a person infected with
MTB will develop active TB [2], since it impairs the immune system.

Despite the availability of therapy that is highly effective in terms of years of human lives saved, and highly cost effective,
TB continues to flourish [3]. The distribution of TB in both developed and developing nations is grossly uneven and points to
poverty as a causal factor [1,4]. The World Bank defines absolute poverty as living on one United States dollar or less per
person per day. The World Bank also recognises that poverty encompasses vulnerability to shocks, and lack of opportunities
and capabilities [5]. Poverty-stricken people lack food security, income stability, and access to water, sanitation and health
care [6,7]. Extreme poverty is concentrated among certain subgroups of the population and may be associated with other
social and political crises. The devastating effects of TB, particularly in patients with HIV/AIDS, led the World Health
Organization (WHO) to declare a global emergency for TB in April 1993 [8], and the ministers’ conference in Amsterdam
in 2000 to designate 24 March of each year as ‘World TB Day’ [9]. The global emergency of TB at a time when cheap and
effective anti-TB drugs are available has been described as a paradox that should now be addressed through societal and
political means [2].
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Globally, 80% of avoidable mortality has been attributed to communicable diseases in low-income countries [7]. The
world’s poorest nations therefore carry an inequitable burden of avoidable mortality [7]. TB thrives in conditions of hardship
and can worsen poverty. While TB is not exclusively a disease of the poor, the association between poverty and TB is well
established and widespread [2,10–13,6]. Once a person succumbs to TB and HIV/AIDS, they easily become poor, since they
are not able to become economically productive [2,14]. TB control and poverty reduction cannot be achieved solely by seek-
ing improvements of target indicators on averages across populations; instead, specific needs of vulnerable communities
must be addressed.

In some poverty-stricken settings, individuals known to have TB are stigmatised, leading to denial, and preventing timely
diagnosis and effective treatment. This can be addressed by tackling stigma through knowledge dissemination and behav-
ioural change with the support of former TB patients and others [7]. Implementation of the Directly Observed Treatment
Strategy (DOTS) in TB control is difficult in areas with high concentrations of poor and vulnerable people such as city slums
and geographically remote places due to lack of health service personnel, poor remuneration for the health staff and lack of
staff motivation in these settings. Nutritional status also plays an important role, as malnourished people tend to have their
immune systems compromised [15,16]. Overcrowding increases contact rates and thus the chances of being infected with TB
[17,11].

A number of studies have been carried out to examine the link between poverty and TB [11,17–21]. Beggs et al. [17] and
Delfino and Simmons [21] used statistical analysis in their assessment of poverty in relation to TB. Our work differs from
these studies in that we use deterministic models to assess the impact of poverty in the transmission dynamics of tubercu-
losis. Most studies [19,17,11] analysed the link between overcrowding and TB, and found that overcrowding enhances TB
transmission; in this study, in addition to overcrowding, we consider other aspects of poverty, such as poor nutrition and
reduced treatment uptake.

This paper is organised as follows. Section 2 presents the model framework and analysis. In Section 3, numerical simu-
lations are presented and the last section concludes the paper.

2. Model description

The model subdivides the population based on poverty. Although thresholds of absolute poverty are set at those earning
less than US $1 a day, here we divide the population in two, according to health status and living conditions. Poverty-stricken
individuals are here defined as those who exist in overcrowded living situations, suffer from poor health, are less likely to
receive treatment and who have an increased risk of death from TB. It should be noted that this line is clearly not absolute
and may be difficult to find explicitly, but that it nevertheless exists. However, by keeping the threshold fluid, our model
applies to a broad range of definitions of poverty, rather than an arbitrary cutoff based simply on earning ability. Individuals
living in poverty fall into the following population classes: susceptibles Sp, exposed Ep, infectives Ip and the recovered Rp. Sim-
ilarly, individuals not living in poverty consists of the following classes: susceptibles Sr, exposed Er, infectives Ir and the
recovered Rr. There is interaction between individuals in these two distinct classes (rich and poverty-stricken), making TB
transmission across different socioeconomic classes possible. The total sub-population sizes for the rich and poor are given
by

NrðtÞ ¼ SrðtÞ þ ErðtÞ þ IrðtÞ þ RrðtÞ and NpðtÞ ¼ SpðtÞ þ EpðtÞ þ IpðtÞ þ RpðtÞ; ð1Þ

respectively. Individuals in different human subgroups suffer from natural death at a constant rate l, which is proportional
to the number in each class. We assume that interaction is heterogeneous. The group j members make cj (j = r,p) contacts per
unit time and a fraction of the contacts made by a member of group j with a member of group i is pji (i = r,p). Then
prr + prp = ppp + ppr = 1. The total number of contacts made in unit time by members of group ‘p’ (poor people) with members
of group ‘r’ (rich people) is cppprNp and this must be equal to the total number of contacts made by members of group ‘r’ with
members of group ‘p’; we have a balance relation:

pprcp

Nr
¼

prpcr

Np
: ð2Þ

The forces of TB infection for the poor and the rich are given by kp and kr, with

kp ¼
pppcpbpIp

Np
þ

pprcpbrIr

Nr
and kr ¼

prrcrbrIr

Nr
þ

prpcrbpIp

Np
; ð3Þ

respectively.
In Eq. (3), bi (i = r,p) is the probability of one individual being infected by one infectious individual from the r or p class,

while cj (j = r,p) is the per capita effective contact rate. It is worth mentioning that cp = b1cr, with b1 P 1. The term b1 is an
accelerating term showing that poor people live in overcrowded conditions. Individuals are recruited into the rich and poor
susceptible populations at rates (1 � q)K and qK, respectively. Rich and poor susceptibles are infected with MTB at rates kr

and kp, respectively. Rich susceptibles infected with MTB enter the latent stage at a rate fkr and develop fast TB at a rate
(1 � f)kr. Rich latently infected individuals progress to active TB as a result of endogenous reactivation of the latent bacilli
and exogenous reinfection at rates kr and wrkr, with wr 2 (0,1), since primary infection confers some degree of immunity.
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Rich TB infectives are treated at rate rr and treated individuals move into the recovered class. Rich TB infectives have an addi-
tional disease-induced death rate dr. Rich individuals recovered from TB are infected with MTB at rate drkr to enter rich la-
tently infected and TB infective classes at rates fdrkr and (1 � f)drkr, respectively, with dr 2 (0,1), since primary infection
confers some degree of immunity. Poor susceptibles infected with MTB enter the latently infected class at a rate fkp and de-
velop fast TB at a rate (1 � f)kp. Poor latently infected individuals progress from latency to active TB as a result of endogenous
reactivation and exogenous reinfection at rates kp and wpkp, respectively, where kp = b2kr, with b2 P 1 and wp 2 (0,1), since
primary infection confers some degree of immunity. The term b2 is an acceleration parameter showing that latently infected
poor individuals have an increased rate of progressing to active TB due to the effects of malnutrition on the immune system.
Poor TB patients are treated at rate rp, where rp ¼ 1

b3
rr , with b3 P 1. The term 1

b3
represents decreased treatment uptake. Due

to impediments, such as having money for transport to and from the hospital, and negative attitude of health professionals
towards individuals in this socioeconomic class, there is a reduced compliance of TB treatment in poor people. Due to re-
duced socioeconomic status, poor TB infectives have an additional TB-induced death rate dp, where dp = b4dr, with b4 P 1.
This is because most poor individuals do not have easy access to life-saving drugs and thus experience higher disease-in-
duced death than their corresponding rich individuals. Poor individuals recovered from TB are infected with MTB at rate dpkp

and move into the latently infected and infective classes at rates fdpkp and (1 � f)dpkp, respectively; dp 6 1, since primary
infection confers some degree of immunity. The model flow diagram is given in Fig. 1.

We assume any transfer from rich to poor status or vice versa is negligible. Based on the aforementioned, the following
system of differential equations describe the dynamics of TB in different social settings:

S0rðtÞ ¼ ð1� qÞK� krSr � lSr ;

E0rðtÞ ¼ f krðSr þ drRrÞ � ðlþ krÞEr � wrkrEr;

I0rðtÞ ¼ ð1� f ÞkrðSr þ drRrÞ þ krEr þ wrkrEr � ðlþ dr þ rrÞIr ;

R0rðtÞ ¼ rrIr � lRr � drkrRr;

S0pðtÞ ¼ qK� kpSp � lSp;

E0pðtÞ ¼ f kpðSp þ dpRpÞ � ðlþ kpÞEp � wpkpEp;

I0pðtÞ ¼ ð1� f ÞkpðSp þ dpRpÞ þ kpEp þ wpkpEp � ðlþ dp þ rpÞIp;

R0pðtÞ ¼ rpIp � lRp � dpkpRp:

ð4Þ

Fig. 1. Structure of the model.
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2.1. Basic properties of solutions

In this section, we study some basic results of solutions of model system (4) which will be useful in the proofs of stability
and persistence results. Let Rn

þ denote the set x = (x1,x2, . . . ,xn) with xj > 0 for j = 1, 2, . . . ,n. We will use the following results
in Appendix A of [22].

Lemma 1. Let F : Rn
þ ! Rn; FðxÞ ¼ ðF1ðxÞ; F2ðxÞ; . . . ; FnðxÞÞ; x ¼ ðx1; x2; . . . ; xnÞ be continuous and have partial derivatives oFj

oxk

which exist and are continuous in Rn
þ for j,k = 1, 2, . . . ,n. Then F is locally Lipschitz continuous in Rn

þ.

Theorem 1. Let F : Rn
þ ! Rn be locally Lipschitz continuous and for each j = 1, 2, . . . ,n satisfy Fj(x) P 0 whenever x 2 Rn

þ; xj ¼ 0.
Then, for every x0 2 Rn

þ, there exists a unique solution of x0 = F(x), x(0) = x0 with values in Rn
þ which is defined in some interval (0,b]

with b 2 (0,1]. If b <1, then sup
Pn

j¼1xjðtÞ ¼ 1.

Theorem 2. For all S0
r ; E

0
r ; I

0
r ;R

0
r ; S

0
p; E

0
p; I

0
p;R

0
p > 0, there exists Sr, Er, Ir, Rr, Sp, Ep, Ip, Rp: (0,1) ? (0,1) which solve model system

(4) with initial conditions Sr ¼ S0
r ; Er ¼ E0

r ; Ir ¼ I0
r ;Rr ¼ R0

r ; Sp ¼ S0
p; Ep ¼ E0

p; Ip ¼ I0
p and Rp ¼ R0

p.

Proof. Applying Theorem 1, we define

F1ðxÞ ¼ S0rðtÞ F2ðxÞ ¼ E0rðtÞ F3ðxÞ ¼ I0rðtÞ F4ðxÞ ¼ R0rðtÞ F5ðxÞ ¼ S0pðtÞ F6ðxÞ ¼ E0pðtÞ F7ðxÞ ¼ I0pðtÞ F8ðxÞ ¼ R0pðtÞ;

where x = (Sr,Er, Ir,Rr,Sp,Ep, Ip,Rp).
By the properties of continuity over operations, we have continuity of Fi for all i = 1, 2, . . . ,8. Furthermore,

oF1

ox1
¼ �l�

prpcrbpIp

Np
� prrcrbrIrðEr þ Ir þ RrÞ

N2
r

;

oF1

ox2
¼ prrcrbrIrSr

N2
r

;

oF1

ox3
¼ � prrcrbrSrðSr þ Er þ RrÞ

N2
r

;

oF1

ox4
¼ prrcrbrIrSr

N2
r

;

oF1

ox5
¼

prpcrbpIpSr

N2
p

;

oF1

ox6
¼

prpcrbpIpSr

N2
p

;

oF1

ox7
¼ �

prpcrbpSrðSp þ Ep þ RpÞ
N2

p

;

oF1

ox8
¼

prpcrbpIpSr

N2
p

;

ð5Þ

and these partial derivatives exist and are continuous. By Lemma 1, F is locally Lipschitz continuous. Let x1 = Sr = 0, with
x2 = Er > 0, x3 = Ir > 0, x4 = Rr > 0, x5 = Sp > 0, x6 = Ep > 0, x7 = Ip > 0 and x8 = Rp > 0. Then

F1ðxÞ ¼ ð1� qÞK > 0:

Now let x2 = Er = 0, with x1 = Sr > 0, x3 = Ir > 0, x4 = Rr > 0, x5 = Sp > 0, x6 = Ep > 0, x7 = Ip > 0 and x8 = Rp > 0. Then

F2ðxÞ ¼ f
prrcrbrIr

Nr
þ

prpcrbpIp

Np

� �
ðSr þ drRrÞ > 0:

This is further done up to the case when x8 = Rp = 0, with x1 = Sr > 0, x2 = Er > 0, x3 = Ir > 0, x4 = Rr > 0, x5 = Sp > 0, x6 = Ep > 0 and
x7 = Ip > 0. Then

F8ðxÞ ¼ rpIp > 0:

By Theorem 1, for every x0 ¼ S0
r ; E

0
r ; I

0
r ;R

0
r ; S

0
p; E

0
p; I

0
p;R

0
p

� �
2 R8

þ, there exists a unique solution of x0 = F(x), x(0) = x0 with values in

R8
þ which is defined in some interval (0,b] with b 2 (0,1]. If b <1, then

sup
06t6b
½NrðtÞ þ NpðtÞ� ¼ 1:
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Thus, N0 = K � lN � drIr � dpIp 6K � lN, N = Nr + Np. Using [23],

0 6 N 6
K
l
þ Nð0Þe�lt;

where N(0) represents the value of Eq. (1) evaluated at the initial conditions of the respective variables. As t ?1,

0 6 N 6
K
l
;

so N(t) is bounded, a contradiction to Theorem 1. As a result, b =1, implying that solutions of model system (4) are positive
and are defined on (0,1). h

For the boundedness of solutions, the following Theorem is established.

Theorem 3. All solutions of model system (4) are bounded.

Proof. Using model system (4), we have N0 = K � lN � drIr � dpIp 6K � lN. Assume N(t) 6M for all t P 0, where M ¼ K
l þ 1.

Suppose the assumption is not true. Then there exists a t1 > 0 such that

Nðt1Þ ¼
K
l
þ 1; NðtÞ < K

l
þ 1; t < t1; N0ðt1ÞP 0:

However,

N0ðt1Þ 6 K� lNðt1Þ ¼ �l < 0;

which is a contradiction. This means N(t) 6M for all t P 0. h

Therefore, all feasible solutions of system (4) enter the region

X ¼ ðSr; Er ; Ir ;Rr ; Sp; Ep; Ip;RpÞ 2 R8
þ : N 6

K
l

� �
:

Thus, X is positively invariant and it is sufficient to consider solutions in X. Existence, uniqueness and continuation results
for system (4) hold in this region and all solutions of system (4) starting in X remain in X for all t P 0. All parameters and
state variables for model system (4) are assumed to be non-negative (for biological relevance) for all t P 0 since it monitors
human population.

2.2. Disease-free equilibrium and stability analysis

The disease-free equilibrium of model system (4), E0, is given by

E0 ¼ S0
r ; E

0
r ; I

0
r ;R

0
r ; S

0
p; E

0
p; I

0
p;R

0
p

� �
¼ ð1� qÞK

l
;0;0;0;

qK
l
;0;0;0

� �
:

Following van den Diressche [24], the reproduction number for model system (4) is given as

Rrp ¼
G1 þ G2

2

where

G1 ¼
pppcpbphp

h3h4
þ prrcrbrhr

h1h2
;

G2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4crcpprppprbpbrhphr

h1h2h3h4
þ

pppcpbphp

h3h4
� prrcrbrhr

h1h2

� �2
s

with

h1 ¼ lþ kr h2 ¼ lþ dr þ rr hr ¼ lð1� f Þ þ kr ;

h3 ¼ lþ kp h4 ¼ lþ dp þ rp hp ¼ lð1� f Þ þ kp:

The utility of the basic reproductive number has been questioned, but we use it here as a threshold with the understanding
that there may be further complexities in its application [25].

The next theorem follows from [24] Theorem 2.
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Theorem 4. The disease-free equilibrium E0 is locally asymptotically stable for Rrp < 1 and unstable otherwise.

2.2.1. Analysis of the reproduction number Rrp

In the case that like mixes with like, prr = ppp = 1, prp = ppr = 0, then Rrp ¼ maxfRr;Rpg, where

Rp ¼
bpcphp

h3h4
and Rr ¼

brcrhr

h1h2
: ð6Þ

These are the treatment-induced reproduction numbers for TB transmission when poor people mix only among themselves
(Rp) or treatment-induced reproduction numbers for TB transmission when rich people mix only among themselves (Rr).
This allows us to compare the various components of the two reproduction numbers Rp and Rr for different scenarios such
as overcrowding, poor nutrition, increased endogeneous reactivation and reduced treatment uptake.

In Table 1, the various attributes of poverty are singly assessed: Case 1 suggests that poor people living in overcrowded
homes are at a comparative disadvantage when it comes to TB infection, as overcrowding increases contact rates, making
poor people more prone to TB infections than their rich counterparts. Case 2 describes the effect of exogeneous reactivation
by capturing the increased probability of TB transmission among the poor than among the rich. Poor nutrition tends to com-
promise one’s immunity, also contributing to an increase in endogeneous reactivation of the latent bacilli as noted in Case 2.
Case 3 captures the effects of reduced treatment uptake among the poor. Results from Table 1 suggest that poor people are at
an increased disadvantage when it comes to infection with TB and are driving the epidemic. Case 4 describes the effect of
lower socioeconomic class, while Case 5 deals with the direct effect of poor nutrition. All the signifiers of poverty serve to
exasperate the risk of transmission between the poor versus the rich.

Similar results are also obtained by using the Wells–Riley equation [26] which shows an increase in active new TB cases IN
i

(i = r,p) with time for steady-state quanta levels in a room space assuming the same initial susceptible population sizes for
poor and rich people:

IN
i ¼ S 1� exp � ðIr þ IpÞpmqt

AiVi

� �	 
� �
;

where IN
i is the number of new TB cases in class i; pm is the average pulmonary ventilation or the breathing rate of suscep-

tibles per hour (m3/hr); q is the quanta production rate per infector (quanta/hr); Vi (i = r,p) is the room volume (m3); Ai

(i = p,r) is the ventilation rate in air changes per hour (AC/hr) and t is the total exposure time (seconds). These terms account
for the fact that poor people live in small overcrowded rooms and ventilation is bad. Thus, for the poor, ðIrþIpÞpmqt

ApVp
is greater

than ðIrþIpÞpmqt
Ar Vr

, since Ap < Ar (ventilation rate for the poor is bad) and Vp < Vr (poor people live in smaller rooms). Thus, if
we start off with the same initial susceptible poor and rich populations, then

IN
p ¼ S 1� exp � ðIr þ IpÞpmqt

ApVp

� �	 
� �
> IN

r ¼ S 1� exp � ðIr þ IpÞpmqt
ArVr

� �� 
� �
;

meaning that there are more new TB cases among the poor than among the rich.

2.3. Endemic equilibria

Model system (4) has three endemic equilibria: rich-only endemic equilibrium, poverty-only endemic equilibrium and a
coexistence equilibrium. It is worth mentioning that if there are no poor (or no rich) people, model system (4) becomes an
ordinary TB model, so the rich-only and poor-only endemic equilibrium states are simple TB equilibrium states whose
analysis has been carried out in depth by a number of researchers [27]. For that reason, we do not discuss them here.

The coexistence equilibrium occurs when the disease exists in the entire community regardless of the socioeconomic
status of individuals. This endemic equilibrium is denoted by

E�� ¼ S��r ; E
��
r ; I

��
r ;R

��
r ; S

��
p ; E

��
p ; I

��
p ;R

��
p

� �
;

where all states are positive. The permanence of the disease destabilises the disease-free equilibrium E0, since the
coexistence equilibrium E�� exists for Rrp > 1.

Table 1
Effects of overcrowding, increased endogenous reactivation, reduced socioeconomic status, reduced treatment uptake and poor nutrition on TB dynamics. In
each case, all parameters are equalized between rich and poor, except those under the heading ‘‘conditions’’.

Case Description Conditions Rp �Rr

1 Overcrowding cp = b1cr, b1 > 1 ðb1�1Þcr br hr
h3h4

> 0

2 Increased endogenous reactivation kp = b2kr, b2 > 1 crbr flkr ðb2�1Þ
h3 h4 h2

> 0

3 Reduced treatment uptake rr = b3rp, b3 P 1 ðb3�1Þbr cr hr
h1h2h4

> 0

4 Reduced socioeconomic status dp = b4dr, b4 P 1 ðb4�1Þcr br hr dr
h3h2h4

> 0

5 Poor nutrition bp = b5br, b5 > 1 ðb5�1Þcr br hr
h3h4

> 0
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Lemma 2 [28]. Let x ´ F(t) be a differentiable function with finite limit as t ?1. If _F is uniformly continuous, then _F ! 0 as
t ?1.

Theorem 5. System (4) is uniformly persistent on X.

Proof. Uniform persistence of system (4) implies that there exists a constant f > 0 such that any solution of (4) which starts
in

S0
r ; E

0
r ; I

0
r ;R

0
r ; S

0
p; E

0
p; I

0
p;R

0
p

� �
2 X�;

satisfies

lim inf
t!1

SrðtÞP f lim inf
t!1

ErðtÞP f lim inf
t!1

IrðtÞP f lim inf
t!1

RrðtÞP f

lim inf
t!1

SpðtÞP f lim inf
t!1

EpðtÞP f lim inf
t!1

IpðtÞP f lim inf
t!1

RpðtÞP f:

Using the Lyapunov functional [29],

V Sr ; Er; Ir;Rr ; Sp; Ep; Ip;Rp
� �

¼ C1 Sr � S��r ln Sr
� �

þ C2 Er � E��r ln Er
� �

þ C3 Ir � I��r ln Ir
� �

þ C4 Rr � R��r ln Rr
� �

þ C5 Sp � S��p ln Sp

� �
þ C6 Ep � E��p ln Ep

� �
þ C7 Ip � I��p ln Ip

� �
þ C8 Rp � R��p ln Rp

� �
;

the time derivative of V(Sr,Er, Ir,Rr,Sp,Ep, Ip,Rp) along the solution path is given by

V 0 ¼ C1 S0r � S��r
S0r
Sr

� �
þ C2 E0r � E��r

E0r
Er

� �
þ C3 I0r � I��r

I0r
Ir

� �
þ C4 R0r � R��r

R0r
Rr

� �
þ C5 S0p � S��p

S0p
Sp

 !
þ C6 E0p � E��p

E0p
Ep

 !

þ C7 I0p � I��p
I0p
Ip

 !
þ C8 R0p � R��p

R0p
Rp

 !

¼ Sr � S��r
� � S0r

Sr
þ C2 Er � E��r

� � E0r
Er
þ C3 Ir � I��r

� � I0r
Ir
þ C4 Rr � R��r

� �R0r
Rr
þ C5 Sp � S��p

� � S0p
Sp
þ C6 Ep � E��p

� � E0p
Ep

þ C7 Ip � I��p
� � I0p

Ip
þ C8 Rp � R��p

� �R0p
Rp

6 �C1 Sr � S��r
� �

kr þ lð Þ � C2 Er � E��r
� �

lþ kr þ wrkrð Þ � C3 Ir � I��r
� �

lþ dr þ rrð Þ � C4 Rr � R��r
� �

lþ drkrð Þ

� C5 Sp � S��p
� �

lþ kp
� �

� C6 Ep � E��p
� �

lþ kp þ wpkp
� �

� C7 Ip � I��p
� �

lþ dp þ rp
� �

� C8 Rp � R��p
� �

lþ dpkp
� �

6 g Sr � S��r
� �

þ Er � E��r
� �

þ Ir � I��r
� �

þ Rr � R��r
� �

þ Sp � S��p
� �

þ Ep � E��p
� �

þ Ip � I��p
� �

þ Rp � R��p
� �h i

; ð7Þ

where

g ¼min �C1 kr þ lð Þ;�C2 lþ kr þ wrkrð Þ;�C3 lþ dr þ rrð Þ;�C4 lþ drkrð Þ;�C5 lþ kp
� �

;�C6 lþ kp þ wpkp
� �

;


�C7 lþ dp þ rp
� �

;�C8 lþ dpkp
� ��

:

Thus, V(Sr,Er, Ir,Rr,Sp,Ep, Ip,Rp) > 0 and V0 (Sr,Er, Ir,Rr,Sp,Ep, Ip,Rp) = 0 only at E��. Hence, V(Sr,Er, Ir,Rr,Sp,Ep, Ip,Rp) is a Lyapunov
function since all the variables Sr(t), Er(t), Ir(t), Rr(t), Sp(t), Ep(t), Ip(t), Rp(t) 2 L1 are continuous and bounded with derivatives
in L1 (indeed, d

dt Sr � S��r
� �

is also uniformly bounded). We have

Sr � S��r
� �

þ Er � E��r
� �

þ Ir � I��r
� �

þ Rr � R��r
� �

þ Sp � S��p
� �

þ Ep � E��p
� �

þ Ip � I��p
� �

þ Rp � R��p
� �

! 0 as t !1;

a result adapted from Lemma 2.
Hence, V0(Sr,Er, Ir,Rr,Sp,Ep, Ip,Rp) = 0 with equality only at E��. The only invariant subset in X�1, the interior of

X1 ¼ ðSr ; Er; Ir ;Rr; Sp; Ep; Ip;RpÞ : Sr ¼ S��r ; Er ¼ E��r ; Ir ¼ I��r ;Rr ¼ R��r ; Sp ¼ S��p ; Ep ¼ E��p ; Ip ¼ I��p ;Rp ¼ R��p
n o

� X

is the singleton E��f g ¼ S��r ; E
��
r ; I

��
r ;R

��
r ; S

��
p ; E

��
p ; I

��
p ;R

��
p

� �n o
. Therefore, from the Lyapunov-Lasalle properties [30], system (4) is

uniformly persistent. The above result can be ascertained from the fact that V0 is positive in the neighbourhood of an unstable
disease-free equilibrium E0 with Rrp > 1, because all solutions starting in that vicinity remain away from E0, except those
starting on the semi-axes OSr and OSp (O being the origin). The only biologically meaningful compact invariant subset on

the boundary of X is S0
r ;0; 0;0; S

0
p;0;0;0

n o
and, by a result of [31], system (4) is uniformly persistent. h
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Table 2
Model parameters and their interpretations.

Definition Symbol Units Point estimate Range Source

Recruitment rate K People/Year 8.7 � 104 – CSOZ
Natural mortality rate l 1/Year 0.02 0.015–0.02 CSOZ
Contact rates cr, cp – 3 1–10 Assumed
TB induced death rate dr 1/Year 0.3 0.1–0.5 a⁄

Transmission probabilities br, bp – 0.35 0.3–0.5 a⁄

Homogeneous mixing ppp, prr – 0.3 0–1 Assumed
Heterogeneous mixing prp, ppr – 0.3 0–1 Assumed
Endogenous reactivation rates kr, kp 1/Year 0.00013 10�4 to 3 � 10�4 a⁄

Treatment rate for rich rr 1/Year 0.88 0.7–1 c⁄

Treatment rate for poor rr 1/Year 0.88 0.3–1 c⁄

Protective factor for exposed wr, wp – 0.7 – d⁄

Protective factor for recovered dr, dp – 0.9 – d⁄

Probability of being recruited poor q – 0.5 – Assumed
Latency probability f – 0.99 0–1 d⁄

Overcrowding factor b1 – Variable (P1) Assumed
Increased activation factor b2 – Variable (P1) Assumed
Reduced treatment factor b3 – Variable (P1) Assumed
Reduced socioeconomic status factor b4 – Variable (P1) Assumed
Reduced nutritional status factor b5 – Variable (P1) Assumed
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Fig. 2. Simulations of model system (4) showing effects of overcrowding in the transmission dynamics of TB in heterogenous settings obtained by
considering simulations of the active TB cases starting from b1 = 1 with a step size of 0.05 and other parameter values as in Table 2. The direction of the
arrow shows the direction of decrease in the levels of overcrowding.
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3. Numerical simulations

The fourth-order Runge–Kutta numerical scheme coded in C++ and parameter values in Table 2 were used in carrying out
the numerical simulations. For effective comparison of the effects of poverty on TB transmission we assume the same initial
population size for the rich and poverty-stricken populations in the corresponding classes.

In Table 2, CSOZ means Central Statistics Office of Zimbabwe, a⁄ denotes parameter values and ranges from [32,33], c⁄

denotes parameter values from [34] and d⁄ denotes parameter values from [35]. Due to lack of data to calibrate the model
and for parameter estimation, other parameter values are assumed within realistic ranges for illustrative purpose. Note that
the data reflects the population of Zimbabwe and that ‘‘Range’’ refers to values used in our sensitivity analysis (Section 3.1).

We now show the general dynamics of TB in the different socioeconomic settings.
Fig. 2 is a graphical representation showing the number of active TB cases as the term signifying levels of crowdedness is

varied. Even in the presence of treatment, there are more active TB cases among the poor than the rich. A decrease in over-
crowding levels results in a decrease of active TB cases among the poor (Fig. 2(a)). This tends to suggest improving the hous-
ing conditions for the poor people will result in a decrease of TB cases. However, even when the poor are living in the same
housing conditions as the rich (b1 = 1), there are more active TB cases among the poor. This suggests that a reduction in over-
crowding is necessary but not sufficient to eliminate TB in poor overcrowded communities.

In Fig. 3, the possible effects of nutritional status on TB are illustrated. With increasing nutritional status for the poor peo-
ple, there is a corresponding marked decrease of TB cases in approximately the first 60 months as noted for different nutri-
tional levels in the presence of treatment. However, from 60 months onwards, TB cases are the same for people in different
levels of nutritional status (the poor and the rich). This suggests that the long-term disease dynamics of TB in the presence of
treatment are not highly dependent on nutritional status and accompanying immune compromisation. Results from Figs. 2
and 3 suggest that overcrowding plays a more important role in the transmission dynamics of TB than poor nutrition.
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Fig. 3. Simulations of model system (4) showing effects of nutritional status and state of the immune system in the transmission dynamics of TB in
heterogenous settings obtained by considering simulations of the active TB cases starting from b5 = 1 with a step size of 0.5 and other parameter values as in
Table 2. The direction of the arrow shows the direction of increase in the improvement of a poor individual’s nutritional status.
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Fig. 4 shows the effect that different levels of treatment uptake have on TB dynamics. Improvement in treatment uptake is
accompanied by a reduction in active TB cases among the poor. However, it is worth mentioning that there are different rea-
sons that account for differential levels of treatment uptake, ranging from food availability to the distance poor people have
to travel access medication. Taking anti-TB drugs while hungry makes someone weak; thus, food unavailability compromises
uptake of TB drugs for those who are sick. Furthermore, the further the distance poor people are from the TB treatment cen-
tre, the higher the chances of them missing and/or stopping treatment. Results from Figs. 2–4 suggest that TB treatment
should not be considered solely as a biomedical problem, as effective TB elimination requires strategies that target social
and economic factors as well.

Fig. 5 depicts the effects of poverty on TB transmission dynamics. It suggests that overcrowding promotes the transmis-
sion of TB more than either exogeneous reactivation or reduced treatment uptake as it results in a big increase of the repro-
duction number Rp. However, comparing the effect of exogeneous reactivation and reduced TB treatment uptake suggests
that exogeneous reactivation worsens TB more than reduced treatment uptake, as shown by an increase of the reproduction
number Rp (which is closely related to disease transmission). Thus, as long as TB control is taken as a medical condition, it
may be bound to failure as overcrowding and exogeneous reactivation aid TB transmission by increasing the chances of one
getting infected and progressing to active TB. Consequently, improving the living standards will in turn reduce the poverty-
induced reproduction number Rp, meaning it will have a positive impact on TB control.

3.1. Sensitivity analysis

In order to investigate the effects of variations in Rrp to its constituent parameters, we used Latin Hypercube Sampling
and Partial Rank Correlation Coefficients (PRCCs) with 1000 simulations per run. Latin Hypercube Sampling is a statistical
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Fig. 4. Simulations of model system (4) showing effects of reduced treatment uptake in the transmission dynamics of TB in heterogenous settings obtained
by considering simulations of active TB cases starting from b3 = 1 with a step size of 0.25 and other parameter values as in Table 2. The direction of the arrow
shows the direction of increase in the improvement of a poor individual’s nutritional status.
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sampling method that allows for an efficient analysis of parameter variations across simultaneous uncertainty ranges in each
parameter [36]. PRCCs illustrate the degree of the effect that each parameter has on the outcome.

Fig. 6 illustrates the PRCCs using Rrp as an output variable. The parameter with the greatest effect on the outcome is the
latency probability. Interestingly, heterogeneous mixing increases Rrp , whereas homogenous mixing decreases it. Further-
more, the poor contact rate has a greater effect on the outcome than the rich contact rate, suggesting that poverty has a
strong effect on the disease.

Fig. 7 illustrates the effect that varying three sample parameters will have on Rrp . If the latency probability is sufficiently
high, then Rrp < 1 and the disease can be controlled. However, if the latency probability is low, then Rrp > 1 and the disease
will persist. If the latency probability is low, then many individuals will develop fast TB and will relapse after recovery.

Fig. 5. Effects of overcrowding, exogeneous reactivation and reduced treatment uptake. Here c1, p1 and t1 denote effect of varying b1, b2 and b3,
respectively, noting that cp = b1cr, kp = b2kr and rp ¼ 1

b3
rr . Parameter values are as in Table 2.

Fig. 6. Partial rank correlation coefficients showing the effect of parameter variations on Rrp using ranges in the table. Parameters with positive PRCCs will
increase Rrp when they are increased, whereas parameters with negative PRCCs will decrease Rrp when they are increased. Note that we assumed bi = 1 for
all i.
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4. Discussion

Poverty is a an important driver of the TB epidemic. We computed and compared the reproduction numbers for the poverty–
stricken and rich communities. Results from the analysis of reproduction numbers suggest that overcrowding, poor nutrition,
reduced treatment uptake and lower socioeconomic status worsen TB; that is, TB transmission rates are higher in poor com-
munities than in the rich ones. Even for identical parameter ranges among rich and poor contact rates, a sensitivity analysis
shows that the poor contact rate has a greater effect on the outcome than the rich contact rate; in practice, the poor contact
rate may be very much higher, as poverty-stricken individuals live in overcrowded conditions and may therefore come into
contact with a great many other individuals. This agrees with previous studies [37] that poverty enhances TB transmission.

Interestingly, homogenous mixing (poor mixing wth poor or rich mixing with rich) has a slight beneficial effect on the
epidemic. Conversely, heterogeneous mixing (poor mixing with rich) has a detrimental effect on the epidemic. This is likely
because an epidemic that may be prevalent in the poor community can be made worse if it has more opportunities to enter
the rich community; indeed, this is one of the higher drivers of the epidemic. We illustrate these results with caution: the
take-home message here is not that mixing with poverty-stricken individuals should be avoided, but rather that the rich
community can help themselves by helping those less fortunate.

Results from this theoretical study suggest that improving the living standards of poverty-stricken individuals will in turn
have a positive impact on TB control, as overcrowding, poor nutrition, reduced socioeconomic status and reduced treatment
uptake are shown to increase the poverty-induced reproduction number.

Fig. 7. Monte Carlo simulations of 1000 sample values for three illustrative parameters (latency probability, homogenous mixing and heterogeneous
mixing) chosen via Latin Hypercube Sampling.
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There are a number of limitations to our study, which should be acknowledged. We assumed that ‘‘rich’’ versus ‘‘poor’’ is a
state assigned at birth, with no possibility of transfer later in life. While true to some degree in large parts of the world, this is
obviously not always the case. We also assumed that the latency probability was the same for disease-naïve individuals as
for disease-experienced individuals. Finally, we did not impose a threshold for a strict cutoff between rich and poor, but
rather assigned these categories fluidly, in order to reflect the relative nature of wealth.

The largest driver of the epidemic is the latency probability. If this factor is itself affected by poverty (perhaps due to a
mutated strain among poor communities) then it remains possible that poverty may cause a much more dangerous form
of TB to evolve. This potential scenario only underscores the importance of global TB management among both the rich
and the poor. Without investments from the rich community in the welfare of the poor, TB remains a scourge to all.
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